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Abstract. Most algorithms for reconstruction of evolutionary histories
involving large-scale events such as duplications, deletions or rearrange-
ments, work on sequences of predetermined markers, for example protein
coding genes or other functional elements. However, markers defined in
this way ignore information included in non-coding sequences, are prone
to errors in annotation, and may even introduce artifacts due to partial
gene copies or chimeric genes.

We propose the problem of sequence segmentation where the goal is
to automatically select suitable markers based on sequence homology
alone. We design an algorithm for this problem which can tolerate cer-
tain amount of inaccuracies in the input alignments and still produce
segmentation of the sequence to markers with high coverage and ac-
curacy. We test our algorithm on several artificial and real data sets
representing complex clusters of segmental duplications.

1 Introduction

Genome rearrangements and segmental duplications, acting on long stretches
of DNA, pose a significant challenge to comparative genomics. Rearrangements
change the order of segments in the genome, resulting in new gene orders and
new chromosomal organization. In a typical rearrangement study, we aim at
computing the shortest possible number of operations transforming one genome
to another or reconstructing a phylogenetic tree and ancestral gene orders (Moret
et al., 2001; Bourque and Pevzner, 2002; Adam and Sankoff, 2008).

Segmental duplications increase the length of the sequences by copying ge-
netic material to new locations, creating complex gene clusters, hotspots of evo-
lutionary innovation (Zhang, 2003). Reconstruction of duplication events within
such regions is a key to understanding their organization, function, and evolution
(Benson and Dong, 1999; Elemento et al., 2002; Zhang et al., 2009; Vinar et al.,
2010; Lajoie et al., 2010).

Most algorithms for these tasks do not work directly on the original se-
quences, but rather on predetermined markers or synteny blocks. These are
intervals of the sequence such that all events in the true evolutionary history
introduce breakpoints only at or between the boundaries of these intervals, but
not inside them. The notion of such intervals was first introduced by Nadeau and



Taylor (1984) (conserved segments) and in this work we call them atomic seg-
ments or atoms. Splitting the sequence into atoms allows algorithm developers
to abstract from modeling local sequence alignments, and instead to concentrate
on larger-scale processes that reorder and duplicate blocks of segments.

Here, we introduce a new method for segmenting sequence into atoms, pri-
marily targeted at a fine-scale analysis of relatively recent evolutionary events
(for example events that happened in the last 85 My of mammalian evolution,
which approximately translates to higher than 80% sequence similarity for neu-
trally evolving sequences). We test our method in the context of reconstruction
of duplication histories; however, it is also applicable to other scenarios, includ-
ing rearrangement studies. In the rest of this section, we give an overview of the
methods used previously for this task, and we demonstrate examples of various
problems in real data sets that we address by our work.

Related work. Many algorithms for rearrangement or duplication analysis use
protein coding genes as atoms (Fitch, 1977; Benson and Dong, 1999; Moret et al.,
2001; Elemento et al., 2002; Bourque and Pevzner, 2002; Bertrand and Gascuel,
2005; Lajoie et al., 2007; Adam and Sankoff, 2008; Lajoie et al., 2010). In order
to do so, we need to annotate genes in the sequence and establish homology or
even orthology among them. The order and strand orientation of the genes is
then used as an input for further analysis.

While this is perhaps the only solution applicable to distantly related se-
quences that need to be aligned at the protein level, it is not universal. First
of all, necessary preprocessing, including gene finding and homology or orthol-
ogy detection, is difficult and can introduce errors. Even in cases where reliable
ortholog sets are available, this approach is not relevant for all evolutionary
scenarios. Many incomplete pseudogenes present in human and other genomes
clearly show that duplications and rearrangements do not respect gene bound-
aries. For example, the human PRAME gene cluster contains 38 copies of the
PRAME locus (preferentially expressed antigens in melanoma), but more than a
third of these copies are incomplete pseudogenes (Gibbs et al., 2007). Even more
problematic are chimeric genes that contain a breakpoint inside an intron. The
PRAME gene cluster contains a chimeric gene whose protein sequence consists
of two parts with different phylogenetic ancestries. Its inclusion in a phylogenetic
analysis may result in a completely incorrect phylogenetic tree.

