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ABSTRACT

Motivation: Life science researchers often require an exhaustive list

of protein coding genes similar to a given query gene. To find such

genes, homology search tools, such as BLAST or PatternHunter,

return a set of high-scoring pairs (HSPs). These HSPs then need to

be correlated with existing sequence annotations, or assembled

manually into putative gene structures. This process is error-prone

and labor-intensive, especially in genomes without reliable gene

annotation.

Results: We have developed a homology search solution that

automates this process, and instead of HSPs returns complete gene

structures. We achieve better sensitivity and specificity by adapting

a hidden Markov model for gene finding to reflect features of the

query gene. Compared to traditional homology search, our novel

approach identifies splice sites much more reliably and can even

locate exons that were lost in the query gene.

On a testing set of 400 mouse query genes, we report 79% exon

sensitivity and 80% exon specificity in the human genome based on

orthologous genes annotated in NCBI HomoloGene. In the same set,

we also found 50 (12%) gene structures with better protein alignment

scores than the ones identified in HomoloGene.

Availability: The Java implementation is available for download from

http://www.bioinformatics.uwaterloo.ca/software

Contact: mli@uwaterloo.ca

1 INTRODUCTION

Sequence homology search has been a core topic in the

bioinformatics literature since the seminal paper introducing

BLAST (Altschul et al., 1990). The focus of the field is on

designing faster and more sensitive methods to search for

sequences similar to a query DNA or protein sequence in

one or more huge databases [see, e.g. Kisman et al. (2005);

Ma et al. (2002)]. The similarity measure reflects the likelihood

of two sequences to be evolutionarily related. Thus, a typical

homology search returns a set of high-scoring pairs (HSPs),

consisting of the subsequences of the database and the query

sequence that can be aligned to one another with a high

similarity score.
Researchers studying the function of a particular gene or a

gene family often need to locate genes that are similar to

a query gene, either within the same species or in related

organisms. Such queries are complicated by the fact that the

protein-coding segments of genes (exons) are interrupted by

non-coding segments (introns). Intronic sequences diverge

much faster than coding sequences because they are under

much weaker evolutionary constraints.
A typical homology search for a query gene in a target

genome will return HSPs that roughly correspond to exons of

that gene. In a well-annotated target genome this is often

sufficient: we can examine annotated genes that overlap these

HSPs. However, only few genomes have reliable annotations to

date; indeed, even in the human genome, the annotation

is still not complete (Guigo et al., 2006). In the absence of a

reliable annotation, only a crude approximation of the correct

intron/exon structure of the gene can be recovered from these

HSPs. However, a correct intron/exon structure is essential

for subsequent analysis, e.g. for protein folding, or for scans

for positive selection.

In this article, we explore the problem of fast search for

homologous genes: for a given query gene (together with its

intron/exon structure in the query genome), we want to locate

similar genes in the target genome, including their intron/exon

structure.1

Our problem is on the boundary of homology search, gene

finding and gene mapping. Indeed, for each of these tasks, there

are established tools. However, none of these tools is directly

applicable to our problem. The homology search programs

such as BLAST (Altschul et al., 1990) or PatternHunter

(Ma et al., 2002) will only return approximate locations of

exon boundaries. Moreover, they are not likely to locate exons

that are less than 25 nt long (Volfovsky et al., 2003) and exons

that were inserted or lost in one of the sequences. Gene

prediction programs, such as GENSCAN (Burge and Karlin,

1997), Augustus (Stanke and Waack, 2003) or ExonHunter

(Brejová et al., 2005), can do a reasonable job on the genomic

scale, however, the predictions for a particular gene can be of

low quality. Additionaly, parametric files for gene finders are

often available only for a few species, and retraining gene

finders for new species is non-trivial. Finally, gene mapping

tools for aligning ESTs and mRNAs to a genome, such as sim4

(Florea et al., 1998) or BLAT (Kent, 2002), are designed to

work only within the same species, and they also fail to locate

short and missing exons.

We introduce a novel method for finding homologous genes

that starts from HSPs reported by a homology search program.

Based on these HSPs, we identify possible locations of a gene,

and use an HMM-based extension step to identify candidates

for homologous genes. The key insight in our method is that

*To whom correspondence should be addressed.

