
Finding Hidden Independent Sets in Interval Graphs

Therese Biedl1, Broňa Brejová1, Erik D. Demaine2, Angèle M. Hamel3,
Alejandro López-Ortiz1, Tomáš Vinař1

1 School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada,
{biedl,bbrejova,alopez-ortiz,tvinar}@uwaterloo.ca

2 MIT Laboratory for Computer Science, 200 Technology Square, Cambridge, MA 02139, USA,
edemaine@mit.edu

3 Department of Physics and Computing, Wilfrid Laurier University, Waterloo, ON, N2L 3C5,
Canada, ahamel@wlu.ca

Abstract

We design efficient competitive algorithms for discovering hidden information using
few queries. Specifically, consider a game in a given set of intervals (and their implied
interval graph G) in which our goal is to discover an (unknown) independent set X

by making the fewest queries of the form “Is point p covered by an interval in X?”
Our interest in this problem stems from two applications: experimental gene discovery
with PCR technology and the game of Battleship (in a 1-dimensional setting). We
provide adaptive algorithms for both the verification scenario (given an independent
set, is it X?) and the discovery scenario (find X without any information). Under
some assumptions, these algorithms use an asymptotically optimal number of queries
in every instance.

Keywords: games, interval graphs, independent set, adaptive algorithms, gene
finding, Battleship.

1 Introduction

An interval graph is an intersection graph of intervals on the real line, i.e. vertices are repre-
sented by intervals and there is an edge between two vertices if and only if their corresponding
intervals intersect. Interval graphs have a number of applications, for example in genetics,
archeology and developmental psychology (see e.g. [22]). Their geometric structure makes it
easy to solve various optimization problems, among them finding the maximum independent
set or a clique cover (see e.g. [12]). An independent set in a graph G is a set of vertices such
that no two vertices share an edge.

In this paper we study how to determine, given a set of intervals (with their implied
interval graph G), an unknown (hidden) independent set X in G. One could think of this
independent set as having been chosen by a player in an interactive game. The other player
then tries to determine X using queries of the following type: “Is a point p on the real line
covered by an interval in X?” The first player always answers the query truthfully. Our
goal is to use the smallest possible number of queries to determine set X. Our problem
is motivated by two applications: recovering gene structure with PCR techniques and the
game of Battleship. We explain the connections to our problem after stating it precisely.

While there is a wide literature regarding games in graphs (e.g., game coloring [3], the
Ramsey graph game [9], and node search [14]), our problem appears to be new in this area.

1

Several games involving finding a hidden object using queries have also been studied in
the bioinformatics literature. Xu et al. [27] discuss the problem of locating hidden exon
boundaries in cDNA. This leads to a game in which the hidden object is a subset A ⊆
{1, . . . , n} and the queries are of the type “Given an interval I, does it contain an element
of A?”. In a certain sense their problem is the dual of ours: they use intervals to locate
and identify points; we use points to locate and identify intervals. Beigel et al. [2] discuss
the problem of closing gaps in DNA sequencing data. This problem can be formulated as a
search for a hidden perfect matching in a complete graph using queries “Given an induced
subgraph, does it contain at least one matching edge?” McConnell and Spinrad [18] consider
the tangentially related problem of reconstructing an interval graph given probes about the
neighbors of only a partial set of vertices.

1.1 Terminology

An interval graph may have a number of different representations by intervals. In what
follows, when we say “interval graph,” we presume that one representation has been fixed.
Without loss of generality, we may assume that in this representation all intervals are closed,
have length at least one, and their end points are integers between 1 and 2n, where n is the
number of intervals.1 We denote the interval of the ith vertex by Ii = [si, fi], where si < fi

are integers. An edge (i, j) thus exists if Ii ∩ Ij 6= ∅.
The complement G of an interval graph G has a special structure. Assume that (i, j)

is not an edge in G, i.e., Ii ∩ Ij = ∅. Then either fi < sj or fj < si, and thus we can
orient the edge in G as i → j or j → i. Thus, G has a natural orientation of the edges, and
this orientation is well-known to be acyclic and transitive. For this and other results about
interval graphs, see e.g. [12].

We will deal with discovering an initially unknown independent set in G chosen by an
adversary, and will refer to this set as the hidden independent set. If V ′ is an independent
set in G, then it is a clique in the complement graph G. If G is an interval graph, then
any clique in G has a unique topological order consistent with orientation of its edges. We
can thus consider V ′ as a (directed) path π in G, and will speak of a hidden (directed) path
instead of a hidden independent set. We will generally omit the word “directed” as we will
not be talking about any other kind of path.

We determine the hidden independent set through probes and queries. A probe is a unit
open interval (a, a + 1) where a is integer. A query is the use of a probe to determine
information about the hidden independent set. Specifically, a query is a statement of the
form: “Is there some vertex in the hidden independent set whose interval intersects the
probe?” A query can be answered either “yes” or “no.”2

Note that no such query can ever distinguish between two identical intervals. For this
reason, we will assume that the input graph has no two identical intervals. On the other

1It is well-known that every interval graph can be represented in such a way. Moreover, one can easily
verify that such a modification does not change the set of allowed queries in the graph (see definition of
query below).

2Note that since intervals begin and end at integers, probing with a unit interval is equivalent to probing
at a non-integral point. Probing with intervals arises naturally in our applications.

2

. . .

I1

I2

In

I3

(a)

. . .
I1 I2 InI3

(b)

Figure 1: Different graphs may require different number of queries.

hand, intervals are allowed to have the same start point or the same end point.3

1.2 Our Results

Suppose we are given an interval graph with a fixed interval representation and want to
determine a hidden independent set X in that graph. We study two versions of the problem:

1. Given an independent set Y , use queries to verify whether X is Y . We call this the
verification problem and study it in Section 2.

2. Use queries to discover X without any other information. We call this the discovery
problem and study it in Section 3.

Our results are summarized as follows. For the verification problem, we give a protocol
to determine whether X = Y using the exact optimal number of queries for that specific
instance.

For the discovery problem, we give a linear-time algorithm for discovering X. Different
graphs may require different number of queries to discover the hidden independent set.
For example, both instances in Figure 1 are of the same size, but we can find the hidden
independent set in instance (a) in O(log n) queries, while instance (b) requires Ω(n) queries.
If at most a constant number of intervals start at a common point, then our protocol is
within a constant factor of the optimal number of queries for that specific graph. That is,
our algorithm is instance-optimal in the sense of Fagin et al. [11] and optimally adaptive in
the sense of [7]. If this assumption is not satisfied, then the number of queries may be larger
than the information-theoretic lower bound; however, we also prove stronger lower bounds
to show that the number of queries must be larger in some of these cases.

1.3 Application to Gene Finding

In this section, we explain how our game of finding hidden independent sets in interval graphs
relates to a problem in computational biology.