Another example, where genes are not appropriate as atoms, is the UGT1A
cluster. In the human genome, this cluster contains a single alternatively-spliced
gene (UDP-glucuronosyltransferase) with at least 13 unique copies of the first
exon that apparently arose by segmental duplication (Bellemare et al., 2010).
To analyze this sequence, we would have to use exons as atoms instead of genes,
but these exons are too short for a reliable gene tree reconstruction, which is a
necessary step for many methods. Therefore it would be ideal to use also some
of the surrounding non-coding sequences, which have been copied together with
the exons, but that requires finding atomic segments unrelated to functional
annotation.



Finally, a well-known KRAB zinc finger gene family in the human genome
contains more than 400 genes in 25 gene clusters spread across several chromo-
somes (Schmidt and Durrett, 2004; Huntley et al., 2006). Each zinc finger gene
is composed of the KRAB domain and between three and forty zinc fingers. In
this family, we can see duplication of whole genes, as well as duplication of zinc
finger domains within genes. For both UGT1A cluster and KRAB genes, the
traditional selection of atoms (i.e. first exons or zinc finger domains) requires
detailed functional annotation and a complex prior knowledge about the studied
region. Even with such knowledge, we may create errors due to chimeric atoms
or to loose valuable information due to insufficient sequence coverage.

Recently, a new approach to segmentation based on local sequence alignments
has been introduced in the context of ancestral genome reconstruction (Ma et al.,
2006). Briefly, using sequence alignment tools such as blastz (Schwartz et al.,
2003) or UCSC chain/net pipeline (Kent et al., 2003), they identify significant
local alignments of the sequence to itself with a desired level of homology and
then use boundaries of these sequence alignments as atomic segment boundaries,
and regions between the boundaries as atoms. Ma et al. (2006, 2008b) developed
a heuristic pipeline that creates a map of such segments considering events of
50kb or more in length, later refining the boundaries to a finer precision. Their
resolution is ideal for mammalian whole-genome analyses; however for smaller-
scale events (such as analysis of gene clusters), finer resolution is needed.

In our previous work, we have used a simple greedy heuristic (SGH) for
this type of analysis (Vinar et al., 2010). Analyzed sequences are first divided
into non-overlapping segments of size 500, and for each segment we search for
sequence homologies in the rest of the sequence. The segment with the highest
number of homologs and its matching homologs are then designated as atoms. All
segments overlapping new atoms are removed and the whole process is repeated.

There are several advantages to methods based on local alignments. The
analysis is not dependent on possibly error-prone annotations. The atoms often
span longer sections of the sequence which allows more accurate determination
of phylogeny of individual atom instances. Finally, thanks to potentially finer
resolution of atoms, we can use assumptions of infinite sites model (Ma et al.,
2008a), such as low breakpoint reuse assumption that often helps to resolve
symmetries in duplication event direction (Zhang et al., 2009).

Problem statement. Our goal is to investigate systematic approaches to segmen-
tation of sequences into atoms. The input for our problem consists of several
evolutionarily related sequences or one sequence with segmental duplications.
We want to find non-overlapping segments called atoms (completely or partially
covering the input sequences) and divide atoms into classes so that: (a) coverage
of the sequences by atoms is high, to use as much sequence information as pos-
sible, (b) the number of atoms is low, to prevent unnecessary segmentation of
long atoms, (c) two atoms of the same class share high sequence similarity across
their entire length, (d) two atoms of different classes or two parts of the same
atom do not appear to be homologous at a chosen sequence similarity threshold.



In practice, one has to find a trade-off these goals and to accommodate imper-
fect results of homology detection methods. In the rest of the paper we describe
our new algorithm for the segmentation problem and evaluate its performance
on both simulated and real sequences.