1In our work, we measure similarity of two genes at the potein level
using traditional amino acid scoring matrices; however, other similarity
measures are possible.
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our HMM and algorithm for its decoding are tuned to identify

genes similar to the query gene, thus achieving better

performance than an ordinary gene finder on these genes.

Finally, we align the predicted gene structures to the original

query and rank them based on the protein similarity score.

We validate our method using a set of 400 one-to-one

orthologous genes identified in NCBI HomoloGene (Wheeler

et al., 2006). Our tests indicate that for alignments between

close species (human-mouse), our approach works very well,

identifying 79% of exons correctly on both boundaries. In the

same set, we also identified 50 putative human gene transcipts

that have better protein similarity to mouse genes than their

orthologs identified in HomoloGene. We also observe that

the performance of our method deteriorates with evolutionary

distance.
Two closely related methods, GeneWise (Birney et al., 2004)

and Projector (Meyer and Durbin, 2004), place emphasis on the

second stage of the search for homologous genes. Both of these

methods use pair HMMs to align the protein sequence

(GeneWise) or DNA sequence with annotation (Projector) to

a novel DNA sequence. In our approach, we also locate the

target region for this alignment, and identify the extent of

the homologous gene alignment within the target genome.

Since locating the correct extent of a gene is one of the hardest

problems in gene finding, applying those tools may be hard in

the case of a genome-wide search for homologous genes.

Moreover, pair HMMs require computationally more intensive

algorithms and larger training sets.

2 RESULTS

Our method uses four steps to search for homologous genes.

First, we find HSPs between the query gene and the target

genomic sequence using a seed-based homology search method.

Since finding the HSPs with high sensitivity is critical for

the later steps, we use TBLASTN (Altschul et al., 1990).

TBLASTN searches the query protein sequence against the

nucleotide sequence translated in all six frames. To avoid

problems with frame shifts within the HSPs, we forbid gaps

in the TBLASTN settings. This also has a side effect of

speeding-up the homology search.
Second, based on the HSPs, we locate several target regions:

the sections of the target sequence that likely contain genes

homologous to the query. Each target region is characterized

by a triple (I, l5, l3), where I is the initiator position that has

been identified as likely to occur within the coding sequence of

a target gene, l5 is the expected length of the coding region

on the 50 side of the initiator and l3 is the expected length of the

coding region on the 30 side of the initiator. We describe

and evaluate this step in more detail in Section 3.1.
Third, we use a modified bi-directional Viterbi algorithm to

extend initiator I in both directions to form a viable gene

structure. As a basis for this step, we use a hidden Markov

model (HMM) that is biased towards the query gene.

In particular, parameters of this HMM are computed as a

linear combination of the parameters estimated from the target

genome (or from a closely related genome), and the observa-

tions from the query gene sequences. The bias is weighted by

a mixing coefficient w. Our bi-directional Viterbi algorithm

does not require a fixed window in the sequence. Instead, we

use parameters l3 and l5 estimated in the previous step to

dynamically locate likely start and stop sites. Our bi-directional

Viterbi algorithm also makes use of the HSP information from

the first step (though this is not necessary to achieve good

performance). We describe our models and algorithms in

Sections 3.2–3.4.
In the final step, we realign all predictions to the query gene

at the protein level, and rank them by the alignment score.
We validate our approach on a testing set of 400 one-to-one

orthologous gene pairs from human and mouse derived from

NCBI HomoloGene database (see Section 3.5). We use the

mouse genes from the pairs as the query genes with mixing

coefficient w¼ 0.5, and compare the best-scoring result with the

target gene in the human genome using traditional measures

from gene finding: sensitivity and specificity on exon and

nucleotide levels (Keibler and Brent, 2003). The results of this

experiment are presented in Table 1.

