
The Most Probable Labeling Problem in HMMs
and Its Application to Bioinformatics

Broňa Brejová, Daniel G. Brown�, and Tomáš Vinař��

School of Computer Science, University of Waterloo, Waterloo ON N2L 3G1 Canada
{bbrejova,browndg,tvinar}@uwaterloo.ca

Abstract. Hidden Markov models (HMMs) are often used for biological
sequence annotation. Each sequence element is represented by states with
the same label. A sequence should be annotated with the labeling of
highest probability. Computing this most probable labeling was shown
NP-hard by Lyngsø and Pedersen [9]. We improve this result by proving
the problem NP-hard for a fixed HMM. High probability labelings are
often found by heuristics, such as taking the labeling corresponding to
the most probable state path. We introduce an efficient algorithm that
computes the most probable labeling for a wide class of HMMs, including
models previously used for transmembrane protein topology prediction
and coding region detection.

1 Introduction

We present several contributions towards understanding the most probable label-
ing problem in hidden Markov models (HMMs) and its impact on bioinformatics
applications. We prove the problem NP-hard even for a fixed HMM; previous
NP-hardness proofs constructed HMM topologies whose size depended on an
input instance, which is not appropriate in the context of bioinformatics appli-
cations. We also characterize a class of HMMs where the problem can be solved
in polynomial time, and finally we demonstrate the usefulness of our findings,
using examples from bioinformatics literature and simple experiments.

HMMs are often used in bioinformatics for sequence annotation tasks, such
as gene finding (e.g., [1]), protein secondary structure prediction (e.g., [8]), and
transmembrane protein topology (e.g., [7]). An HMM is a generative probabilis-
tic model composed of states and transitions. In each step of the generative
process, the current state randomly generates one character of the DNA or pro-
tein sequence according to an emission probability table associated with the
state. An outgoing transition is randomly chosen and followed to a new state,
according to the transition probability table at that state.

In each application, biological knowledge is reflected in the model’s topology.
Parameters are set through automatic training so that the model generates se-
quences like those in nature. States represent distinct biological features, such
� Supported by NSERC and the Human Frontier Science Program.

�� BB and TV supported by NSERC grant RGPIN46506-01 and by CITO.

I. Jonassen and J. Kim (Eds.): WABI 2004, LNBI 3240, pp. 426–437, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

The Most Probable Labeling Problem in HMMs 427

α

0.6

a:0.5
b:0.5

0.2

0.2 β

β a:0.2
b:0.8

a:0.4
b:0.6

Fig. 1. An HMM with the multiple path
problem. The most probable path for the string
“ababa” is “ααααα,” with probability 0.004, while
the most probable labeling is “αβαβα,” with prob-
ability 0.01. The highest probability path with the
same labeling has probability only 0.003.

as introns, exons, and splicing signals in gene finding, or transmembrane helices,
cytoplasmic and non-cytoplasmic loops in transmembrane topology prediction.

For sequence annotation, we label each state with the feature it represents.
For a given sequence, we examine paths through the model (or state paths) gener-
ating it. The labelings of such paths represent potential annotations. The HMM
defines a probability distribution over all possible labelings: a given labeling’s
probability is the sum of the probabilities of the paths that generate it. Finding
high probability labelings of a sequence in an HMM is HMM decoding.

The most widely used decoding method is the Viterbi algorithm [11]. It uses
dynamic programming to find the most probable state path and reports the
labeling associated with it. However, one labeling may have multiple paths, with
its probability being the sum of probabilities of these paths. We would prefer to
find the most probable labeling instead of the most probable state path.

Consider the example in Fig.1. The most probable labeling and most probable
state path yield different annotations, which is surely a source for concern. We
say that such HMM exhibits the multiple path problem. Moreover, as the sequence
(ab)n grows in our example, the number of paths forming the most probable
labeling increases exponentially. The probability of each single path is very low
compared to the probability of the most probable path.

This problem has been recognized before [1, 6] and various heuristics have
been suggested. A common (but rarely implemented) idea is to compute the k
most probable paths, providing k candidate labelings [3]. These paths can be
found efficiently with an algorithm for finding the k shortest paths in a directed
acyclic graph [4]. However, this approach may fail, since the probability of each
path in the most probable labeling may be small.