2 Algorithm

Alignments and breakpoint mapping. The input to our algorithm is a set of evo-
lutionarily related input sequences. We use the LASTZ program (Harris, 2007)
to align each sequence to itself and to every other sequence. One possible ap-
proach to sequence segmentation is to take the resulting set of local alignments,
add a breakpoint at every boundary of a local pairwise alignment and to create
an atom between every two adjacent breakpoints (Fig.1). To classify atoms, we
can simply create a graph with atoms as vertices and alignments between atoms
as edges. Then we create one class for each connected component of this graph.
This approach would work well on a perfect set of alignments, but on real data
we can encounter various artifacts.

In Fig.2, we see an example where one homology was not found by the local
alignment program, leading to a missing breakpoint and wrong class assignment
in the resulting segmentation. To avoid this problem, we will map boundaries
of every alignment through other overlapping alignments to create new break-
points, as suggested by a dotted line in Fig.2. Mapping a breakpoint through
an alignment is easy if the breakpoint is located at an aligned nucleotide. If it
is located at a nucleotide aligned with a gap, we find the nearest aligned nu-
cleotide to the left or to the right (whichever is closer) and map it according to
this nucleotide.
Iterated homology mapping. In our algorithm we perform breakpoint mapping
iteratively, as a newly mapped breakpoint may need to be mapped further to
other regions. We call this general process iterative homology mapping (IHM).

1 2 3 2 3 4 5 4 3 2 1

Fig. 1. Simple sequence segmentation.
The figure shows a dotplot of align-
ments of a sequence to itself. We can
consider each alignment boundary as a
breakpoint; segments between neighbour-
ing breakpoints will form atoms in classes
1, 2, 3, 4, 5.

1 2 1 1 3 1

A B C

Naive segmentation:

Correct segmentation:
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Fig. 2. Example of an input with a missing
alignment. Region A is aligned to B and
end of B to C, but the alignment between
end of A and C is missing. The missing
breakpoint in A can be mapped from B
through the alignment between A and B,
as suggested by the dotted line. Without
mapping we get incorrect segmentation.



Another common problem is that boundaries of overlapping local alignments
often do not coincide exactly, but are spread around the true breakpoint. This
is caused by uncertainty of sequence alignment near alignment boundaries. The
problem is even more exacerbated by mapping breakpoints through alignments,
as shown in Fig.3. Breakpoints x and y in regions B and C will be mapped to
region A through pairwise alignments. Although ideally they should map to the
same place, due to imprecision in alignment boundary between B and D, or due
to imprecision in pairwise alignment between A and B, the new breakpoint x′

is at some distance from the new breakpoint y′. The new breakpoint x′ is then
mapped to C and y′ is mapped to B, again creating pairs of nearby breakpoints.
In some cases, the iterative process may create long arrays of breakpoints orig-
inating from repeatedly mapping what should have been the same breakpoints
through a cycle of imprecise alignments. It is clearly not desirable to create a
very short atom between every pair of such nearby boundaries.
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Input: pairwise alignments

DA B Cy’ x’ xy’’

DA B Cy’ x’

y x’’

Map x and y to A:

Map new boundaries:

Fig. 3. Example of imprecise
breakpoint mapping. Break-
points x and y are mapped to
two different positions in A, and
each of them is then further
mapped to a new position in B
or C. Each of atoms A, B, and
C is thus split into three atoms
instead of two.

To avoid this problem, we select a window size W and allow at most one
breakpoint within each window. This is achieved by clustering breakpoints and
replacing each cluster of nearby breakpoints with a new breakpoint roughly at
their center. The new breakpoints are chosen so that no two breakpoints are
closer than W and the sum of squared distances between the input breakpoints
and their new representatives is minimized. This can be done in O(NW 2) time
by a dynamic programming algorithm described in the appendix.

Outline of our approach is shown in pseudocode of Algorithm 1. We start
with a set of breakpoints created from alignment endpoints. In each iteration
of our algorithm, we first cluster breakpoints as described above. Each new
breakpoint is then checked against all alignments, and if it is inside an alignment,
it is mapped to the other sequence in the alignment. However, we do not map
breakpoints that were already mapped in one of the previous iterations. Since
breakpoint position may change slightly in each iteration due to the clustering
process, we only map breakpoints that are at a distance of more than W from
every previously mapped breakpoint. For this purpose we keep a list BM of all
previously mapped breakpoints.