Recent technologies in molecular biology allowed researchers to determine genomic se-
quences of several organisms. These sequences need to be annotated. That is, biological
meaning needs to be assigned to particular regions of the sequence. An important step in

3Every interval graph has a representation by intervals with distinct end points. However, modifying the
graph to such a representation changes the set of allowed queries and hence the problem.

3

the annotation process is the identification of genes, which are the portions of the genome
producing the organism’s proteins.

A gene is a sequence of disjoint regions—called exons—of the genomic sequence. Exons
are cut out and spliced together in the process of protein production. Thus each exon is an
interval of the DNA sequence and a gene is a set of non-overlapping intervals.

There are a number of computational tools for gene prediction (e.g., [4, 23]); however,
experimental studies (e.g., [19, 6]) show that the best of them predicts, on average, only about
50% of the entire genes correctly. It is therefore important to have alternative methods that
can produce or verify such predictions experimentally.

While genes cannot be reliably predicted by purely computational means, these meth-
ods can provide a set of candidate exons. Algorithms for gene prediction have to balance
sensitivity (how many real exons they discover) with specificity (how many false exons they
predict). Usually it is possible to increase sensitivity at the expense of a decrease in speci-
ficity. Using a highly sensitive method, we may generate a candidate set containing many
false exons with small probability of excluding a real exon.

To apply our algorithms, we may view the set of candidate exons as the set of intervals
defining an interval graph. The gene we want to discover then corresponds to a hidden
independent set in this interval graph (since a gene is a set of non-overlapping intervals from
the candidate set). Queries in our algorithms correspond to the question: “Is a given short
region of DNA sequence contained in a real exon?” To use our method for finding genes, we
need to answer this question by appropriate biological experiments.

Thousands of such queries can be answered simultaneously by an expression array exper-
iment [25]. Shoemaker et al. [26] have used expression arrays to verify gene predictions in
annotation of human chromosome 22 [8]. In their approach, they probed DNA sequence at
short regular intervals (every 10 nucleotides). Using our algorithm for independent set verifi-
cation (Section 2), we can design a smaller set of queries that can verify the gene prediction,
thus reducing the cost of such an experiment.

Queries similar to ours can be also implemented using polymerase chain reaction (PCR)
technology [24]. A PCR experiment can answer a query of the following form: “Given two
short regions of the DNA sequence, do both of them occur in the same gene (possibly in
two different exons)?” The answer to our query can be obtained by PCR, provided that
we already know at least one short region of exonic DNA which occurs in our gene. Our
algorithm for the independent set discovery (Section 3) then yields an experimental protocol
for finding genes.

However, many aspects of the real experimental domain further restrict the set of possible
queries and would need to be addressed to apply this technique in practice (see e.g., [6]).
This application of PCR technology was inspired by open problem 12.94 in [20]. PCR queries
have also been used in similar way to determine exon boundaries in cDNA clones [27].

1.4 Application to 1-dimensional Battleship

The game of Battleship (also known as Convoy and Sinking-Ships or in a solitaire variant,
FathomIt) is a well-known two-person game. Both players have an n×n grid and a fixed set
of ships, where each ship is a 1× k rectangle for some k ≤ n. Each player arranges the ships

4

on his/her grid in such a way that no two ships intersect. Then players take turns shooting
at each other’s ships by calling the coordinates of a grid position. The player that first sinks
all ships (by hitting all grid positions that contain a ship) wins.

There are many variants of Battleship (see e.g., [1]) involving other ship shapes or higher
dimensions. In an offline version of the problem, the collection of shots must cover the
d-dimensional lattice in order to hit all rectangles with at least a given volume [5, 17].

We can rephrase Battleship as a graph problem as follows. Define a graph G with one
vertex for every possible ship position. Two vertices in the graph are adjacent if and only
if the corresponding ship positions intersect or touch. The positions that the adversary
chooses for his/her ships then correspond to a hidden independent set in graph G. The only
operation allowed for discovering a ship is choosing a point of the grid and asking whether
it is covered by a ship, which corresponds to querying a set of vertices in the graph.

For the standard Battleship game, the graph G is what is known as a boxicity-2 graph,
i.e., it is the intersection graph of two-dimensional axis-aligned rectangles (see e.g., [21]). In
fact, it is an even more specialized graph since all rectangles have unit width or unit height.
Such graphs are the same as intersection graphs of horizontal or vertical line segments.
Recognizing such graphs is NP-hard [16], and one can easily show that finding a maximum
independent set in them is NP-hard as well. We are not aware of any results concerning
finding hidden independent sets in these graphs.

Graph G becomes an interval graph if we study a simplified version of Battleship that
operates in 1-dimensional space. Here the ships are intervals with integral end points, and,
as before, no two intersecting ship positions may be taken. The allowed operations are now
exactly our queries: given an open unit interval (a, a+1), does one ship overlap this interval?

2 Independent Set Verification

In this section, we will give a polynomial-time algorithm for the verification problem: given
an interval graph G and an independent set Y in G, find the minimum number of probes
that can determine whether X = Y , where X is the hidden independent set chosen by the
adversary.

There are two types of queries: the ones for which the probe intersects some interval in
Y (we call this a positive probe) and the ones for which it does not (we call this a negative
probe). For a probe the expected answer is the answer that is consistent with X = Y . Thus,
a positive probe has expected answer “yes,” while a negative probe has expected answer
“no.”

Consider an algorithm to solve the verification problem. If for some query it does not get
the expected answer, then X 6= Y and the algorithm can terminate. Otherwise the algorithm
must continue until enough queries are asked to determine that X = Y . Thus the worst case
for any optimal verification algorithm is when X = Y (i.e., all answers are as expected).

This observation implies that we can rephrase the verification problem as follows: for
a given graph G and an independent set Y , produce a set of queries U such that Y is the
only independent set in G consistent with the expected answers to all queries in U . Any
algorithm that creates queries interactively based on answers to the previous questions can

5

s=(0,1) (2,3) (3,4) (4,5) (5,6) (8,9) (9,10)

[7,9]

[2,6]

[1,5]

[3,4]

[8,10] t=(10,11)

Figure 2: An interval graph and its corresponding graph H for Y = {[2, 6], [8, 10]}.
For example, edge (5, 6) → (9, 10) exists because the independent set {[7, 9]} ∈ G[6, 9]
intersects all positive probes between 6 and 9.

be transformed to an algorithm solving the rephrased problem without changing the worst-
case number of queries (we simply simulate the algorithm by providing the expected answer
for each query and gather all queries produced in this way). We say that a set of queries
U verifies that X = Y if every independent set Z 6= Y is inconsistent with the expected
answer of at least one query in U ; we say that this query eliminates Z.