A different heuristic, called the 1-best algorithm, was suggested by Krogh
[6]. The algorithm, similar to Viterbi, maintains a pool of several candidates for
the labeling. The algorithm guarantees only that the probability of the resulting
labeling is at least as high as the probability of the most probable state path.

Finally, one can apply a posteriori decoding – using the forward-backward
algorithm [3] to compute the most probable label at each sequence position.
However, no state path may correspond to this annotation, so we cannot guar-
antee that it is consistent with biological constraints of the model. To complete
the heuristic, a second step is required to modify such a labeling to obtain a
plausible annotation (see, e.g., [10]).

In general, it is unlikely that there exists an efficient algorithm for finding
the most probable labeling: the problem is NP-hard [9] (see also earlier work
on a related model [2]). However, in these NP-hardness proofs, the size of the

428 Broňa Brejová, Daniel G. Brown, and Tomáš Vinař

HMM obtained by the reduction is polynomial in the size of the input instance.
This is not appropriate, since in our applications the model is fixed (constant
size) and the input sequence can be very long. This leads to the question of
whether there is an algorithm for this problem whose runtime is polynomial in
the sequence length but exponential in the model size. In Section 2 we show that
this is unlikely: the problem is NP-hard even for a fixed HMM of constant size.

Ideally, one would like to distinguish between HMMs for which the most
probable labeling problem is NP-hard and HMMs for which it is possible to solve
the problem in polynomial time. As a first step in this direction, we present an
algorithm that can find the most probable labeling for a wide class of HMMs in
polynomial time, and we give a sufficient condition characterizing this class. The
class includes topologies commonly used for various bioinformatics applications.
Finally, we provide simple experiments that show that using the most probable
labeling instead of the most probable paths may increase accuracy.

2 NP-Completeness Proof

Here, we give a new NP-completeness proof for the most probable labeling prob-
lem. We show a construction of a specific HMM, for which if we could compute
the most probable labeling, we could solve instances of SAT. We first present a
path counting problem on directed acyclic “layered” graphs, which we show is
NP-complete. Then, we show a reduction from this problem to the HMM prob-
lem, and demonstrate that for SAT instances, we will have a specific HMM of
constant, though large, size for which decoding is hard.
Layered Digraphs. A colored proper layered digraph is a directed graph with
vertices arranged in layers L1, L2, . . . , Lw. Each edge connects a vertex in some
layer Li to a vertex in layer Li+1. Each vertex is colored white or black.

A layer coloring is an assignment of a color (white or black) to each layer.
A directed path from layer L1 to layer Lw is consistent with a layer coloring if
the colors of the vertices on the path match the layer coloring.

Definition 1 (Best-Layer-Coloring). Given a colored proper layered di-
graph G and a threshold T , is there a layer coloring which has at least T paths
consistent with it?

Theorem 1. Best-Layer-Coloring is NP-complete, even if each layer has
at most a constant number of vertices.

Proof. Best-Layer-Coloring is in NP: for a given layer coloring, the number
of consistent paths can be computed by simple dynamic programming.

To prove NP-hardness, we reduce SAT to Best-Layer-Coloring. Consider
an instance of SAT with n variables u1, u2, . . . , un and m clauses c1, c2, . . . , cm.
We give an overview of the construction in Fig.2.
Goal of the Construction. The graph consists of m+1 blocks 0, 1, 2, . . . , m, each
with 4n layers. The layer coloring of each block represents a truth assignment of
variables u1, . . . , un. The truth assignment of each variable is encoded by four

The Most Probable Labeling Problem in HMMs 429

x

assignment
x

...

...

...

...

...

eq(x, ym)?

sat(cm, ym)?

ym

encode

sat(c2, y2)?sat(c1, y1)?

eq(x, y2)?eq(x, y1)?

assignmentassignment
y2

assignment
y1

Fig. 2. Overview of the graph construction. The boxes represent components of
the graph construction. Lines connecting the components represent layered subgraphs
that propagate the number of paths from left to right regardless of the layer coloring
(this is achieved by using one black and one white vertex in each layer).

consecutive layer colors: ◦ ◦ ◦ ◦ (false) or ◦ ◦ • ◦ (true). Layer colorings that are
not of this form have no corresponding paths, so we do not consider them. Thus
we use the terms “layer coloring of a block” and “truth assignment of a block”
interchangeably. Let x be the truth assignment of block 0 and let y1, . . . , ym be
the truth assignments of blocks 1, . . . , m.