Algorithm 1: Iterative homology mapping

Data: set of alignments A, window length W
1 B ← endpoints(A) ; // current breakpoints

2 BM ← ∅ ; // all mapped breakpoints

3 repeat
4 B ← cluster(B,W );
5 B′ ← select to map(B,BM ,W ) ; // get unmapped breakpoints from B
6 B′′ ← map(B′, A) ; // map B′ through A
7 B ← B ∪B′′; BM ← BM ∪B′;

8 until B′′ = ∅;
9 return B;

During the whole algorithm, we map at most N/W breakpoints, and therefore
the algorithm terminates in at most N/W iterations. In practical instances,
the number of iterations is usually quite low, ranging from two to six in the
experiments reported in this paper.

Atom classification. Once the breakpoints are fixed, we want to group atoms
to classes so that the atoms within a class form a cluster densely connected by
alignments, and there are relatively few alignments between atoms from different
classes. This can be formulated as an optimization problem, where we seek to
minimize the weighted sum of the number of false positive alignments (align-
ments connecting atoms from two different classes) and false negatives (pairs
of atoms in the same class not connected by an alignment). This is a weighted
variant of the NP-complete Cluster Editing Problem (Shamir et al., 2004).

We solve this problem exactly by CPLEX software from IBM using integer
linear programming (ILP) formulation (the integer program is shown in the
Appendix). In order to efficiently process inputs with large numbers of atoms,
we employ several simple heuristics. First of all, atoms that are in different
components of the alignment connectivity graph will never be in the same class in
the optimal solution of the ILP. Therefore we process each connected component
separately. We also do not run ILP on components that form a clique, because
the optimal solution has then cost 0. If the size of a component exceeds 200, for
efficiency reasons we use a different graph clustering strategy implemented in
the MCL program (Van Dongen, 2008).

In the process of classification we also assign a strand to each atom so that
they are consistent with alignments (each alignment suggests either that the two
atoms should be on the same strand or on the opposite strands).

Segmentation postprocessing. In the resulting segmentation, we sometimes see a
pair of atom classes a and b such that each atom of class a is always followed
by an atom of class b and an atom of class b is always preceded by an atom of
class a. We replace each such pair by a single atom, because there is no evidence
of a breakpoint between a and b at the segmentation level. We perform such
postprocessing on predicted segmentations as well as on the true segmentation
in the simulated data. If the segmentation does not cover the whole sequence,
the two atoms do not need to be adjacent in the sequence, as long as there are
no further atoms between them.
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11 12 13 14 15 16 16

Correct:

Predicted:

Fig. 4. An example of reciprocal best matches between two segmentations. BRMs are
shown as arrows. Each atom is labeled by its class. BRM sensitivity is 4/6, specificity
is 4/7. Classes 12 and 16 are correctly predicted.

Since shorter atoms, with length close to window length W , are often less
accurate than longer ones, in some tests we also filter out all classes that have
all atoms shorter than some threshold T > W .

3 Experiments

Here, we evaluate our methods in the context of duplication history reconstruc-
tion of gene clusters from several related species. We have tested our new IHM
algorithm on both simulated and real data, comparing it to the simpler algorithm
from Vinar et al. (2010), which we will call SGH (Simple Greedy Homology).
Measuring segmentation accuracy. If we know the true segmentation of a se-
quence, which is the case for artificial sequences generated from an evolutionary
model, we can measure the quality of the predicted segmentation directly. To
compare two segmentations, we first compute reciprocal best matches (BRM)
between their atoms (see Fig.4). In particular, an atom from one segmentation
is a BRM of an atom in another segmentation if they cover overlapping regions
of the sequence and no other atom overlaps either of the two by a larger amount.

We use four quality measures comparing the predicted segmentation to the
true segmentation. Let p the number of atoms in the predicted segmentation, t
the number of atoms in the true segmentation, and b be the number of BRM
pairs between them. We define BRM sensitivity as b/t and BRM specificity as
b/p. If, for example, an algorithm splits a true atom into two predicted atoms,
one of them will not have a BRM pair, and therefore the BRM specificity will
decrease. Similarly, a predicted atom spanning two real atoms will lead to a
decrease in the BRM sensitivity.

