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ABSTRACT

We have developed a novel method for estimating
the parameters of hidden Markov models for gene
finding in newly sequenced species. Our approach
does not rely on curated training data sets, but
instead uses extrinsic evidence (including paired-
end ditags that have not been used in gene finding
previously) and iterative training. This new method
is particularly suitable for annotation of species with
large evolutionary distance to the closest annotated
species. We have used our approach to produce
an initial annotation of more than 16 000 genes in
the newly sequenced Schistosoma japonicum draft
genome. We established the high quality of our pre-
dictions by comparison to full-length cDNAs (with-
drawn from the extrinsic evidence) and to CEGMA
core genes. We also evaluated the effectiveness of
the new training procedure on Caenorhabditis ele-
gans genome. ExonHunter and the newest para-
metric files for S. japonicum genome are available
for download at www.bioinformatics.uwaterloo.ca/
downloads/exonhunter

INTRODUCTION

Schistosoma japonicum is one of three human parasitic
organisms from the phylum Platyhelminthes (flatworms)
that cause schistosomiasis. This disease is responsible for
15 000–20 000 deaths every year and is endemic in 76 coun-
tries of the world (1). In this article, we present the novel

methods that were used to predict the protein-coding
genes in the nearly 400Mb draft genome sequence of
S. japonicum (S. japonicum Genome Consortium unpub-
lished data).
We concentrate on the problem of estimating the param-

eters of a hidden Markov model (HMM)-based gene
finder. Ordinarily, we would require a high-quality training
set of several hundred genes to reliably estimate the neces-
sary parameters, such as the nucleotide composition in
coding and noncoding regions, the length distributions of
introns, exons and intergenic regions and a characteriza-
tion of splice signals. In the initial stages of genome
projects, however, such a training set is rarely available.
Another approach is to use parameters estimated from
genes of a related species; this is common practice in ver-
tebrate genomics. However, this is not feasible in the case
of S. japonicum. Its evolutionary distance from currently
annotated genomes precludes this approach (Figure 1),
as its closest annotated relative is at a distance of more
than 500 Myr to the most recent common ancestor.
We propose an iterative training procedure that first

uses gene predictions in our new species, found by a
gene finder trained with parameters from a distantly
related, but well annotated organism (in our case,
Caenorhabditis elegans) as a starting point. These initial
predictions, which are often of poor quality, are then used
to retrain the parameters of the gene finder. The retraining
step is repeated several times, to build an incrementally
improving training set.
A similar approach has been first examined on the

simple ab initio gene finder SNAP, by Korf (2), and
later re-evaluated in a more practical setting using
GeneMark.HMM by Lomsadze et al. (3). Here, we
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introduce a new method that incorporates extrinsic evi-
dence to this iterative process. Extrinsic evidence, such
as expressed sequenced tags (ESTs) and protein databases,
is known to significantly improve gene predictions when
integrated with an ab initio gene finder (4). Our work
extends the use of extrinsic evidence from gene prediction
to the training of gene finders. In particular, we use the
additional evidence to locate fragments of predictions that
are likely to be of high quality, and we use these fragments
for training in the next iteration of our iterative training.
To validate our approach, we train and test our gene

finder ExonHunter (5) on the C. elegans genome, where
we can easily evaluate our methods with a reliable testing
set. We compare the ab initio performance of ExonHunter
to SNAP (2) and GeneMark.HMM (3) and find that
iterative training with filtering by extrinsic evidence
significantly improves the quality of ab initio predictions.
We also note that use of the extrinsic evidence in both
training and gene prediction leads to further significant
improvements in prediction accuracy.
Using iterative training with extrinsic evidence, we esti-

mated parameters for ExonHunter in newly sequenced
S. japonicum, and produced initial protein-coding gene
predictions for further analysis. We also used a set of
full-length cDNAs, withdrawn from the training set and
from our extrinsic evidence sets, to evaluate accuracy of
our predictions on S. japonicum.
One of the most difficult problems in gene finding is to