In this section we give a polynomial-time algorithm that discovers the minimum set of
queries needed to verify that X = Y . First we will study a special case in which only queries
with positive probes are allowed. This case is then used as a subroutine for the general case.

2.1 Finding a Minimum Set of Positive Probes

We first study the special case where only positive probes are allowed. Note that for some
inputs it is impossible to verify X = Y using only positive queries.

Sometimes we will consider only intervals inside some region [a, b]. Let G[a, b] denote the
subgraph of G induced by intervals completely contained in the region [a, b]. Similarly, for
any independent set Z, let Z[a, b] denote the subset of Z of intervals completely contained
in the region [a, b].

The minimum set of positive probes for a graph G will be computed using a directed
acyclic graph H defined as follows. Graph H contains one vertex for every positive probe.
Let amin be the smallest start point and amax be the largest end point of an interval in G.
Two additional vertices s and t are added, where s corresponds to probe (amin−1, amin) and
t corresponds to probe (amax, amax + 1). Note that these probes are negative for G.

Intuitively, H contains a directed edge from one probe to another if no positive probe
between them can distinguish Y from some other independent set. More precisely, for any
a < b, graph H contains an edge ea,b from (a, a + 1) to (b, b + 1) if and only if there is an
independent set Za,b in G[a + 1, b] that intersects all positive probes (c, c + 1) with a < c < b
and that is different from Y . See Figure 2 for an example of graph H.

Graph H has O(n) vertices and O(n2) edges, where n is the number of intervals. Using
dynamic programming, it can be constructed in O(n2) time, see Section 2.3. The following
two lemmas show the connection between graph H and the optimal set of positive queries.

Lemma 1. It is possible to verify that X = Y by a set of positive probes if and only if
vertices s and t are not connected by an edge in H.

Proof. Edge es,t exists if and only if there is an independent set Zs,t in graph G that intersects
all positive probes and that is different from Y . But this means that Zs,t and Y cannot be
distinguished by positive probes.

6

Lemma 2. A set of positive probes U verifies that X = Y if and only if vertices s and t
become disconnected in graph H after removal of all vertices in U .

Proof. On the one hand, suppose that U is a set of positive probes verifying that X = Y .
Let π be a path in H from s to t. We will prove that π must contain a vertex from U .

Define the set of intervals Zπ corresponding to path π as the union of the independent
sets Za,b over all edges ea,b ∈ π. Note that Zπ is an independent set because for any edge ea,b

in π, the independent set Za,b has intervals with points between a + 1 and b. Graph H does
not contain edge es,t; otherwise X = Y could not be verified by Lemma 1. So π contains
at least one vertex (u, u + 1) 6= s, t. Let ea,u and eu,b be the incoming and outgoing edge of
(u, u + 1) in π. Then Za,u is in G[a + 1, u] and Zu,b is in G[u + 1, b]. So neither independent
set intersects the positive probe (u, u + 1). Therefore Zπ cannot intersect the positive probe
(u, u + 1), and thus Zπ 6= Y .

Because Zπ 6= Y , there must be a probe (v, v + 1) ∈ U inconsistent with Zπ. Suppose
for contradiction that (v, v + 1) /∈ π. Thus π “jumps” over this vertex using edge ea,b, where
a < v < b. However, set Za,b ⊆ Zπ must then contain an interval intersecting probe (v, v+1),
contradicting that Zπ is inconsistent with (v, v + 1). Therefore, (v, v + 1) ∈ π, which means
that removing U interrupts all paths from s to t as desired, and π contains a vertex in U .

On the other hand, suppose that set U disconnects vertices s and t in H. Let Z 6= Y be
an independent set in H. We will prove that Z is inconsistent with at least one probe from
U .

Let S = {(s1, s1 + 1), (s2, s2 + 1), . . . , (sk, sk + 1)} be the set of all positive probes incon-
sistent with Z. Without loss of generality let s1 < s2 < · · · < sk; let s0 = s and sk+1 = t.
Note that for 0 ≤ i ≤ k, the independent set Z[si +1, si+1] defines edge esi,si+1

. Thus we can
form a path π in graph H from the edges esi,si+1

over all 0 ≤ i ≤ k.
Path π connects vertices s and t in H, so in particular π contains at least one vertex

(u, u+1) ∈ U . By the definition of π, we must have (u, u+1) ∈ S and thus Z is inconsistent
with probe (u, u + 1).

Thus the minimal set of positive probes to verify X = Y corresponds to the smallest set
of vertices in H that disconnect s and t. This vertex-connectivity problem can be solved in
O(n8/3) time using network flows. Since we want to use this as a subroutine in the general
case, we expand the result to any subgraph G[a, b] of G. On such a subgraph we need to
verify that X[a, b] = Y [a, b]. The following lemma shows the details of the algorithm.

Definition 1. Let A+[a, b] be the smallest number of positive probes needed to verify that
X[a, b] = Y [a, b] in G[a, b], or A+[a, b] = ∞ if this is not possible.

Lemma 3. Value of A+[a, b] can be computed in O(n8/3) time.

Proof. Consider a directed acyclic graph H for graph G[a, b] defined as in Lemma 2. We will
show how to compute such a graph efficiently in Section 2.3. First transform the graph H
into a graph H ′ by replacing each vertex i ∈ H \ {s, t} by a directed edge (i′, i′′). All edges
entering i in H will go to i′ in H ′ and all edges leaving i in H leave from i′′. Instead of
finding the smallest set of vertices disconnecting s from t in H (vertex cut), we will search
for the smallest set of edges disconnecting s from t in H ′ (edge cut). Obviously, any vertex

7

cut in H is an edge cut in H ′. On the other hand, if an edge cut in H ′ contains some edge
(i′′, j′), we can instead cut either (i′, i′′) or (j ′, j′′) (at least one of i, j is neither s nor t).
Therefore we can obtain a minimum edge cut with only edges of the type (i′, i′′), and these
clearly correspond to a vertex cut in H. The minimum edge cut separating s from t can be
found using a unit-capacity maximum-flow algorithm for directed graphs, in O(n8/3) time
[13, 10].

2.2 Finding a Minimum Set of Probes in the General Case

The general case, in which both positive and negative probes are allowed, is solved by a
dynamic programming algorithm that has the result of Lemma 3 as a base case.

Definition 2. Let A[a] be the smallest number of queries needed to verify that X[1, a] =
Y [1, a] in the interval graph G[1, a].

Lemma 4. A[a] satisfies the following recursive formula:

A[a] = min

{

A+[1, a],
minb A[b]+A+[b + 1, a]+1,

where the inner minimum is taken over all probes (b, b + 1) that are negative probes inter-
secting [1, a].

Proof. If the optimal solution of subproblem A[a] contains only positive queries, then A[a] =
A+[1, a]. Otherwise let (b, b + 1) be the rightmost negative probe in it. All probes to the
right of b are positive and they comprise a solution of A+[b + 1, a]. Probes to the left of b
comprise a solution of A[b]. Therefore in this case we have A[a] = A[b]+A+[b+1, a]+1.