The other two measures focus on the correctness of atom classification. Class
C1 is correctly predicted if each of its atoms has a BRM atom in the same true
class C2 and each atom in class C2 has a BRM atom in C1. Class sensitivity
is then c/t and specificity is c/p, where c is the number of correctly predicted
classes, t the number of true classes, and p the number of predicted classes.
Data sets. We have tested our algorithms on 30 simulated data sets divided into
three categories with different parameter settings (see the overview in Table 1).
To produce them, we have simulated sequence evolution, allowing substitutions
according to the HKY model (Hasegawa et al., 1985), short insertions and dele-
tions, as well as large-scale deletions and duplications. The simulation started
with a 100kb sequence and proceeded along the human, chimpanzee, and rhesus
macaque phylogeny. The parameters of the substitution model, branch lengths
of the phylogenetic tree, and rate and length distributions of short insertions and



deletions were estimated from UCSC syntenic alignments (Fujita et al., 2011)
of human, chimpanzee, and macaque on the human chromosome 22. Parameters
of large-scale events (duplications and deletions) were taken from Vinar et al.
(2010). The Slow and Fast data sets differ in the rate of large-scale events per
site, with Fast data sets using 1.5 times the slower rate. The No indel data sets
were taken from Vinar et al. (2010) (first 10 out of 20 sets labeled as 300 in that
paper). These sequences were generated by a simpler simulator that did not al-
low short insertions and deletions and also assumed that the rate of large-scale
duplication and deletion is constant per sequence and does not depend on the
sequence length.

Segmentation accuracy on simulated data. We have segmented all simulated data
sets with our new method IHM, setting W = 250 and discarding atoms shorter
than 500. The SGH program from Vinar et al. (2010) also produces atoms of
length at least 500. On the first two categories, IHM noticeably outperforms
SGH, particularly in sensitivity at both the BRM and class levels (Table 2).
Since both programs work at the resolution of 500bp, they cannot predict very
short atoms, which is why their sensitivity is lower than their specificity. For
comparison, we also show the accuracy of the true segmentation with the atoms
shorter than 500bp filtered out. Our program is very close to this ideal sensitiv-
ity. Even without filtering, IHM maintains high specificity combined with much
higher sensitivity than the filtered IHM segmentation.

The last category of data does not contain small-scale indels, which makes
the segmentation problem much easier. Due to the higher number of short atoms,
the sensitivity is relatively small at resolution of 500bp, but almost identical for
both programs as well as for the true segmentation filtered at 500. Both programs
have achieved perfect specificity on these data sets, that is, every predicted atom
is covered by BRM and all predicted classes agree with the true segmentation.
The marked difference is in the boundary placement accuracy. About 86% of
the BRM atoms produced by IHM have both their boundaries within 50nt of
the correct boundary, but this fraction is only 19% for the SGH method. This is
because IHM boundaries ultimately originate in alignment endpoints, whereas
SGH starts with arbitrarily placed sequence windows.

Influence of segmentation on evolutionary history reconstruction. In Vinar et al.
(2010), we have used the true segmentation of simulated sequences as a starting
point for evolutionary history reconstruction under a probabilistic model encom-
passing substitutions and large-scale duplications and deletions. In this work, we
compare the accuracy of the history reconstruction when run on different seg-

Table 1. Overview of simulated data sets. Each category contains ten data sets.
The table lists mean values of various statistics over these data sets, or in the case of
sequence length, over all sequences from all data sets in the category combined.

Sequence Segmentation No. events
Data set length (kb) No. atoms No. classes dupl. del.

Slow 253 153 55 28 2.6
Fast 444 385 113 56 3.8
No indels 210 611 78 25 1.2



Table 2. Accuracy of seg-
mentation on simulated
sets. TRUE500 is the true
segmentation with atoms
shorter than 500 filtered out.
SGH500 is the segmentation
created by method from Vinar
et al. (2010). IHM250 is our
new algorithm with W = 250
and IHM250.500 is the same
method, only with atoms
shorter than 500 filtered out.
Sensitivity and specificity at
the BRM and class level are
computed as explained in the
text.