correctly identify the boundaries of individual genes (4).
To address this problem, we used a new source of extrinsic
evidence, Paired-End diTags (PETs). A single PET con-
sists of two 14–21 bp tags from both the 50 to 30 ends of a
transcript. Ng et al. (6) introduced a high-throughput
genome-wide method for sequencing PETs by modifica-
tion of the SAGE approach. We used a set of PETs
available for the S. japonicum genome to improve gene
predictions by integrating them into ExonHunter’s exist-
ing framework for extrinsic evidence.
Another approach to gene finding in a novel genome

was recently introduced by Parra et al. (7). The authors

identified 458 genes that are well-conserved among a wide
variety of species, and they propose a pipeline, CEGMA,
that can identify these genes in newly sequenced genomes
by profile alignment methods. This core set of genes can
then be used to train a general purpose gene finder. Here,
we use the CEGMA pipeline to predict the set of core
genes in S. japonicum and compare the set with genes
predicted by ExonHunter. The two methods are orthogo-
nal and can be both used with varying success in newly
sequenced species for producing high-quality initial gene
predictions, but we show that in S. japonicum genome,
ExonHunter recovers more core genes with higher accu-
racy than CEGMA.

In fact, the CEGMA core genes have been used as a
starting point within the annotation pipeline MAKER (8)
(developed in parallel with our approach), which com-
bines the ab initio gene finder SNAP (2) with cDNA and
EST alignments. Within this pipeline, a similar idea to our
iterative training is used to refine the SNAP HMM by
retraining on a small subset of predicted genes showing
high concordance with ESTs. Here, we provide a more
general methodology that can be used with a much
larger variety of extrinsic evidence, and also in scenarios
where sparse evidence supports mostly short sections of
individual genes (as is the case in S. japonicum genome).
We also demonstrate that weaker cross-species evidence
can often be enough to train a reliable gene finder using
our methods.

MATERIALS AND METHODS

ExonHunter and extrinsic evidence

ExonHunter combines a generalized HMM for gene
finding with extrinsic evidence from a variety of sources,
such as EST databases, databases of known proteins
and repeat databases (5). Briefly, extrinsic evidence is
summarized in the form of a super advisor that assigns
a probability distribution over the set of sequence labels
� to each position in the sequence; the super advisor is
meant to be independent of local sequence features. The
set of labels � represents annotation features, such as
exon, intron or intergenic region; ExonHunter uses a
richer label set that also includes reading frame, strand
and the signals at exon boundaries. Since different labels
from � occur in gene annotations with different genome
frequencies (for example, coding regions comprise only
a small portion of vertebrate genomes), we divide the
probability of each label ‘ in the super advisor by the
prior probability of the label ‘ to obtain a super advisor
score s‘. If this score is >1 (super advisor assigned a
probability to label ‘ higher than its prior), the HMM
probabilities are manipulated so that ExonHunter is
more likely to predict the label ‘ for the current DNA
base. On the other hand, if the score is <1, ExonHunter
will attempt to avoid that label at that position. Figure 2
shows an example of several sources of extrinsic evidence
and the resulting ExonHunter gene prediction.

The position-by-position probabilities of the super
advisor are obtained by a combination of multiple
advisors, each representing an individual source of
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G. gallus

S. cerevisiae

S. japonicum
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D. melanogaster

C. remanei
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Figure 1. Evolutionary distance of S. japonicum from well–annotated
species. The phylogeny was derived by maximum likelihood from a
multiple alignment of small ribosomal subunit RNAs (9) using
PHYML (10) and MUSCLE (11).
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extrinsic evidence. A given advisor may not have enough
information to specify a full probability distribution over
all labels in �. Thus, at each sequence position, the advi-
sor only gives a probability distribution over a partition of
the set of sequence labels �. For example, if a particular
position of the sequence is spanned by a protein–DNA
sequence alignment, an advisor corresponding to the pro-
tein database will assign probability P to the coding label ‘
with the matching coding frame and probability 1� P to
the set containing all other labels. The probability P is
estimated from training data and depends on the score
of the protein match. If no protein match covers the
sequence position, the advisor will make the vacuous state-
ment that the complete set of labels � has probability 1,
which does not contain any information.