2.3 Algorithm Details

Lemma 4 gives a recursive formula for computing A[1, a] using the values A+[a, b]. These
values can be computed using the result of Lemma 3, but a method is still needed for finding
the edges of H. First we define an auxiliary table Ea,b and show how to compute its values.
Then we show how to use this table to obtain the edges of H[a, b] corresponding to G[a, b].

Definition 3. Let Ea,b be the number of independent sets in graph G[a + 1, b] that intersect
every positive probe (c, c + 1) inside [a + 1, b] (i.e. a < c < b).

Lemma 5. The values of Ea,b can be computed in O(n2) time for all a ≤ b.

Proof. Let Sa,b be the set of all intervals [c, b] in graph G[a + 1, b] such that (c − 1, c) is a
negative probe or it is equal to (a, a + 1). The values Ea,b can then be computed using the
following recursive formula.

Ea,b =

1 if a = b or a + 1 = b
∑

[c,b]∈Sa,b

Ea,c−1 if a + 1 < b, (b − 1, b) positive

Ea,b−1 +
∑

[c,b]∈Sa,b

Ea,c−1 if a + 1 < b, (b − 1, b) negative

8

The base case happens if a = b or a + 1 = b. Then the only independent set satisfying
the criteria is the empty one. Let us assume now that a + 1 < b. There are two cases. If the
probe (b − 1, b) is positive, then it must intersect an interval in the independent set. This
interval must end in b. Thus we go through all such intervals and sum up the possibilities.
However, if the interval [c, b] is in an independent set, then this set does not intersect (c−1, c).
Therefore [c, b] can be used only if (c− 1, c) is a negative probe or it is equal to (a, a + 1). If
the probe (b−1, b) is negative, all the possibilities from the case with positive probe (b−1, b)
are valid, but we also need to add independent sets that do not intersect (b − 1, b). These
are stored in Ea,b−1.

Let Sb be the set of intervals ending in b. The time needed to compute Ea,b is O(1) +
O(|Sb|) (because Sa,b ⊆ Sb). Therefore total time to compute all Ea,b is O(n2) + n

∑

b |Sb|.
However, every interval can be only in one set Sb, therefore

∑

b |Sb| = n, and total time is
O(n2).

Lemma 6. Let H[a, b] be the directed acyclic graph from Lemma 2 corresponding to the
graph G[a, b] and a given path Y [a, b]. Then the edges of H[a, b] can be computed in O(n2)
time.

Proof. For any two positive probes (u, u + 1) and (v, v + 1) inside [a + 1, b], we know by
definition that eu,v ∈ H[a, b] if and only if Eu,v > 0. The only issue is that the existence
of edge ea,b requires that the independent set Za,b is different from Y [a, b], but that is true
because it does not intersect positive probes (u, u + 1) and (v, v + 1).

We also need to consider edges incident to s and t. Vertex s corresponds to probe
(a−1, a). Notice that the value Ea−1,b is influenced only by the intervals of G that are inside
G[a, b]. Therefore, there is an edge from s to a positive probe (u, u + 1) inside [a + 1, b] if
and only if Ea−1,u > 0. Similarly, vertex t corresponds to probe (b, b + 1) and there is an
edge from (u, u + 1) to t if and only if Eu,b > 0.

Edge es,t is different, because s and t are both negative probes in G[a, b] and thus Y [a, b]
is included in the count Ea−1,b. Therefore es,t ∈ H[a, b] if and only if Ea−1,b > 1.

Because graph H has O(n) vertices and for each two vertices their adjacency can be
obtained by a simple lookup in O(1) time, we have the required bound.

The overall computation can be organized as follows. First, table Ea,b is computed in
O(n2) time (Lemma 5). Then we run the dynamic program according to Lemma 4. Each time
a value A+[a, b] is required, we construct graph H[a, b] in O(n2) time according to Lemma
6. If edge es,t does not exist, we compute the smallest number of vertices separating s and
t according to Lemma 3. This number is equal to A+[a, b]. If edge es,t exists, A+[a, b] = ∞.
Notice that each A+[a, b] is used at most once, so it is unnecessary to store them. The overall
time is dominated by the computation of A+[a, b] for all a < b. Thus the overall time is
O(n4 + n2T) where T is the time to find the smallest (s, t)-cut in a network (T ∈ O(n8/3),
see Lemma 3). This yields the following result:

Theorem 1. Given an n-vertex interval graph G and an independent set Y in G, we can find
in O(n14/3) time the minimum set of queries that verifies whether Y is the hidden independent
set chosen by an adversary.

9

I1 In+1

I2 In+2

In I2n

Figure 3: The staircase needs n − 1 queries.

3 Independent Set Discovery

In this section, we study the discovery problem. In it, we are given an interval graph G, and
we want to find some hidden independent set X with queries of the form (a, a + 1). We will
give an interactive protocol to find X, i.e., the next query depends on the outcome of the
previous query. The protocol uses an asymptotially optimal number of queries if at most
constant number of intervals start at a common point.

We start by giving lower bounds for how many queries are needed. A simple information-
theoretic argument yields the following lower bound, which holds for any graph and any type
of query.

Theorem 2. Assume that G is a graph that contains p independent sets. Regardless of the
types of yes/no queries allowed, we need at least dlog2 pe queries to find a hidden independent
set X in the worst case.

Proof. We use a decision tree argument. Build a decision tree with the posed queries at each
interior node, and the resulting independent set at the leaves. Each query yields a yes/no
answer, so each interior node has at most two children. Since the decision tree has at least
p leaves, it must have a leaf of depth at least dlog2 pe. Since X is hidden, the adversary can
choose exactly the independent set at this leaf for X, resulting in dlog2 pe queries to find
X.

We do not always get a tight bound, even for an interval graph. Consider the so-called
staircase depicted on Figure 3. It consists of 2n intervals, with interval Ii = [0, 2i − 1]
for i = 1, . . . , n and Ii = [2(i − n), 2n + 1] for i = n + 1, . . . , 2n. In this case we have
n(n + 1)/2 + 2n + 1 independent sets, which gives a lower bound of 2 log2 n + O(1) queries.
A stronger lower bound can be shown as follows.

Theorem 3. The staircase with 2n intervals requires n − 1 queries in the worst case.

Proof. The adversary decides that the hidden independent set X will be {Ij, In+j} for some
j, i.e., one of the n pairs of intervals with the same y-coordinate in Figure 3.

Assume that the algorithm uses only k ≤ n−2 queries and the adversary answers each of
these queries “yes”. So let (a, a + 1) be an arbitrary probe for a query, where 0 ≤ a ≤ 2n is
an integer. If a is even, probe (a, a+1) intersects all independent sets of the form {Ij, In+j}.
If a is odd, say a = 2i − 1, then it intersects all such independent sets except {Ii, In+i}.