In a “yes” instance of SAT, we want the truth assignments x, y1, . . . , ym to
be the same satisfying truth assignment.
Details of Construction. We will decompose the structure of the graph into
several components, each of them having several inputs and outputs. An input
of a component is the number of consistent paths ending in a designated vertex
on the left-most layer of the component. Similarly, an output of a component is
the number of consistent paths ending in a designated vertex on the right-most
layer of the component. Let A

x−→ B denote a component transforming a vector
of inputs A to a vector of outputs B when corresponding layers have coloring x.

The component encode(x) in Fig.2 encodes the truth assignment x as a
vector of three integers v(x) on its output. In each of the blocks 1, 2, . . . , m, we
enforce the truth assignment to be the same as x with component eq(x, yi). The
input of this component is the vector v(x), and the output is the number 2K(n),
where K(n) = 4n − 2n+1 + 1, if the truth assignments x and yi are the same,
or a number smaller than 2K(n) otherwise. In particular, the two components
have the following specification: encode(x) : 1 x−→ (1, K(n) − b(x)2, 2b(x))
and eq(x, y, i) : (1, α, β)

y−→ K(n) − b(y)2 + β · b(y) + α, where b(x) is the
number whose binary representation encodes the truth assignment x of variables
u1, . . . , un with u1 as the highest-order bit and un as the lowest-order bit.

Finally, component sat(ci, yi) outputs its input, if truth assignment yi satis-
fies clause ci, or 0 otherwise. The input to sat(c1, y1) is 1. Details are omitted.

There is an additional layer before the first block and after the last block to
ensure the proper start and end of each consistent path.

The threshold T is 2m · K(n) + 1. For the number of consistent paths to
reach this threshold, all of the block colorings must represent the same truth

430 Broňa Brejová, Daniel G. Brown, and Tomáš Vinař

αx

α α

αx Fig. 3. One section of component
mult(x) : α

x−→ αb(x).

assignment and the assignment must satisfy all clauses (otherwise the number
of consistent paths will be smaller).
Components encode and eq. These can be built from subcomponents mult(x) :
α

x−→ αb(x) and square(x) : 1 x−→ K(n) − b(x)2. They consist of identi-
cal 4-layer sections, each processing one bit of b(x). Section k of component
square(x) has four inputs and outputs (1, B(k−1), C(y, k−1), D(y, k−1)) t−→
(1, B(k), C(z, k), D(z, k)), where y is the binary representation of truth assign-
ment of the first k − 1 variables, t is the truth assignment of the k-th variable,
z = 2y + t, and B, C, D are defined as follows:

B(k) = 2k+2 − 4 = 2B(k − 1) + 4 (1)

C(z, k) = B(k) − 4z =
{

2C(y, k − 1) + 4, if t = 0
2C(y, k − 1), if t = 1 (2)

D(z, k) = 4k − 2k+1 + 1 − z2 =
{

4D(y, k − 1) + B(k − 1) + 1, if t = 0
4D(y, k − 1) + C(y, k − 1), if t = 1 (3)

The D output of the last section has value D(b(x), n) = K(n) − b(x)2, as
desired. Fig.3 shows the construction of the simpler subcomponent for multipli-
cation, mult(x). Other drawings are omitted due to space.
Summary. The total number of vertices in each layer is at most 29. Thus, an
instance of SAT can be reduced to Best-Layer-Coloring with a constant
number of nodes per layer. ��
Connection to HMMs. Now, with the hardness of our problem shown, we connect
it to HMMs by reducing it to the most probable labeling problem.

Theorem 2. For a given constant k and a colored proper layered digraph G with
at most k vertices in each layer, there exists an HMM M and a binary string S
such that the most probable labeling of string S in M represents the best layer
coloring of G. Moreover, the topology, emission, and transition probabilities of
M depend only on the constant k, not on the size of G, and the size of S is
polynomial in the number of layers of G.

Proof. (Sketch.) We can construct an HMM and an input string so that paths in
the HMM will correspond to paths in G, and all paths have the same probability.
The states represent possible configurations of edges in G outgoing from each
vertex of one layer (pairs (i, V ′), where i is a vertex in a layer, and V ′ is a subset
of vertices in the next layer). Since there is only a constant number of vertices
in each layer, this HMM is fixed and does not depend on the structure of G.
The structure of G is encoded in the input string: each symbol represents the
configuration of edges of one layer in G. The alphabet size is constant and can
be further reduced to binary by replacing every symbol by a binary string. ��

The Most Probable Labeling Problem in HMMs 431

Corollary 1. There exists a specific HMM for which it is NP-hard to find the
most probable labeling of an input binary string.