To combine advisors into the super advisor, we have
previously used a method based on quadratic program-
ming (5). In this article, we use a simpler method based
on linear combination of all advisor statements. At each
position, advisors that issued vacuous statements are
removed, and the predictions of the remaining advisors
are simplified by distributing the probability assigned to
each set S of labels to individual labels s 2 S proportion-
ally to the prior probabilities of those labels. The super
advisor probability distribution is then estimated by a
linear combination of these simplified advisor predictions.
We have previously tested this method and found its per-
formance satisfactory and robust to changes of param-
eters of individual advisors (12). In the final step, the
super advisor scores are combined with the probabilistic
distribution defined by the HMM (5) and the modified
most probable annotation of the sequence is predicted
by a modified Viterbi algorithm.

Extrinsic evidence used for C. elegans. The following
databases have been used as a source of the external
evidence for C. elegans training and gene predictions:
RepeatMasker RepBase for C. elegans genome,
30 919 C. elegans ESTs from TIGR gene index
(v.9, 22 September 2004), 20 292 C. remanei ESTs down-
loaded from Genbank (2 February 2007), proteins for
selected species from SWISSPROT release 52.0 (3000
C. elegans proteins, 15 803 human proteins and 2473
Drosophila melanogaster proteins) and the Pfam database
(v.11.0).

The genomic sequences were screened for the RepBase
repeats with RepeatMasker (www.repeatmasker.org)
and the output was processed as described by Brejova
et al. (5). ESTs were first prescreened by wublast (blast.
wustl.edu), and then aligned to the genomic sequences
by sim4 (13). Proteins were aligned to the genomic
sequences by blastx (14). Finally, we have aligned protein
domain profiles from the Pfam database by rpsblast.

S. japonicum repeat library. We have used RepeatScout
(15) to identify families of repetitive sequences that occur
in S. japonicum genome. We required that each repeat
occurs in the genomic sequence at least 12 times; this
threshold was determined by examining the repeat overlap
with our library of ESTs. The resulting repeat library
contains more than 600 different sequences. We used

RepeatMasker to align the repeat sequences from the
library to the S. japonicum genome. Repeats found in
this way were then used as an advisor to lower probability
of coding regions overlapping repetitive sequences.

Extrinsic evidence used for S. japonicum. In addition to
the repeat library described above, we have used the
following sources of extrinsic evidence for S. japonicum
training and gene predictions: 86 139 unclustered
S. japonicum ESTs sequenced for S. japonicum genome
project, 40 683 ESTs from TIGR S. mansoni gene index
(release 6.0, 19 June 2006) and 126 640 unclustered ESTs
sequenced for the S. mansoni genome project, 21 772
SWISSPROT proteins from human, C. elegans, yeast
and schistosomas. We aligned these with the S. japonicum
genome in the same way as for the C. elegans data
described above. In addition, we have used PETs
described below as a source of extrinsic evidence.

Paired-End diTags and their mapping

Paired-End diTags are sequences with a mean length of
35 bp, each containing the 50 and 30 signatures of a full-
length transcript (6,16) and a collection of 307 056 distinct
PETs were obtained (unpublished data).
We mapped the PETs to the genome by using wublast.

We filtered the wublast results to include only matches
where the 50 and 30 signature had a total of at least 28
bases aligned to the same genomic contig, spanning a
region between 150 and 100 000 bases long. This resulted
in approximately 110 000 matches. More than 80% of
these PETs mapped to a unique location in the genome.
We clustered the PET-spanned regions according to their

genomic overlaps. Many PETs support the same transcript
or alternative transcripts of the same gene. In each cluster,
we chose only a single representative supported by the most
PETs with the end coordinates within 20 bp of each other.
Moreover, we required that each locus is supported by at
least two PETs having a unique match in the genome, or at
least six PETs mapping to multiple locations. The resulting
set contains 4746 loci, out of which 4336 are supported by
uniquely matching PETs. In some ExonHunter predic-
tions, we have used a simpler mapping pipeline, which
did not determine global uniqueness of PETs. However,
such variations in PET mapping did not significantly
affect ExonHunter predictions.