Since the algorithm used k ≤ n − 2 queries and with each query there was at most one
pair {Ij, In+j} not intersecting the query, there are at least two such pairs that intersect all
queries. Each of them can be a correct answer.

10

The lower bound of dlog2 pe queries from Theorem 2 can be matched (asymptotically)
under some assumptions. To show this, we will give a protocol that discovers a hidden
independent set in O(log p) queries, where p is the number of independent sets, under the
assumption that at most a constant number of intervals start at the same point. This is not
a contradiction to Theorem 3, because in the staircase example, many intervals start at the
same point. For this protocol, we will adopt the point of view of the complement graph,
and, as explained in Section 1.1, search for a hidden (directed) path in a directed acyclic
transitive graph.

3.1 Overview of the Algorithm

The algorithm to detect the hidden path is recursive. The crucial idea is that with a constant
number of queries we eliminate at least a constant fraction of the remaining paths. Therefore,
after O(log p) queries, we know the correct path.

To explain how to find the next query at any given time, we need some notations. The
following terms are defined relative to all those intervals that have not yet been eliminated.
Note that these values, and in particular the value of fi to be defined, will change as more
intervals are eliminated.

So fix one moment of time, and let I1, . . . , In be the set of intervals that have not yet
been eliminated. We assume that the intervals I1, . . . , In are sorted by increasing start point,
breaking ties arbitrarily. Let Ii be the interval that ends first, i.e., fi ≤ fj for all j = 1, . . . , n,
breaking ties arbitrarily. Our next query will happen at or near interval Ii, and thus affect all
those intervals that intersect Ii. We call these intervals the clique intervals; more precisely,
the clique intervals are the intervals I1, . . . , Ik with k such that sk ≤ fi and sk+1 > fi. Note
that all clique intervals intersect point fi; hence, as the term suggests, they form a clique in
G, and at most one of them is in any path.

Our algorithm operates under two different scenarios. Let a legal path be a path in the
graph that could be the solution even under the following additional restrictions. In the
unrestricted scenario, any path is a legal path; this is the scenario at the beginning of the
algorithm. In the restricted scenario, only a path that intersects (fi−1, fi) is legal (we will
have obtained this information through previous queries). Any legal path thus uses a clique
interval that starts strictly before fi, and we can eliminate all clique intervals that start at
fi.

3.2 Effects of Queries

The algorithm uses only one kind of query: we always query at (a, a + 1) for some a ≤ fi.
Only clique intervals can intersect the probe (though not all of them necessarily do).

After each query we eliminate all legal paths that are not consistent with the answer to
the query. More precisely, if the answer to a query at (a, a + 1) is “no”, then we eliminate
all clique intervals that intersect (a, a+ 1). If the original scenario was unrestricted, then all
remaining paths are consistent with this query and we can solve the problem recursively in
the unrestricted scenario.

If the original scenario was restricted, we already know that one of the clique intervals

11

I1, . . . , Ik is in the hidden path X. Elimination of some clique intervals may increase the
value of fi and therefore add some more intervals to the clique intervals. None of these
new clique intervals can be in X, and thus they can also be eliminated. Then we solve the
restricted scenario recursively on the new graph.

Assume now that the answer to a query with some probe (a, a + 1) is “yes”. Since X
contains at most one clique interval, all clique intervals not intersecting (a, a + 1) can be
eliminated. One of the remaining clique intervals will be part of the solution, so the next
scenario will be restricted. We also can eliminate all intervals that become clique intervals
due to an increase in fi.

If in the new situation we are now in the restricted scenario with only one clique interval
I1, then I1 belongs to X. Therefore, interval I1 can be eliminated from the graph and we
solve the unrestricted scenario on the resulting graph recursively. Afterwards we add I1 to
get the hidden path X.

3.3 Some Definitions and Observations

Before specifying how we actually choose the queries, we need some definitions and useful
observations. Fix one point of time when we want to find the next query.

Let Plegal be the set of all legal paths. Since every legal path contains at most one clique
interval, we can partition Plegal as Plegal = P1 ∪ · · · ∪ Pk ∪ Prest , where Pj is the set of legal
paths that use clique interval Ij, and Prest denotes the legal paths that do not use a clique
interval. (Prest is empty in the restricted scenario.) Define pβ = |Pβ| for all subscripts β.

Claim 1. In the unrestricted scenario, pi = prest .

Proof. For every path π in Pi, we can obtain a path π′ by deleting the first interval (which
is Ii) in π. Note that any path contains at most one clique interval, and Prest includes the
empty path, so π′ is a path in Prest and pi ≤ prest .

For the other direction, let π be a path in Prest . Since π does not contain a clique interval,
none of its intervals intersects Ii (by definition of a clique interval). Hence we can obtain a
path π′ in Pi by adding Ii to π, and prest ≤ pi.

Claim 2. prest ≤ 1
2
plegal .

Proof. This holds trivially in the restricted scenario since prest = 0. In the unrestricted
scenario, we have one path in Pi for every path in Prest by Claim 1, hence Prest contains at
most half of all paths.

Claim 3. If Ij1 and Ij2 are clique intervals with fj1 ≤ fj2 then pj1 ≥ pj2.

Proof. For any path π ∈ Pj2 , we can obtain a path π′ ∈ Pj1 by removing the first element of
π and inserting Ij1 instead. This is a legal path because the first element of π must be Ij2

(since Ij2 is a clique interval), and Ij1 does not end after Ij2 .

Now we can also refine the analysis of the effects of some queries.

12

I1

I2

I3

I4

I5

I6

I7

I8

fi

Figure 4: A query at (s5, s5 + 1) eliminates p1 + . . . + p6 paths if the answer is “no”, or
p7 + p8 + prest paths if the answer is “yes”.

Lemma 7. If we query at (sj, sj + 1) for some j with sj < fi, then we can eliminate either
p1 + · · · + pj′ paths or pj′+1 + · · · + pk + prest paths, where j ′ ≥ j is the largest index with
sj′ = sj.

Proof. If the answer to the query is “no”, then we can eliminate all clique intervals that
intersect (sj, sj + 1); since sj < fi these are the intervals I1, . . . , Ij′ and we eliminate p1 +
· · · + pj′ paths.

If the answer to the query is “yes”, then the solution contains an interval that intersects
(sj, sj +1); since sj < fi this must be a clique interval and all paths in Prest can be eliminated.
Furthermore, by choice of j ′ the clique intervals Ij′+1, . . . , Ik do not intersect (sj, sj + 1) and
can be eliminated as well.