Proof. Theorem 1 shows there exists a constant k such that finding the best layer
coloring is NP-hard, even if each layer has size at most k. Theorem 2 shows this
problem can be reduced to the most probable labeling of a binary string in a
fixed HMM. ��

The HMM obtained in the proof of Corollary 1 is very large. It is possible
to use ideas from the proof of Theorem 1 to reduce SAT to the most probable
labeling problem directly, obtaining a much smaller HMM.

3 Computing the Most Probable Labeling

We have shown that in general it is NP-hard to compute the most probable
labeling for a given HMM. However, we can characterize special classes of HMMs
for which the most probable labeling can be computed efficiently. For example,
consider an HMM where any two state paths Π1 and Π2 have different labelings.
The most probable state path can be computed with the Viterbi algorithm, and
thus so can be the most probable labeling. The runtime is O(nm∆) time, where
n is the length of the sequence, m is the number of states in HMM, and ∆ is
the maximum in-degree of a state.

Here, we introduce extended labelings and give an algorithm that computes
the most probable extended labeling in polynomial time. We characterize a class
of HMMs for which an extended labeling uniquely determines a single state
labeling. For this class, our algorithm finds the most probable labeling. Even if
the input HMM does not belong to the class, our algorithm returns a labeling
with probability at least as high as the probability of the most probable state
path. We give several practical examples found in this class of HMMs.

3.1 Most Probable Extended Labeling

Recall that a hidden Markov model is a generative probabilistic model, consisting
of states and transitions. The HMM starts in a designated initial state s. In each
step, a symbol is generated according to the emission probabilities of the current
state. Unless the HMM has reached a designated final state f , it follows one of the
transitions to another state. Let eu(x) be the emission probability of generating
character x in state u, au,v the probability of a transition from u to v, �(u) the
label of state u, and in(u) the set of states having a transition to state u.

Definition 2 (Extended labeling). A critical edge is an edge between states
of different label. The extended labeling of a state path π1π2 . . . πn is the pair
(L, C), where L = λ1, λ2, . . . , λn is the sequence of labels of each state in the
path and C = c1, c2, . . . , ck is the sequence of critical edges followed on the path.

432 Broňa Brejová, Daniel G. Brown, and Tomáš Vinař

Theorem 3 (The most probable extended labeling). For a given sequence
S = x1 . . . xn and an HMM with m states, it is possible to compute the most prob-
able extended labeling in O(n2mLmax∆), where Lmax is the maximum number
of states with the same label, and ∆ is the largest in-degree of a state.

Proof. We modify the Viterbi algorithm for computing the most probable state
path. Let V [u, i] = max Pr(x1 . . . xi, π1 . . . πi), where the maximum is taken over
all state paths π1 . . . πi starting in state s and ending in state u. The Viterbi al-
gorithm computes the values V [u, i] by dynamic programming with the following
recurrence, examining all possible options for the second to last state:

V [u, i] = max
v∈in(u)

V [v, i − 1] · av,u · eu(xi). (4)

We modify the Viterbi algorithm as follows. Let L[u, i] = maxPr(x1 . . . xi,
(L, C), πi = u), where the maximum is taken over all extended labelings (L, C)
and the generating process ends in state u. Instead of considering possible op-
tions for the second last state, we will examine all possible durations of the last
segment with the same label and instead of the most probable path in such
segment, we will compute the sum of all possible state paths in this segment. If
the segment starts at position j ≤ i of the sequence, such sum P [v, u, j, i] is the
probability of generating the sequence xj . . . xi starting in state v and ending in
state u, using only states with label λ(u). We get the following recurrence:

L[u, i] = max
j≤i

max
v:λ(v)=λ(u)

max
w∈in(v):

λ(w) �=λ(v)

L[w, j − 1] · aw,v · P [v, u, j, i] (5)

We compute values of L in order of increasing i. For each i, we compute all
relevant values of P (v, u, j, i) in order of decreasing j by an algorithm similar to
backward algorithm (see, e.g., [3]), using the following recurrence:

P [v, u, j, i] =
∑

w:v∈in(w),λ(v)=λ(w)

ev(xj) · av,w · P [w, u, j + 1, i] (6)

When the computation of L is finished, the most probable extended labeling can
be reconstructed by tracing back labels and critical edges used to obtain the
value of L[f, n], as in the Viterbi algorithm. ��

Note that the probability of the extended labeling returned by the algorithm
is always at least as high as the probability of the most probable path Π found
by Viterbi algorithm. This is because the probability of the extended labeling
corresponding to Π must be at least as high as the probability of Π itself.