BRM Class
Set Program sn sp sn sp

Slow TRUE500 86% 100% 89% 100%
SGH500 63% 97% 45% 83%
IHM250.500 86% 100% 88% 100%
IHM250 95% 100% 96% 100%

Fast TRUE500 80% 100% 86% 100%
SGH500 65% 99% 52% 91%
IHM250.500 79% 100% 84% 100%
IHM250 92% 100% 94% 99%

No indels TRUE500 55% 100% 61% 100%
IHM250.500 56% 100% 62% 100%
SGH500 56% 100% 60% 100%
IHM250 86% 100% 86% 98%

Table 3. The predicted number of evolutionary events by the MCMC
method. For each dataset D00-D09 in the No indel series, the left column indicates
the number of duplications and the right column the number of deletions. The two
rows labeled History list the actual number of events in the simulated history, counting
only events affecting at least one atom of length of at least 500 or 250 respectively.
The remaining rows show difference between the actual count and the count observed
in the maximum likelihood history predicted by the MCMC algorithm (Vinar et al.,
2010) run on different segmentations.

Program D00 D01 D02 D03 D04 D05 D06 D07 D08 D09

History 24 2 24 0 24 1 18 1 24 1 28 1 18 2 22 3 29 1 21 0
TRUE500 0 0 0 0 0 +2 0 0 -1 0 0 0 0 0 -1 +1 -1 1 0 0
SGH500 +1 -1 0 +1 0 +2 0 0 0 0 0 0 0 0 -1 +1 0 0 0 0
IHM250.500 0 0 0 0 +1 +2 0 0 -1 0 0 0 0 0 -1 +1 0 0 0 0

History 25 2 26 0 27 1 18 1 26 1 28 1 19 2 23 3 30 1 22 0
IHM250 0 0 0 +2 +1 +2 0 +1 +1 0 0 +1 0 +1 0 0 -1 +1 0 +1

mentations using a subset of the simulated data from Vinar et al. (2010) (Table
3). We observe that in this case, using the predicted segmentation instead of
the true segmentation filtered at 500bp does not have a large impact on the
accuracy of the history reconstruction, yielding in most cases the same or very
similar number of events.

Segmentation of primate gene clusters. Finally, we have applied our algorithm to
the study of three complex primate gene clusters (PRAME, AMY and UGT1A),
considered in Vinar et al. (2010). Before running the segmentation algorithms,
we have masked the sequences with RepeatMasker, and then excised all masked
or unknown bases, obtaining a shorter sequence without repeats.

On all three sets, SGH has produced more atoms (Table 4). A large majority
of IHM atoms (81-91% in different sets) have a BRM atom in the SGH segmen-
tation, but only 37%-76% of classes agree completely with the SGH. We have
used these new segmentations to infer evolutionary history under the model of
large-scale duplications and deletions.



Table 4. Results on complex primate gene clusters. Data set size, segmentation
parameters, and the predicted number of duplications and deletions from the MCMC
algorithm (Vinar et al., 2010). Species abbreviations: human (H), chimpanzee (C),
orangutan (O), rhesus (R).

Sequences Segmentation No. events
Set Program species lengths (kb) atoms classes coverage dup. del.

PRAME SGH500 H,R 373,92 454 57 60% 77 21
IHM250.500 288 51 74% 41 17

AMY SGH500 H,R 105,89 118 21 82% 14 10
IHM250.500 90 17 98% 12 8

UGT1A SGH500 H,C,O 90,87,108 138 17 55% 12 11
IHM250.500 134 23 76% 11 17

The IHM segmentations consistently lead to fewer events of both kinds (du-
plications and deletions), with the exception of deletions in the UGT1A cluster.
In this case, the IHM segmentation contains four atoms that are unique to the
orangutan region. Since the history reconstruction does not allow insertions,
these four segments are explained as deletions in the human-chimpanzee lin-
eage. On the other hand, the SGH does not predict atoms with only a single
occurrence, and thus these four deletions are not included in the history.