3.4 Choosing Queries

In light of Lemma 7 we will try to find a j such that both sets of possibly eliminated paths
contain a constant fraction of the paths. To find such a j, define 1 ≤ ` ≤ k to be the index
such that

p1 + · · · + p`−1 < 1
2
plegal and p1 + · · · + p`−1 + p` ≥ 1

2
plegal ; (1)

this is well-defined because p1 + · · · + pk ≥ 1
2
plegal by Claim 2. Define `− and `+ to be the

smallest/largest index such that s`− = s` = s`+ . Thus `− ≤ ` ≤ `+. We distinguish three
cases:

C1: p1 + · · · + p`−−1 ≥ 1
4
plegal and p`− + · · · + pk + prest ≥ 1

4
plegal :

In this case, query at the beginning of I`−−1, i.e., at (s`−−1, s`−−1 +1). By definition of
`−, intervals I`−−1 and I`− have distinct starting points, so by Lemma 7 this eliminates
at least 1

4
plegal paths.

C2: p1 + · · · + p`+ ≥ 1
4
plegal and p`++1 + · · · + pk + prest ≥ 1

4
plegal :

In this case, query at (s`+ , s`+ + 1). By Lemma 7 this eliminates at least 1
4
plegal paths.

C3: Neither (C1) nor (C2) holds:

In this case, we query with probe (fi, fi + 1). Note that this query is not covered by
Lemma 7, and we will analyze its effects separately.

13

In both cases (C1) and (C2) we eliminate at least a constant fraction of the legal paths,
and hence the number of such queries is at most O(log p). The analysis is more intricate in
case (C3). We need a few observations.

Lemma 8. If cases (C1) and (C2) do not hold, then p`− + · · · + p`+ > 1
2
plegal .

Proof. By definition of `, we have p` + . . . + pk + prest = plegal − (p1 + . . . + p`−1) > 1
2
plegal.

Since `− ≤ ` therefore p`− + . . . + pk + prest > 1
2
plegal. So if (C1) does not hold, then

p1 + . . . + p`−−1 <
1

4
plegal.

Also by definition of `, we have p1 + . . .+p` ≥ 1
2
plegal. Since ` ≤ `+ therefore p1 + . . .+p`+ ≥

1
2
plegal. So if (C2) does not hold, then

p`++1 + . . . + pk + prest <
1

4
plegal.

Thus there are more than 1
2
plegal paths left that are not covered in either equation, and these

must belong to P`− , . . . , P`+ .

Denote by θ the maximum number of intervals that have a common start point (i.e.,
l+ − l− + 1 ≤ θ).

Lemma 9. A positive answer to a query in case (C3) eliminates at least pi ≥ 1
2θ

plegal paths.

Proof. Since we obtain a positive answer at a query (fi, fi + 1), none of the clique intervals
that end at fi can be in the hidden path. So we can eliminate these intervals, and in
particular eliminate interval Ii and pi paths.

By Claim 3 we have pi ≥ p`− , . . . , p`+ . By Lemma 8 furthermore p`− + · · ·+ p`+ > 1
2
plegal .

The intervals I`− , . . . , I`+ all start at s`, therefore there are at most θ of them, and

pi ≥ max{p`− , . . . , p`+} ≥ 1

θ
(p`− + · · · + p`+) ≥ 1

θ

1

2
plegal .

Now we turn to the case when the query in (C3) yields a negative answer. This is the
only case where possibly less than a constant fraction of paths is eliminated, but we account
for this query in a different way. First we observe the following.

Lemma 10. In case (C3) at least one clique interval intersects (fi, fi + 1).

Proof. Assume that no clique interval intersects (fi, fi + 1), thus all clique intervals end at
fi by definition of i. Therefore all clique intervals have distinct starting points (recall that
all intervals are distinct), and `− = ` = `+. By Lemma 8 therefore p` > 1

2
plegal.

Note that ` = i, because otherwise by pi ≥ p` (Claim 3) and p` > 1
2
plegal we would

have pi + p` > plegal, which is impossible. Furthermore, no interval other than Ii ends
at fi, because otherwise both would be contained in equally many paths (Claim 3), which

14

contradicts pi > 1
2
plegal. So there is only one clique interval, Ii. Finally, note that pi > 1

2
plegal

implies that we are in the restricted scenario by Claim 1.
So we have only one clique interval Ii and we are in the restricted scenario, which means

that necessarily Ii belongs to X. Since we detect this beforehand (see Section 3.2), the
algorithm does not search for a query in this case.

Now we are ready to analyze the situation for a negative answer in case (C3).

Lemma 11. During all recursive calls, we have at most log2 p times a negative answer in
case (C3), where p is the number of paths in the original graph.

Proof. Let s be the number of such queries. We will show that the original graph contains
an independent set of size s. Since every subset of it is also an independent set, we have
p ≥ 2s, which yields the result.

Note first that we never do the same query with a negative answer twice in case (C3),
for once we have obtained a negative answer at (fi, fi + 1), we eliminate all intervals that
intersect the probe. Hence by Lemma 10, we will not return to case (C3) until the value of
fi has changed. Thus for each negative answer in case (C3), we have a different value of fi.
Let fi1 < · · · < fis be these values, and for 1 ≤ j ≤ s let Iij be a clique interval that ends at
fij and was not eliminated when we queried at (fij , fij + 1).

We claim that Ii1 , . . . , Iis is an independent set. For if two of them intersected, then they
would have different end points since the fij ’s are distinct, and the query at the earlier-ending
interval would eliminate the later-ending interval. Thus, we indeed have an independent set
of size s, as desired.

Now we are ready to establish the effectiveness of our querying scheme.

Lemma 12. Assume we are given a set of n intervals that define p paths, and at most
θ intervals start at the same point. Then any hidden path X can be found with at most
log2 p + max{log2θ/(2θ−1) p, log4/3 p} queries.

Proof. Compute the queries as described above until we have found the hidden path, say
with m queries. Some number s of these queries give a negative answer in case (C3); we
know that s ≤ log2 p. The remaining m − s queries each eliminate at least 1

4
plegal or 1

2θ
plegal

paths at that time. Since we are done when only one path is left, we have m − s ≤ log4/3 p
(for θ ≤ 2) or m − s ≤ log2θ/(2θ−1) p (for θ > 2).

Note that for θ ≤ 2, the number of queries is at most log2 p + log4/3 p ≈ 3.41 log2 p, thus
we are within a factor of 3.41 of the minimum number of queries. As long as θ is a constant,
we use O(log2 p) queries, which is asymptotically optimal. Assuming that θ is constant is
quite realistic for 1D-battleships where typically there is only a limited number of types of
ships.

15

3.5 Time Complexity

We now show how to implement the above algorithm such that finding all queries takes
O(n + m) time, where m is the number of edges in the complement of the interval graph.
This time complexity holds if unit cost arithmetic is used, i.e., arbitrarily large numbers can
be handled in O(1) time. If we take the time for adding such numbers into account, the time
complexity increases to O((m + n) log p), where p is the number of paths in the complement
graph. Note that p may be exponential in n.