3.2 The Sufficient Condition

The algorithm defined above is guaranteed to compute the most probable la-
beling for a much wider class of HMMs than the Viterbi algorithm. Here is a
sufficient condition for this class:

The Most Probable Labeling Problem in HMMs 433

5’ end exon exonexon 3’ end

phase 0 phase 1 phase 2

Fig. 4. Simplified model of ESTScan. ESTScan uses an HMM for predicting coding
part of an EST. Compared to a typical coding region predictor, ESTScan needs to
handle insertions and deletions within the coding sequence caused by the low quality
of EST sequencing. The exact place of a sequencing error cannot be easily identified, so
to simply distinguish coding part of ESTs from non-coding, we assign the same label to
all states corresponding to coding sequence. The resulting HMM has the multiple path
problem, with each path corresponding to some combination of insertions and deletions.
The actual model used in ESTScan has a more complicated topology, ensuring for
example that only one insertion or deletion can occur within the same codon.

Definition 3. An HMM satisfies the critical edge condition for an input se-
quence S if any two paths with the same labeling have the same sequence of
critical edges.

Corollary 2. If an HMM satisfies the critical edge condition for a sequence S,
then the above algorithm computes the most probable labeling of sequence S.

Proof. We call a labeling Λ (extended labeling, state path) possible with respect
to sequence S, if Pr(Λ |S) > 0.

The algorithm above computes the most probable extended labeling. There-
fore for the statement to be false, the most probable labeling and the most
probable extended labeling must be different.

This happens only if two different extended labelings Λ1 and Λ2 correspond
to the most probable labeling. Let Π1 be a state path corresponding to Λ1,
and Π2 be a state path corresponding to Λ2. Since Λ1 and Λ2 are different, the
paths Π1 and Π2 must differ in at least one critical edge; yet both Π1 and Π2

produce the same labeling. Therefore the HMM cannot satisfy the critical edge
condition. ��
Examples. The simplified model of ESTScan [5] shown in Fig.4 has the multiple
path problem. Therefore the Viterbi algorithm is not appropriate for decoding it.
The model satisfies the critical edge condition, so our algorithm finds the most
probable labeling. The condition is satisfied because the states labeled “exon”
are grouped in a subgraph with only one incoming and outgoing edge.

A more complicated example is the simple model of exon/intron structure
of eukaryotic genes in Fig.5. Multiple copies of the same intron model preserve
three-periodicity of coding regions. The multiple path problem is caused by
ambiguity of transition between the two “intron” states. The model does not
violate our condition, since the length of the exonic sequence uniquely determines
which critical edge will be used.
Testing the Critical Edge Condition. We can test algorithmically whether a given
HMM topology (not considering emission probabilities) satisfies the critical edge

434 Broňa Brejová, Daniel G. Brown, and Tomáš Vinař

exon intron intron

exon intron intron

exon intron intron

3’ end

5’ end

phase 0

phase 1

phase 2

pyrimidine tail

Fig. 5. Simple model of exon/intron
structure. Intronic sequence in DNA
contains a pyrimidine-rich tail close to the
acceptor site. Its composition is very dif-
ferent from the rest of the intron, pro-
viding strong support for a neighbor-
ing acceptor site. The tail has variable
length and does not have a clear bound-
ary. This creates the multiple path prob-
lem because there are always several high-
probability alternatives for the transfer
from “intron” state to the “tail” state.

condition for every input sequence. We first use depth-first search to build a set
Ss of all pairs of states that are reachable from the start state by the same
labeling. We start from pair (s, s) ∈ Ss and in each iteration we add a new pair
(u, v) if λ(u) = λ(v), and there exists (u′, v′) ∈ Ss such that u′ ∈ in(u) and
v′ ∈ in(v). Similarly, we also build a set Sf of all pairs of states, from which
the final state can be reached by the same labeling. For the critical condition
to be violated, there must exist a pair (u, v) ∈ Ss and (u′, v′) ∈ Sf such that
λ(u) �= λ(u′), and (u, u′) and (v, v′) are two different transitions. The algorithm
takes O(m4) time.