4 Conclusion

We have introduced the problem of automated segmentation of sequences with
complex evolutionary histories and proposed an accurate and efficient algorithm.
Unlike marker based methods, our algorithm can be used on sequence alone
and can be easily incorporated into sequence analysis pipelines. The method is
suitable as a preprocessing step for duplication history reconstruction, and it
can also be applied to sequences with other large-scale events.

Our method consists of two stages: finding breakpoints and atom classifica-
tion. Errors introduced in the first stage cannot be resolved later on. One would
ideally solve both stages simultaneously. There are two obstacles to this course.
First, we need to optimize various contradictory criteria (coverage, the number
of false positives and false negatives, etc.). We can either combine them into a
single objective function by weights, or we can put a constraint on some cri-
teria by thresholds and optimize the remaining ones, but choosing the weights
and thresholds is difficult to do in a principled way. The second problem is that
even with breakpoints fixed, the problem of atom classification is already NP-
hard (Shamir et al., 2004). Nonetheless, it is possible to investigate heuristics or
approximation approaches to tackle this problem.

One can go even further and combine the segmentation and reconstruction
of evolutionary histories. Scoring of potential segmentations is then implied di-
rectly by the underlying evolutionary model. Such approaches were attempted
in the duplication scenario (Zhang et al., 2009; Song et al., 2010). Nonetheless,
segmentation makes the history reconstruction problems cleaner and allows us



to filter out problematic regions of the sequence (such as shorter atoms in our
experiments).

Another, perhaps less ambitious, avenue for improvement, is in the combi-
nation of segmentation and multiple alignment. Ideally all atoms of the same
class would form a high-quality multiple alignment. Our algorithm relies solely
on pairwise alignments, yet multiple alignments of longer homologous regions
could help us to map breakpoints more consistently.

Finally, our method was targeted at recently diverged atoms, where it is
possible to recognize homology at a nucleotide sequence level. The question of
extending our approach to more distant sequences remains open.
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Appendix

In this appendix we describe details of our methods that were omitted from the
main text for space reasons.

Alignment preprocessing and breakpoint mapping. In the preprocessing stage
of the algorithm we discard alignments shorter than W and split each input
alignment into multiple parts if there are any gaps longer than W ; boundaries
of such gaps will be breakpoints at our chosen resolution.

In the main algorithm, we map a breakpoint through a particular alignment
only if the alignment extends at least W/3 on both sides of the breakpoint. The
reason is that an alignment boundary nearby a breakpoint likely represents an
imprecise copy of the same breakpoint.

Breakpoint clustering. The goal of breakpoint clustering is to take a set of break-
points that were created either from alignment endpoints or by mapping previ-
ously identified breakpoints through alignments, and to replace groups of nearby
breakpoints by a single new breakpoint so that no two breakpoints are closer
than W .

The input to our problem is an integer sequence X of length N where X[i] ≥ 0
is the number of input breakpoints at position i. We are seeking a sequence of
breakpoints Y = y1, . . . yk such that yj ≥ yj−1 + W . Let d(i, Y ) be the distance
from i to the closest breakpoint in Y , that is, d(i, Y ) = minj |yj − i|. Our goal
is to find Y minimizing the sum of squared distances for the input breakpoints∑

i X[i]d(i, Y )2.
This problem can be solved by dynamic programming. For every prefix of

sequence X, we compute the cost of the optimal solution A[i] with an added
constraint that the rightmost breakpoint in Y is at position i. To compute A[i],
we consider all possible positions p of the previous breakpoint. From our con-
straints, p ≤ i−W , but we will also assume that p ≥ i−2W +1, because if p was
smaller, we could add one more breakpoint which would be at the distance of
at least W from both i and p. All input breakpoints to the left of p will have as
their closest breakpoint either p or some breakpoint even further to the left. To
compute A[i], we therefore need to compute distances only for points between p
and i as follows:

A[i] = min
p

A[p] +

ı−1∑
j=p+1

X[j] min{(i− j)2, (p− j)2}.