For easier maintenance, we group the intervals into bundles. Here, a bundle is a maximal
set of intervals that all have the same start point, or a maximal set of intervals that all have
the same end point. Each interval hence belongs to two bundles.

We maintain the following data structures:

• We store a list S of bundles of intervals with the same start point, and a list E of
bundles of intervals with the same end point. Recall that all start and end points of
intervals are integers between 1 and 2n; we can therefore initialize S and E with two
bucket sorts in O(n) time.

• Within each bundle, the intervals are sorted by increasing value of the end point that
is not equal. Each interval stores cross-references to the bundles that contain it and
where it is stored in these bundles, so that it can be deleted from the structures in
constant time. Each interval Ij also stores p′j which is the number of paths that start
at Ij. Note that pj = p′j if Ij is a clique interval. This can be computed initially for all
intervals with a reverse topological order in O(m + n) time, since p′

j = 1 +
∑

Ij→Ik
p′k.

• We store the current scenario in a flag.

• We store the current total number of paths p, and the current number p′

rest of paths
that do not use a clique interval. Then p is simply the sum of all p′

j; p′rest is initialized
to p and will be updated later. We can compute plegal and prest from p, p′rest and the
scenario-flag in constant time.

• Each bundle B stores a list of its intervals and also the number of paths p(B) that
start at an interval in this bundle. This can be computed initially in O(n) total time
by summing the p′j over all intervals in the bundle.

• We store the clique intervals implicitly, by maintaining a reference to the first bundle
B∗ in S that does not contain clique intervals. We initialize B∗ to be the first bundle
in S and will update it during the algorithm.

All lists in our data structure are doubly-linked lists for easier deletion. Now each round
of the algorithm proceeds as follows:

• Find the first bundle in E . The first interval in this bundle is Ii, and its end point is
fi.

• For as long as the start point s of intervals in B∗ satisfied s ≤ fi, advance B∗ to be
the next bundle in S. With every advancement of B∗, subtract p(B∗) from prest , since

16

these paths now start in clique intervals. If we are in the restricted scenario, all newly
added clique intervals can be eliminated as discussed in Section 3.2.

The time required to do this is proportional to the number of bundles that we have
advanced. We will study below what needs to be done to eliminate an interval.

• If there is only one clique interval Ii, and if we are in the restricted scenario, then add
Ii to X, eliminate Ii, and move to the unrestricted scenario. This ends the round.

• Otherwise, find the second bundle in E . If the start point sj of the first interval in this
interval satisfies sj > fi, then all clique intervals end at fi.

• Check whether pi > 1
2θ

plegal . If this is true, and if not all clique intervals end at fi,
then the next query is (fi, fi + 1). This is case (C3).4

• If pi < 1
2θ

plegal or if all clique intervals end at fi, then we are in case (C1) or (C2) (by
Lemma 9 and Lemma 10). Thus, we now must search for `, and do this as follows:

For α = 1, 2, 3, . . .

– Compute the number n1 of paths starting in an interval in the first α bundles of
S. (Thus, n1 = p1 + · · · + pj1 for some j1.)

– Compute the number n2 of paths starting in an interval in the α bundles before
B∗ in S. (Thus, n2 = pj2 + · · · + pk for some j2.)

– Compute n3 = plegal − n2, thus n3 = p1 + · · · + pj2−1 + prest .

– Stop as soon as n1 ≥ 1
2
plegal or n3 < 1

2
plegal . The last bundle that has been added

is the bundle containing I`− , . . . , I`+ .

Note that we can compute the value of n1, n2, n3 by adding to the values of the pre-
vious round. Since we search for ` in parallel from both ends, starting at the bundles
containing I1 and Ik, this search takes at most O(1 + min{`−, k − `+}) time.

• Compute p1 + · · · + p`− and p`++1 + · · · + pk, determine whether case (C1) or (C2)
applies, and find the appropriate query. These values can be computed in O(1) from
n1 or n3 computed in the previous step, by adding/subtracting the number of paths in
the bundle containing I`− , . . . , I`+ .

Once we have done the query, the data structures must be updated. The crucial obser-
vation for doing so is that pj (the number of paths starting at interval Ij) does not change,
since we always delete clique intervals. Also, fi and Ik are updated dynamically during the
algorithm. All that remains to do is to eliminate an interval Ij. To do so, we first decrease
p by pj. Then we remove all references to Ij in the bundles that contain it. If the bundle is
now empty we delete it as well. This takes constant time per deleted interval.

Finding the next query to perform thus takes constant time per query, with two excep-
tions: advancing Ik takes time proportional to the number of steps that are advanced, and

4Note that occasionally we will apply case (C3) even if case (C1) or (C2) was possible; this is necessary
because we cannot test whether (C1) or (C2) applies in constant time.

17

finding the bundle containing I` takes time proportional to the number of bundles that had
to be searched. However, both these operations take constant amortized time. To see this,
note that once an interval is a clique interval, it stays a clique interval until it is eliminated,
because being a clique interval only depends on the location of the first end point fi, and
fi increases throughout the algorithm. Hence, B∗ advanced only once per bundle, or O(n)
time total.

As for the time to find the bundle containing `, this is proportional to the minimum of
` or k − `. However, if we do this search, then we end in case (C1) or (C2) and eliminate
at least min{`, k − `} − 1 intervals. Thus, the time spent on finding ` is proportional to the
number of eliminated intervals, hence the overall time for this is also O(n).

We conclude:

Theorem 4. Given an n-vertex interval graph G with m edges in its complement, we can
find the hidden independent set in G using q queries, where q is asymptotically optimal if
only a constant number of intervals start in any one point. The overall computation time
and space is O(n + m).

4 Conclusions and Future Work

In this paper we studied a problem motivated by applications in bioinformatics and game
playing: given an interval graph, how can we find an independent set chosen by an adversary
with as few queries as possible? We gave polynomial-time algorithms both for verifying
whether some independent set is the one chosen by the adversary, and for discovering what
set the adversary has chosen. The algorithm for verification gives the optimal number of
queries for all instances. The algorithm for independent set discovery gives a number of
queries that is optimal to within constant factor, provided that no more than a constant
number of intervals start at the same point. This algorithm is optimal in the adaptive sense
as well as in the worst case sense. We also proved a stronger lower bound than the one
implied by a simple information theory argument. Several related questions deserve further
study:

• The main open problem is whether our adaptive algorithm can extend to instances
in which many intervals may start at a common point, and still achieve a number of
queries that is within a constant factor of optimal. The staircase example (Figure
3) requires Ω(

√
p), showing that the information-theoretic lower bound of Θ(log p)

becomes unachievable in this setting. Is this the worst example, i.e., can all instances
be solved using O(

√
p) queries? A positive answer to this question would not complete

the adaptive algorithm, which must be within a constant factor of optimal for every
instance.