On the exon level, our approach achieves 79% sensitivity and

80% specificity. This is much better than a typical ab initio gene

finder (e.g. GENSCAN has 71% sensitivity and 50% specifi-

city). Note that in our experiment GENSCAN had an easier

task, since we considered only its predictions that overlapped

with the true target genes, while in evaluating our approach,

we considered all highest-scoring predictions, including those

that did not overlap with the target region. We also compared

our results to HSPs located by TBLASTN. On the nucleotide

Table 1. Sensitivity and specificity of our homology search, TBLASTN alone, our HMM without the bias and length penalty and GENSCAN

ab initio predictions

Mouse query genes Chicken query genes

Exon SN/SP Nucleotide SN/SP Exon SN/SP Nucleotide SN/SP

Our homology search 79%/80% 85%/87% 38%/41% 56%/52%

TBLASTN 7%/5% 91% /83% 3%/2% 71%/61%

Generic HMM 41%/61% 57%/84% 27%/44% 46%/72%

GENSCAN 71%/50% 88%/57% 65%/43% 88%/58%

Sensitivity (SN) is measured as the percentage of correctly identified exons or coding nucleotides out of all true exons or coding nucleotides. Similarly, specificity (SP) is

the percentage of correctly predicted exons or coding nucleotides out of all predicted exons or coding nucleotides.
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level, TBLASTN performs quite well, but it cannot predict the

exact location of exon boundaries. Finally, we also tested

the accuracy of the HMM underlying our method, without

the benefits of biasing or length distribution (but including

penalties for disagreement with HSPs). We see that this simple

HMM does not compare very well to GENSCAN, but biasing

and length penalties lead to a great improvement.

We did a similar evaluation on a testing set of 400 chicken-

human orthologs. Here we used a lower mixing coefficient

w¼ 0.25, because chicken is evolutionary more distant from

human and thus there will be less conservation between the

chicken query gene and the human target gene. The lower

accuracy in this case is a result of rather simple method we used

for biasing model parameters. We believe that these results can

be substantially improved by taking into account the increased

likelihood of silent mutations, effects of which become notice-

able at this evolutionary distance.
Interestingly, we were able to locate 50 human genes (12% of

the human-mouse testing set) that had better protein alignment

scores to their mouse query genes than the orthologous human

genes identified by HomoloGene. On the chicken-human

testing set, this number was even higher (107 genes or 27%).

We hypothesize that at least some of these genes represent

better predictions of homologous genes than the ones found

by HomoloGene.
Figure 1 shows one such case, and compares our prediction

to the HomoloGene target, BLAT alignment and GENSCAN

prediction. A BLAT alignment of the mouse gene to the human

sequence does not cover all exons and contains a false match.

Our prediction has one more exon than the HomoloGene

target. However, our prediction is identical to an experimen-

tally confirmed splicing isoform present in the Mammalian

Gene Collection of full-length clones (Gerhard et al., 2004).

Therefore, we are confident that our prediction is correct.

GENSCAN predicted several spurious exons and extended the

gene on the 30 end. This example demonstrates that our method

can identify exons gained and lost over the course of evolution,

and that its predictions can be (at least in some cases) of better

quality than those of other methods.

3 METHODS

3.1 Using HSPs to locate target regions

First, we remove the HSPs with scores lower than 55. We have chosen

this threshold to balance sensitivity and specificity of the search using

the validation data set of human-mouse homologous genes. This

validation set does not overlap with the testing set used in Section 2.

To locate the target regions, we cluster the remaining HSPs based

on their distance. Two clusters are merged if the corresponding

HSPs are on the same strand and their distance is smaller than a

given threshold.

It is difficult to estimate where the target region starts and ends,

especially since the 50 and 30 ends of the query gene and the target gene

may not be conserved. We describe each target region by a triple

ðI; l5; l3Þ. Initiator I is the position of the middle nucleotide of the

highest scoring HSP within the target region; this is very likely to be

located within a protein coding exon. On the validation data, we have

observed that lengths of coding sequences change only slowly during

the course of evolution. Thus, l5 will characterize the expected

coding length of the 50 end based on the position of I within the

query sequence and l3 will characterize the expected coding length

of the 30 end (see Fig. 2).

We use several best-scoring target regions. Table 2 shows the effect of

using multiple target regions on sensitivity; to be able to locate the

target gene, one must choose a target region that overlaps that gene.

We also use multiple initiators in each region (the k-th additional

initiator is based on the k-th highest-scoring HSP). Table 3 shows the

effect of using multiple initiators. In these two tables, the sensitivity is

measured as the fraction of the target genes that have at least one

initiator within their coding region. In general, increasing the number

of target regions and initiators helps to increase overall sensitivity,

however, it also slows down the search, because we run a separate

instance of the bi-directional Viterbi algorithm for each target triple.