Full-length cDNA S. japonicum testing set

Of the full-length cDNAs 17 186 (unpublished data) were
sequenced for the purpose of the S. japonicum genome
project. We have mapped all cDNAs longer than 300 bp
to the genome using blat (17), requiring 95% coverage at
95% sequence identity. This has resulted in 23 305 align-
ments of 10 989 cDNAs. We have further checked these
alignments for canonical splice sites, and in each align-
ment we have located the longest open reading frame
with length of at least 300 nt. Finally, out of the 5584
resulting alignments (not necessarily nonredundant), we
have selected 951 nonoverlapping transcripts that cover
the largest amount of the DNA sequence. These sequences
represent a high-quality testing set of transcripts. In this
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article, we have decided not to evaluate the effects of alter-
native splicing, thus our testing set contains only a single
transcript per gene.
The above pipeline for mapping the testing set is

designed with a set of sequence analysis tools that is dis-
tinct from those that we used to map ESTs to the genome.
In this way, we are looking to avoid potential bias in
evaluation.

RESULTS

Iterative training with extrinsic evidence

A gene finder can be trained by an iterative process, where
instead of the training set one uses the predictions pro-
duced with a previous iteration of the parameters. This
method is also called Viterbi training, and while it is not
guaranteed to converge to the set of parameters maximiz-
ing the likelihood of the data, it has been shown to pro-
duce reasonable performance in gene finding (2,3). We
have developed a new iterative technique that takes into
account extrinsic evidence, such as protein homology or
ESTs. We explain the method in the context of our gene
finder ExonHunter (6), though we note that it is applicable
more generally.
Gene predictions supported by extrinsic evidence are

typically much more accurate and therefore they are
more suitable as a training set for a gene finder than
unsupported ab initio predictions. To train our gene
finder, we use an iterative method similar to Viterbi train-
ing. However, in each iteration, we use the super advisor
(see Materials and methods section) to identify fragments
of gene predictions that are well supported by extrinsic
evidence, and we only use these as a training set for the
next iteration.
To identify supported fragments, we classify each posi-

tion as supported, in conflict or unknown. Labels at sup-
ported positions agree with available extrinsic evidence,
which is reflected in their high super advisor probability.
In particular, a position is supported, if its predicted label
has the highest score among all labels at that position, and
the score is above certain threshold (we use 1.01). Position
is in conflict if some other label is supported at that posi-
tion. We classify a predicted exon or intron as supported,
if at least half of its bases are supported and no base is in
conflict. An exon or intron is in conflict if at least one base
is in conflict. For training purposes, we use this classifica-
tion to select the fragments of our predictions that are best
supported by extrinsic evidence. In particular, we select all
supported exons and combine them into longer chains, if
they are connected by introns that are not in conflict. Each
such chain is used as a separate, potentially incomplete
transcript in the filtered training set. An example of the
supported fragments is shown in Figure 2.
We use only the supported fragments to estimate all

parameters of the HMM, except for intergenic lengths
whose distribution is estimated from the complete unfil-
tered predictions. Unfiltered predictions are also used to
train prior distribution of super advisor and all other
parameters for super advisor framework. Using the

fragments would lead to underestimation of prior prob-
abilities of coding regions and introns.

To validate our approach, we tested several variants
of our iterative training approach on well annotated
C. elegans genome. We used 38Mb portion of the
genome for training and additional 6Mb for testing. As
a baseline, we trained ExonHunter on curated WormBase
genes overlapping the training sequence. Then we used
ExonHunter to predict genes in the testing sequence
ab initio (using only sequence repeat information), with
cross-species evidence (using C. remanei ESTs and
Swissprot proteins from species other than C. elegans s
extrinsic evidence) and all evidence (using all of the
above, as well as C. elegans ESTs and proteins). We
measured exon and gene sensitivity by comparing these
predictions to curated WormBase genes overlapping
the testing set (see Figure 3 and Supplementary Table
S1). We can see that the accuracy of gene finding improves
as we increase the amount of extrinsic evidence. Ideally,
we would be able to achieve similar levels of sensitivity
by our iterative method without using the curated genes
for training.

To verify this claim, we started with ExonHunter
parameters as trained on the human genome (using
RefSeq genes) and improved the parameters iteratively,
measuring sensitivity at each iteration (iteration 0 repre-
sents the predictions with the original human genome
parameters). We evaluated several variants of iterative
training, and the results are shown in Figure 3.