• One of the problems that motivated this work is gene finding using PCR techniques.
Here we need to consider that obtaining probing material is often done via an external
provider, and the turnaround time between each request might dominate the total
time. We might thus consider performing several probes in parallel rounds. What is

18

the minimum number of queries required if the entire computation must be done in a
given number of rounds?5

• In the application to gene finding, we might also be able to eliminate certain edges of G
using biological background information. Can we adapt our algorithm to take advan-
tage of this, i.e., use an optimal number of queries subject to knowing this information?
(Note that G is now no longer necessarily an interval graph.)

• The conventional 2-dimensional Battleship game is a natural candidate for further
study. Can the algorithms be extended to boxicity-2 graphs? What about intersection
graphs of other shapes, such as ships on a diagonal or the tetromino shapes of Tetris
fame? Also, the number of ships and their shapes are known a priori in the board game,
and not every independent set can be a placement of ships. Can this information be
used to our advantage? Finally, in some variants, “yes” queries are rewarded by being
allowed to fire again. What are good strategies in this scenario?

• From both applications, and out of general interest, the problem on arbitrary graphs
also deserves study. More precisely, assume that we are given a graph G = (V,E). The
queries are of the form “Given a clique K in G, is X ∩ K 6= ∅?” Under what type of
conditions can we successfully identify an independent set using clique queries? Can
we generalize the queries to subsets of vertices other than cliques?

Acknowledgements. We thank Dan Brown and the participants at the Bioinformatics
problem sessions at the University of Waterloo for many useful comments on this problem.
All authors were partially supported by NSERC.

References

[1] Battleships variations. Mountain Vista Software. Web page. See http://www.

mountainvistasoft.com/variations.htm.

[2] R. Beigel, N. Alon, M. S. Apydin, and L. Fortnow. An optimal procedure for gap
closing in whole genome shotgun sequencing. In 5th Annual International Conference
on Computational Molecular Biology (RECOMB), pages 22–30, 2001.

[3] H. L. Bodlaender and D. Kratsch. The complexity of coloring games on perfect graphs.
Theoretical Computer Science, 106(2):309–326, 1992.

[4] C. Burge and S. Karlin. Prediction of complete gene structures in human genomic DNA.
Journal of Molecular Biology, 268(1):78–94, 1997.

5This is similar to network sorting of a set of numbers. In this problem, given an integer n, the goal
is to produce a predetermined sequence of comparison/exchanges, called a sorting network, such that the
sequence of comparison/exchanges sorts any given set of n numbers. The quality of the sorting network is
measured by both the number of comparators (probes) and the depth (rounds) of the network of comparators
(see e.g. [15]).

19

[5] L. S. Chandran. A high girth graph construction and a lower bound for hitting set size for
combinatorial rectangles. In 19th Conference on the Foundations of Software Technology
and Theoretical Computer Science, volume 1738 of Lecture Notes in Computer Science,
pages 283–290, 1999.

[6] M. Das, C. B. Burge, E. Park, J. Colinas, and J. Pelletier. Assessment of the total
number of human transcription units. Genomics, 77(1-2):71–78, 2001.

[7] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Adaptive set intersections, unions, and
differences. In 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 743–752, 2000.

[8] I. Dunham, N. Shimizu, B. A. Roe, S. Chissoe, et al. The DNA sequence of human
chromosome 22. Nature, 402(6761):489–495, 1999.

[9] P. Erdős and J. L. Selfridge. On a combinatorial game. Journal of Combinatorial Theory
– Series A, 14:298–301, 1973.

[10] S. Even and R. E. Tarjan. Network flow and testing graph connectivity. SIAM Journal
on Computing, 4:507–518, 1975.

[11] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. In
20th ACM Symposium on Principle of Database Systems (PODS), pages 102–113, 2001.

[12] M. C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press, New
York, 1980.

[13] A. V. Karzanov. On finding maximum flows with special structure and some applica-
tions (in Russian). In Matematicheskie Voprosy Upravleniya Proizvodstvom, volume 5.
Moscow State University Press, 1973.

[14] L. M. Kirousis and C. H. Papadimitriou. Searching and pebbling. Theoretical Computer
Science, 47(2):205–218, 1986.

[15] D. E. Knuth. The art of computer programming. Volume 3, Sorting and searching.
Addison-Wesley Publishing Co., 1973.

[16] J. Kratochv́ıl and J. Matoušek. Intersection graphs of segments. Journal of Combina-
torial Theory. Series B, 62(2):289–315, 1994.

[17] N. Linial, M. Luby, M. Saks, and D. Zuckerman. Efficient construction of a small hitting
set for combinatorial rectangles in high dimension. Combinatorica, 17(2):215–234, 1997.

[18] R. M. McConnell and J. P. Spinrad. Construction of probe interval models. In 13th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 866–875, 2002.

[19] N. Pavy, S. Rombauts, P. Dehais, C. Mathe, D. V. Ramana, P. Leroy, and P. Rouze.
Evaluation of gene prediction software using a genomic data set: application to Ara-
bidopsis thaliana sequences. Bioinformatics, 15(11):887–889, 1999.

20

[20] P. A. Pevzner. Computational molecular biology: an algorithmic approach. MIT Press,
2000.

[21] F. S. Roberts. On the boxicity and cubicity of a graph. In Recent Progress in Combi-
natorics (3rd Waterloo Conference on Combinatorics, 1968), pages 301–310. Academic
Press, New York, 1969.

[22] F. S. Roberts. Discrete mathematical models with application to social, biological and
ecological problems. Prentice-Hall, Englewood Cliffs, NJ, 1976.

[23] A. A. Salamov and V. V. Solovyev. Ab initio gene finding in Drosophila genomic DNA.
Genome Research, 10(4):516–522, 2000.

[24] S. J. Scharf, G. T. Horn, and H. A. Erlich. Direct cloning and sequence analysis of
enzymatically amplified genomic sequences. Science, 233(4768):1076–1078, 1986.

[25] M. Schena, D. Shalon, R. W. Davis, and P. O. Brown. Quantitative monitoring of gene
expression patterns with a complementary DNA microarray. Science, 270(5235):467–
470, 1995.

[26] D. D. Shoemaker, E. E. Schadt, et al. Experimental annotation of the human genome
using microarray technology. Nature, 409(6822):922–927, 2001.

[27] G. Xu, S. H. Sze, C. P. Liu, P. A. Pevzner, and N. Arnheim. Gene hunting without
sequencing genomic clones: finding exon boundaries in cDNAs. Genomics, 47(2):171–
179, 1998.

21