37880000 37900000 37920000
Chr17

Genscan

MGC clone BC032398

Our prediction

Human target

Mouse query (BLAT)

Fig. 1. Example of a gene structure predicted by our system.
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Fig. 2. Initiator and its associated 50 and 30 CDS lengths. White boxes

represent exons, black boxes represent untranslated regions and lines

represent introns.

Table 2. Sensitivity increases using multiple target regions

Number of target regions 1 3 5 7 9

Mouse 93.0% 98.5% 99.0% 99.0% 99.5%

Chicken 88.5% 95.5% 97.5% 97.5% 98.5%

Table 3. Sensitivity increases using multiple initiators

Number of initiators 1 2 3 4 5

Mouse 97.5% 98.5% 98.5% 98.5% 98.5%

Chicken 92.5% 94.0% 94.5% 95.0% 95.0%
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In our experiments, we use three target regions with three initiators

each. In general, the number of target regions can be chosen by a user

depending on whether they expect to find a single homolog or multiple

homologs for the query gene.

3.2 Biased hidden Markov models

To find candidate gene structures, we use a simple HMM shown

in Figure 3. This HMM models a single gene on the forward

strand without untranslated regions or intergenic regions. The

submodels for translation start and stop signals are shown in

Figure 4, and the submodels for donor and acceptor signals are

shown in Figure 5. States representing exons and introns are Markov

chains of order 4, states representing signals are Markov chains of order

2. To simplify notation, we give formulas only for the zeroth-order

Markov chain states; the formulas can be easily extended to higher-

order states.

This HMM represents the joint probability PrðG;HÞ of generating a

genomic sequence G by a state path H. For a given sequence G, we can

compute a state path H maximizing PrðH jGÞ using the efficient Viterbi

algorithm in Oðnm2Þ time, where n is the length of the sequence, and m

is the number of states of the HMM (Rabiner, 1989). Such a state path

segments the sequence into introns and exons, thus giving the most

likely gene prediction according to the model.

To complete the model, we need to train the probabilities of

transitions between the states of the HMM and the probabilities

of emissions of sequence symbols by the states of the HMM. We use the

training set of genes in the target genome to count the observed number

of transitions between states x and y, T(x, y), and the number of

emissions of a nucleotide n in state x, E(x, n).

Each gene has its own structural properties, such as a characteristic

distribution of nucleotides in the coding sequences. Many of these

properties are conserved for homologous genes throughout the

evolution. Thus, in addition to the genome-specific training data set,

we also use the query gene to train the parameters of the HMM; in

other words, we bias the HMM towards the query gene. Let TQðx; yÞ

be the number of transitions from state x to state y observed in the

query gene, and EQðx;mÞ be the number of nucleotides n emitted by

state x observed in the query gene. We use a mixing coefficient w to

regulate the impact of observations from the query gene on the HMM.

Formally, we set the transition probabilities Ptðx; yÞ that the HMM

transitions from state x to state y as

Ptðx; yÞ ¼
Tðx; yÞ þ wMT 0ðx; yÞ þ CX
i

Tðx; iÞ þ wMT 0ðx; iÞ þ C
; ð1Þ

and the emission probabilities Peðx; nÞ of emitting nucleotide n in

state x as

Peðx; nÞ ¼
Eðx; nÞ þ wME 0ðx; nÞ þ CX

j2fA;C;G;Tg

Eðx; jÞ þ wME 0ðx; jÞ þ C
: ð2Þ

Here, M is the number of genes in the training set, and C is a

pseudocount. Intuitively, the biased training is equivalent to training on

a virtual training data set enriched by wM copies of the query gene.

We do not use the biased training for emission probabilities of intron

states (which is equivalent to setting w¼ 0 for these emission

probabilities). Our biased training is related to the Gibbs sampling

approach of Chatterji and Pachter (2004) that modifies parameters of

a gene finder based on a set of homologous genes in multiple

species. However, while they are finding the genes in all the species

simultaneously, the gene structure in the query sequence is fixed in

our case.

Table 4 shows the effect of biased training on the validation set of

mouse-human and chicken-human orthologs. We used the mouse

and chicken genes as queries, and, to avoid the effects of an incorrect

initiator, we used an ‘ideal’ initiator located in the middle of the coding

sequence of the target gene. We used several mixing coefficients w.