For each i, we also keep B[i] which is the value of p at which the minimum was
obtained. Cost of the optimal solution for the whole input is the smallest value
among A[N ], . . . , A[N+W−1]. Then we can use array B to recover the sequence
of breakpoints in the optimal solution. Finally, we prune out those breakpoints
from Y that are not the closest breakpoint for any input breakpoint. This change
does not have any impact on the optimality of the resulting set.



The running time of this algorithm is O(NW 2) and can be further improved
if the set of input breakpoints is sparse. For example, the sum over j in the
recurrence formula is done only for values where X[j] is positive. Similarly, if a
gap between successive input breakpoints is much greater than W (e.g. greater
than 4W ), we can split the input into two parts at this gap, and solve each part
independently, saving O(W 2) time for every position which is not sufficiently
close to any input breakpoint.

Atom classification. Once we fix the position of breakpoints, we need to partition
the resulting atoms to equivalence classes such that all atoms in the same class
are assumed to be homologs. We also need to assign a strand to each atom: each
alignment suggests either that the two atoms should be on the same strand or on
the opposite strands. The input to the classification problem are thus two sets
A+ and A−, where A+ is the sets of pairs of atoms connected by an alignment
between the same strands and A− between the opposite strands. We consider
two atoms to be connected by an alignment if the alignment covers at least 50%
of the length of both atoms.

We formulate the atom classification problem as an integer linear program
as follows. For every pair of atoms i and j, we define binary variables xi,j and
yi,j . In the optimal solution, the value of xi,j is one if and only if atoms i and j
are in the same class on the same strand, and yi,j is one if and only if i and j are
in the same class on the opposite strands. Our goal is to minimize a weighted
sum of false positives and false negatives in the input alignment sets∑

(i,j)∈A+

(1− xi,j) +
∑

(i,j)∈A−

(1− yi,j)

+
∑

(i,j)/∈A+

wFxi,j +
∑

(i,j)/∈A−

wF yi,j

where wF is the weight of false negatives (we use wF = 0.6). We optimize this
sum under a set of linear constraints enforcing that the variables correspond to
a valid classification.

The first set of constraints enforces symmetry, i.e. xi,j = xj,i and yi,j = yj,i.
In order to save memory and computation, we actually only use variables xi,j

and yi,j for i < j, and thus these constraints are not needed. In addition, each
atom has a unique strand, which means that xi,j +yij ≤ 1. Relation “to be in the
same class on the same strand” needs to be transitive, that is, for all distinct i, j
and k we have a constraint xi,j + xj,k ≤ 1 + xi,k. For pairs of atoms on different
strands, we have a modified version of transitivity that correctly propagates
strand signs: xi,j +yj,k ≤ 1+yi,k, yi,j +xj,k ≤ 1+yi,k,, and yi,j +yj,k ≤ 1+xi,k.

The number of transitivity constraints is cubic in the number of atoms, mak-
ing the ILPs rather large, and memory and time intensive for larger numbers of
atoms. In practice, we solve this problem by several simple heuristics. First of all,
atoms that are in different components of the alignment connectivity graph will
never be in the same class in the optimal solution of the ILP. Therefore we pro-
cess each connected component separately. We also identify components, where



the optimal solution has cost 0. Such components must form a clique, and their
atoms can be partitioned into two strands so that the strand of each alignment
is consistent with this partition. ILP is not run on such perfect components.

If the size of a component exceeds 200, we use a different graph clustering
strategy implemented in the MCL program (Van Dongen, 2008) with inflation
option set to 4. For each atom, we include two copies as vertices, one for each
strand. Each alignment corresponds to two edges, one connecting a plus strand
atom to its counterpart and one connecting a minus strand atom. Ideally, both
strands are assigned to classes consistently in the MCL output. If this is not the
case, we use a simple heuristics to obtain a consistent classification. In particular,
we merge classes until both copies of each atom are in the same class and we
greedily flip strand of each original MCL cluster whenever two copies of the same
atom have been assigned to the same strand.