It is possible to modify this verification algorithm to verify the critical edge
condition in O(m4|Σ|2) time, if emission probabilities are given. Note that this
test may yield a different result, since some states may not produce some of the
alphabet symbols, making it impossible for two different paths with the same
extended labeling to generate the same string; hence, this extended algorithm
may find even more HMMs that satisfy the condition.

And finally, we can also verify the condition for a given HMM and input
string in O(nm4) time. In that case, we will build a set of state pairs that can
be reached by the same labeling for each position in the sequence.

3.3 Introducing Silent States

Silent states do not emit symbols. They are sometimes used in HMMs as a con-
venient modeling extension (see [3, Section 3.4]). Both the Viterbi algorithm and
our algorithm can be easily extended to HMMs with silent states [3, Section 3.4].
The example in Fig.6 shows that some HMMs can be transformed to equivalent
HMMs that satisfy the critical edge condition by addition of silent states. Thus,
in our case, the silent states are a crucial modeling tool.
Example. Silent states are useful when one wants to provide several models for a
particular sequence element. An example of such a model is TMHMM [7], shown
in Fig.7. The two different models of non-cytoplasmic loops create the multiple
path problem, potentially decreasing prediction accuracy if the Viterbi algorithm
is used. We introduce silent states to ensure that the critical edge condition is
satisfied.

The Most Probable Labeling Problem in HMMs 435

(a) (b) (c)

Fig. 6. Example of usefulness of silent states. The color of each state represents its
label. Silent states are shown as smaller circles. The HMM (a) violates the critical edge
condition and cannot be decoded by our algorithm. There is no equivalent topology
without silent states satisfying the condition. Using silent states, we can construct an
equivalent HMM (b) that satisfies the critical edge condition. However, the technique
is not universal: HMM (c) cannot be so transformed to comply with the condition.

loop
cytoplasmic

helix
loop
non−cyt.

helix loop
non−cyt.

(short loop)

(long loop)

Fig. 7. TMHMM: prediction
of topology of transmem-
brane proteins. The task is to
predict positions of transmem-
brane helices, cytoplasmic, and
non-cytoplasmic loops. Boxes in
the figure represent groups of
states with the same label.

4 Experiments

We have designed a simple experiment to test if decoding with most probable
labeling increases accuracy. We used the HMM in Fig.8 to generate 5000 se-
quences of mean length about 500 for various combinations of the parameters
p1 and p2.

We then used three decoding algorithms: standard Viterbi, our algorithm
for most probable labeling, and Viterbi on a simplified model. In the simplified
model, we replaced the two “gray” states with self-loops with one state and set its
parameters to maximize likelihood (probability of the self-loop: 0.97, probability
of emission of 1: (2p2 + p1)/3). This new HMM does not have the multiple path
problem and therefore the Viterbi algorithm yields the most probable labeling.

We evaluated the error rate (percentage of the positions that were mislabeled
compared to the labels on the state path that generated each sequence) for each
algorithm. Fig.9 shows our results.

We have observed two trends in the data. First, using the most probable la-
beling does increases the accuracy. Second, the Viterbi algorithm on a simplified
model, which does not have the multiple path problem, often performs better
than the Viterbi algorithm on the full model. This behavior is paradoxical: using
a model that is further from reality, we have obtained better results.

436 Broňa Brejová, Daniel G. Brown, and Tomáš Vinař

11 1 p2 p1 10.5

exp.length 20 exp.length 20 exp.length 10

0.95 0.90.95

Fig. 8. HMM used in experiments. The HMM over alphabet {0, 1} is inspired
by intron model with composition changing towards the end of “gray” region. Colors
(white or gray) represent the labels. The numbers inside states represent emission
probability of symbol 1 (p1 and p2 are parameters).

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

p
2

er
ro

r
ra

te

p
1
 = 0.1

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

p
2

er
ro

r
ra

te

p
1
 = 0.4

our algorithm
Viterbi
simplified Viterbi

our algorithm
Viterbi
simplified Viterbi

Fig. 9. Results of experiments. Error rate using three decoding algorithms: Viterbi,
our algorithm for the most probable labeling, and Viterbi in simplified model.