For the mouse query genes, we achieve the best exon sensitivity and

specificity with w ¼ 0:5. Biased training improves exon sensitivity

by 38% and exon specificity by 31%. For the chicken query genes,

we achieve the best results when w¼ 0.25. However, the best exon

sensitivity and specificity is still low ð49%=54%Þ. To achieve practical

results for chicken genes, we need to explore more complicated ways of

biasing HMM parameters, taking into account increased likelihood

in synonymous changes on protein level.

E1

I1

S FE2

I2

E3

I3

Fig. 3. HMM for gene homology search. State S is the silent initial

state, and state F is the silent final state. States Ei represent coding

exons, and states Ii represent introns. The triangles represent submodels

for signals (start, stop, donor and acceptor site signals).
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20 states
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Fig. 4. Start/stop signal submodels. States Ei represent coding exons,

and states Ni represent non-coding (untranslated or intergenic)

sequences. The states showing a single symbol emit only that symbol.

E−1 G T I+3

I−3 A G E+1

3 states

E−3

18 states

I−20

I+8

6 states

E+3

3 states

Fig. 5. Donor/acceptor signal submodels. States Ei represent coding

exons, and states Ii represent introns. The states showing a single

symbol emit only that symbol.
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3.3 Bi-directional Viterbi algorithm and coding

length penalties

Because we cannot easily identify the extent of the homologous target

gene, we cannot use the Viterbi algorithm directly to recover the most

probable gene structure. Here, we modify the Viterbi algorithm to

start from the initiator I, and proceed in both directions. From the

alignment corresponding to the initiator, we can determine state SI

in which the HMM should generate the nucleotide at the initiator

position.

Recall that we describe the target region not only by its initiator,

but also by the expected coding length l5 on the 50 side of the initiator,

and l3 on the 30 side of the initiator. Let l ¼ l5 þ l3 be the coding

length of the query gene. Below, we will define the probability

distribution Prðl̂ j lÞ over possible coding lengths of genes homologous

to a gene with coding length l.
In our algorithm, we aim to compute the state path H* through the

HMM, and values i and j defining the extent of the homologous gene,

maximizing the following quantity:

PrðlH� j lÞ � PrðH� jGi���jÞ ¼ PrðlH� j lÞ �
PrðGi���j;H

�ÞX
H

PrðGi���j;HÞ
; ð3Þ

where lH� is the coding length defined by the state path H*.

Note that PrðH� jGi���jÞ is normalized over the length of the

sequence j� i, therefore it is appropriate to assign an additional

length penalty.

In the rest of this section, we discuss the details of this computation.

We did not find an efficient algorithm that would optimize (3) globally.

Instead, we consider potential state paths H* that maximize

PrðH� jGi...jÞ for all values of i and j, and from these candidates we

select the final state path by multiplying their probabilities by the length

penalty and choosing the highest-scoring path.

3.3.1 Coding length penalties. To model the evolution of lengths

of coding sequences, we adopt the approach of Burge (1997). Under this

model, we assume that only a single codon insertion or deletion can

occur in a single generation, and the probabilities of insertion

and deletion do not change. In addition, we assume that the evolution

of each individual exon is independent of those of other exons. Subject

to these conditions, the exon lengths will be independent normally

distributed variables (Burge, 1997). Since the length of the coding

sequence is the sum of the exon lengths, we can approximate

the probability of coding length l becoming coding length l̂ in

a homologous gene by a normal distribution with mean l and

variance 2l (the variance being set somewhat arbitrarily):

Prðl̂jlÞ ¼
1ffiffiffiffiffiffiffiffi
4�l

p � e�
ðl̂�lÞ2

4l : ð4Þ

We have studied the effects of the CDS length penalty on our

validation sets (see Table 5). Again, we have used the ideal initiator

instead of alignments and w ¼ 0:5 for mouse query genes, and w ¼ 0:25

for chicken query genes. Without the CDS length penalty, our HMM

favors short gene structures and achieves very poor sensitivity and

specificity. The performance is significantly improved by using the

CDS length penalty.

3.3.2 Bi-directional Viterbi algorithm. Using the initiator I as

an anchor, we can decompose the computation probability on the

50 side of the initiator, and probability on the 30 side of the initiator.

In particular, for all i< I, let Pvði;xÞ be the probability of the most

probable HMM state path generating the sequence Gi...I�1, starting in

state x and ending in state SI. Similarly, for i> I, let Pvði;xÞ be the

probability of the most probable HMM state path generating the

sequence GIþ1...i, starting in state SI, and ending in state x. We can

compute these probabilities using the following recurrence:

Pvði; xÞ ¼

1; if i ¼ I and x ¼ SI;

0; if i ¼ I and x 6¼ SI;

Peðx;GiÞ �max
y

fPvði� 1; yÞ � Ptðy; xÞg; if i > I0;

Peðx;GiÞ �max
y

fPvðiþ 1; yÞ � Ptðx; yÞg; if i < I0:

8>>>>><
>>>>>:

ð5Þ

Using the above recurrence, we can compute each column of Pvði; *Þ

in time Oðm2Þ from either the previous column, if i> I, or from the

following column if i< I. Similarly, we can modify the forward and

backward algorithm to compute the normalizing coefficient in (3).

3.3.3 Stopping condition. We have shown how to compute

candidates for the sections of the most probable state path to the left

of the initiator I with decreasing i< I. Each of these candidates needs

to be multiplied by an appropriate length penalty. Note that if the

current highest-scoring candidate for the left section has score Q, we

do not need to consider any lengths l05 > l5 for which Prðl05 j l5Þ < Q.

Thus, we can stop extending each particular state path to the left

whenever this condition is reached. Analogous condition can be

applied to the sections of the most probable state path to the right of

the initiator I. Reaching this stopping condition is not guaranteed.

Therefore we also limit the maximum extension length by a large upper

bound of 650Kb (approximately half of the length of the longest known

gene NM_013988 on human chromosome 6).

3.4 Using HSPs in Viterbi algorithm

We also devised a simple method for incorporating information

from HSPs beyond the creation of initiators. For a given state

Table 4. Effect of mixing coefficient w on sensitivity and specificity of

gene homology search on the validation set

w Exon SN/SP Nucleotide SN/SP

Mouse 0 41%/50% 54%/55%

0.25 76%/79% 84%/84%

0.5 79%/81% 87%/87%

0.75 79%/80% 87%/87%

1.0 77%/78% 85%/86%

Chicken 0 34%/41% 49%/51%

0.25 49%/54% 64%/66%

0.5 45%/51% 62%/64%

0.75 34%/45% 52%/55%

1.0 29%/37% 44%/47%

Table 5. Sensitivity and specificity of gene homology search with and

without the CDS length penalty on the validation set

Exon SN/SP Nucleotide SN/SP

Mouse with 79.30%/80.77% 86.70%/86.53%

without 1.48%/7.38% 8.72%/69.72%

Chicken with 49.37%/54.33% 63.77%/65.79%

without 1.97%/8.07% 10.56%/75.45%
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path H, we use a bonus factor between Bmin and Bmax to multiply the

probabilities in states which are consistent with HSPs. The bonus factor

is largest in the middle of an HSP and decreases linearly with the

distance from the middle, being lowest at the boundary of the HSP.

We also use a constant multiplicative penalty factor P for the states

that are inconsistent with HSPs. We set the values manually (Bmin � 3,

Bmax � 12 and P � 0:2). Variants of the Viterbi algorithm can be easily

modified to accommodate such bonuses and penalties (Brejová et al.,

2005). This addition improves the results only slightly (see Table 6).

3.5 Data sets

3.5.1 Training data set of human genes. We trained the target

genome portion of the transition and emission probabilities of the

HMM on a data set of 1070 human genes. We have started from

the data set of Stanke and Waack (2003) of gene finder AUGUSTUS.

The original data set contained 1284 human genes retrieved from

NCBI GenBank in October 2002, and we removed 214 genes that did

not satisfy various technical requirements of our HMM in Figure 3.

Specifically, start, stop, donor and acceptor sites have to conform to

canonical consensus sequences; there must be at least 7 nt in each exon,

and at least 29 nt in each intron; each reference sequence must include

at least 20 nt before the start site, and at least 6 nt after the stop codon.

The genes in the resulting training set have an average gene length

of 6477 nt, an average CDS length of 1196 nt, and an average five

exons per gene.

3.5.2 Validation and testing data sets of homologous
genes. The validation data set of homologous genes contains 200

pairs of human-mouse and 200 pairs of human-chicken homologous

genes. We use this set to study the parameters of our method for gene

homology search, such as the number of target regions per target gene,

the number of initiators per target region, and the mixing coefficient w.