5 Conclusions and Future Work

We have investigated the most probable labeling problem in HMMs. We showed
that the problem is NP-hard, even for a fixed HMM constructed in the proof, in
contrast to previous NP-hardness proofs, where the HMM constructed depended
on the input instance (in most biological applications, the HMM is fixed).

Even though the problem is NP-hard in general, it is possible to compute the
most probable labeling for some HMMs. We provided an O(n2) time decoding
algorithm and characterized a wide class of HMMs that can be decoded by our
algorithm. This run time may cause problems in applications with long input
sequences, such as gene finding. Still, it is acceptable in other cases, such as
analysis of protein sequences or ESTs. In practice, the running time can be
further decreased by application of biological constraints (such as location of
open reading frames) and various stopping conditions.

The model topologies that can be decoded by our algorithm include those for
transmembrane protein topology prediction (TMHMM), distinguishing coding
regions in ESTs (ESTScan), or intron model in gene finding. We also noted that

The Most Probable Labeling Problem in HMMs 437

the use of the Viterbi algorithm instead of the most probable labeling may lead
to paradoxical behavior, where a more accurate model will yield worse results.

Several problems remain open. First, we do not know at present any polyno-
mial algorithm for finding the most probable labeling for model shown in Fig.6c.
Is decoding of this simple model NP-hard? Similar topologies are useful in vari-
ous applications for providing alternative models for multi-label structures (such
as different types of genes). More generally, can we provide a complete charac-
terization of the models that are NP-hard to decode? Second, are there HMM
topologies (other than ones without the multiple path problem) that can be de-
coded in subquadratic time? Such models may be useful in applications where
the input sequence is long. Finally, we would like to test the most probable
labeling algorithm in the applications mentioned above.

Acknowledgments

The authors would like to thank Ming Li and Prabhakar Ragde for useful sug-
gestions.

References

1. C. Burge and S. Karlin. Prediction of complete gene structures in human genomic
DNA. Journal of Molecular Biology, 268(1):78–94, 1997.

2. F. Casacuberta and C. de la Higuera. Computational Complexity of Problems on
Probabilistic Grammars and Transducers. In Grammatical Inference: Algorithms
and Applications (ICGI), volume 1891 of LNCS, pages 15–24. Springer, 2000.

3. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis.
Cambridge University Press, 1998.

4. D. Eppstein. Finding the k shortest paths. SIAM Journal on Computing,
28(2):652–673, 1998.

5. C. Iseli, C. V. Jongeneel, and P. Bucher. ESTScan: a program for detecting, eval-
uating, and reconstructing potential coding regions in EST sequences. In Seventh
International Conference on Intelligent Systems for Molecular Biology (ISMB),
pages 138–148, 1999.

6. A. Krogh. Two methods for improving performance of an HMM and their applica-
tion for gene finding. In Fifth International Conference on Intelligent Systems for
Molecular Biology (ISMB), pages 179–186. AAAI Press, 1997.

7. A. Krogh, B. Larsson, G. von Heijne, and E. L. Sonnhammer. Predicting trans-
membrane protein topology with a hidden Markov model: application to complete
genomes. Journal of Molecular Biology, 305(3):567–570, 2001.

8. P. Lio, N. Goldman, J. L. Thorne, and D. T. Jones. PASSML: combining evo-
lutionary inference and protein secondary structure prediction. Bioinformatics,
14(8):726–733, 1998.

9. R. B. Lyngsø and C. N. S. Pedersen. The consensus string problem and the com-
plexity of comparing hidden Markov models. Journal of Computer and System
Sciences, 65(3):545–569, 2002.

10. P. L. Martelli, P. Fariselli, A. Krogh, and R. Casadio. A sequence-profile-based
HMM for predicting and discriminating beta barrel membrane proteins. Bioinfor-
matics, 18(Suppl 1):S46–53, 2002.

11. L. R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–285, 1989.

	1 Introduction
	2 NP-Completeness Proof
	3 Computing the Most Probable Labeling
	3.1 Most Probable Extended Labeling
	3.2 The Sufficient Condition
	3.3 Introducing Silent States

	4 Experiments
	5 Conclusions and Future Work
	References