The basic statistics of the validation data set are shown in Table 7.

Such a validation data set is not required to extend our method to

additional species, and it was used mainly to demonstrate how to set the

mixing coefficient w and number of initiators. We expect that the same

settings can be applied to other pairs of genomes at similar evolutionary

distances. The HMM was trained only with a single-species data set

in Section 3.5.1. Hence the major difference of our approach from that

of GeneWise and Projector is that we train only on genes from one

(the target) genome as required by the nature of our problem, whereas

pair HMM approaches (such as Projector) are trained with homologous

genes from a pair of genomes.

The testing data set of homologous genes contains the reference

sequences and the CDS annotations of a seperate 400 pairs of human-

mouse and 400 pairs of human-chicken homologous genes. We use the

testing data set to evaluate the performance of our gene homology

search method with all the parameter values fixed. The basic statistics

of the testing data set are shown in Table 8.

We have built the validation and testing data sets of homologous

genes from NCBI HomoloGene 49.1 released on 28 April 2006

(Wheeler et al., 2006) which is a database of groups of homologous

genes of several completely sequenced eukaryotic genomes. We have

used the following protocol:

(1) We filtered all homologous gene groups in NCBI HomoloGene,

and retained those that contain one gene from each of the two

species (human-mouse, or human-chicken). We also removed the

genes from other than the two species.

(2) We used GMAP (Wu and Watanable, 2005) to map each gene

to its genome. Then we removed genes whose mapped CDS

annotation was inconsistent with the CDS annotation in NCBI

GenBank. Here, two annotations were consistent if and only

if they had the same number of exons, and each pair of

corresponding exons had the same length.

(3) We randomly selected 200 pairs of human-mouse and 200 pairs

of human-chicken homologous genes as the validation data set.

We randomly selected 400 pairs of human-mouse and 400 pairs

of human-chicken homologous genes as the testing data set.

The validation and testing data sets do not overlap.

3.5.3 Target genomic sequence. In all experiments requiring the

target genomic sequence, we used the NCBI human genome 36.1

released in March 2006 as the target genomic sequence. We downloaded

the complete reference sequences with a total size of �3.14GB from

the UCSC genome browser (Kuhn et al., 2007). Repeats in the

genomic sequences were masked by RepeatMasker (Smit et al., 2006)

and Tandem Repeats Finder (Benson, 1999).

4 CONCLUSION

This article has introduced a novel method for finding

homologous genes on a genome-wide scale. Our method uses

HSPs returned by a classical sequence alignment program, such

as TBLASTN, as a starting point, identifies target regions

where homologous genes are likely to be located, and uses

biased HMMs to identify homologous genes in these regions.

We have demonstrated good performance in identifying

Table 6. Sensitivity and specificity of gene homology search with and

without the alignment evidence on the validation set

Exon SN/SP Nucleotide SN/SP

Mouse using 81.82%/81.98% 89.27%/89.44%

not using 79.30%/80.77% 86.70%/86.53%

Chicken using 50.86%/56.75% 65.80%/67.83%

not using 49.37%/54.33% 63.77%/65.79%

Table 7. Overview of the validation data set of homologous genes

Human-mouse Human-chicken

Number of genes 200 200 200 200

Average gene length 33 284 24 781 46 470 22 277

Average CDS length 1337 1326 1406 1526

Average number of exons 11 10 8 9

Table 8. Overview of the testing data set of homologous genes

Human-mouse Human-chicken

Number of Genes 400 400 400 400

Average Gene length 36 537 28 120 49 486 23 315

Average CDS length 1337 1323 1474 1633

Average number of exons 10 10 9 10
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homologous genes in the human genome where query genes

came from the mouse genome. We also demonstrated that our

method can successfully identify exons that were lost or gained

in the course of evolution. Thus, we conclude that our method

is well suited for locating homologous genes between close

species. Our method will be useful to life science researchers

who study evolutionary histories of genes and gene families

especially among closely related species. The main advantage

of our method is that it returns complete gene structures,

not only fragments of gene candidates.
Our experiments also show that our current implementation

does not work well for more distant species, such as human

and chicken. We believe that this can be remedied by

incorporating a more complex HMM combined with a more

careful mixing of the HMM parameters.
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