First, we have considered simple Viterbi training. We
used ExonHunter in ab initio mode and used unfiltered
predictions to estimate parameters for the next iteration.
This strategy does not reach accuracy comparable to
ab initio ExonHunter trained on the curated genes, even
after three iterations. However, we can see that this is not
an issue specific to the ExonHunter design, since similar or
worse accuracy is achieved by Viterbi training of SNAP
(2) and GeneMark.HMM (3) (Table 1).

On the other hand, our new iterative training strategy
allows us to use all available evidence, both in predictions
and in selection of supported fragments for further itera-
tions. With this change, we achieve almost the same

0 5000 10000 15000

Training fragments

ExonHunter prediction

Super-advisor score (coding)

S.man. ESTs

S.jap. ESTs

Proteins & domains

Repeats

Figure 2. Selection of supported gene fragments. ExonHunter inte-
grates several sources of extrinsic evidence (such as sequence repeats,
known proteins, ESTs and PETs). The figure shows an example of
alignments of individual sources to genomic sequence at a particular
locus. This information is combined into the super advisor (super advi-
sor score for coding regions is shown). The same super advisor scores
are used to aid in gene prediction, and to identify supported fragments
of the gene for training.
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accuracy as with curated training data set, already after
the first iteration (Figure 3). This improvement is not
explained simply by added evidence in prediction step on
the testing set; we have also improved underlying HMM
parameters, since ab initio version of ExonHunter with
these parameters shows significant improvement com-
pared to Viterbi-trained ExonHunter (at the gene level),
SNAP and GeneMark.HMM (Table 1). Moreover,
adding evidence only in the prediction step to the model
trained by the ab initio iterative training also yields lower
prediction accuracy, especially on the gene level
(Supplementary Table S3).

Extrinsic evidence for C. elegans includes a rich set
of C. elegans proteins and ESTs, which greatly simplifies
the task of gene prediction. In a newly sequenced genome,
we do not expect to have such strong sources of extrin-
sic evidence. Therefore, we have also evaluated the itera-
tive training using only cross-species evidence, excluding
C. elegans ESTs and proteins. Compared to ab initio pre-
dictions, ExonHunter trained on curated genes performs

only slightly better. However, even weak evidence leads to
considerable improvement in iterative training, particu-
larly at the gene level. In this setting, we also see the great-
est advantage of using the supported fragments for
training compared to an unfiltered set.

PETs as extrinsic evidence

One of the hardest problems in gene finding is to correctly
identify the boundaries of genes. Computationally, the
effort to resolve this problem has concentrated on sophis-
ticated models for identification of translation start sites
(18), 50 untranslated region model improvements (19) and
attempts at accurate identification of transcriptions
start site (20,21). Here, we present a different approach
by employing PETs (7), experimental evidence that can
be obtained at high throughput and at low cost.
PETs are pairs of 14–21 bp sequence tags extracted from

both ends of an mRNA transcript. To achieve high-
throughput identification of PETs, they are ligated to
form larger concatemers. Sequencing of each concatamer
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Figure 3. Evaluation of iterative training on C. elegans (gene and exon sensitivity). Each line in the plots is annotated with the method used for
training and the level of extrinsic evidence used for both training and testing. Using supported gene fragments helps iterative training to achieve the
performance close to the training on a curated training set. The filtering step is important especially when working with weak extrinsic evidence.
Specificity comparison leads to the same conclusion, see Supplementary Data. In all experiments on C. elegans, ExonHunter under-predicted the
number of genes, as can be seen by comparison of gene sensitivities and specificities in Supplementary Table S1.

Table 1. Accuracy of ab initio gene finders using different supervised and unsupervised training strategies on a portion of the C. elegans genome

Gene (%) Exon (%) Int. exon (%) Nucleotide (%)

sn sp sn sp sn sp sn sp

Iterative training without filtering
ExonHunter (3 iter.) 17 23 72 72 84 75 94 93
SNAP (3 iter.) 8 5 63 45 74 50 89 81
GeneMark HMM ES 20 23 70 73 81 78 94 91

Iterative training, filtering by extrinsic evidence
ExonHunter (3 iter.) 24 28 73 72 84 75 94 91

Traditional training with training set
ExonHunter 23 30 76 74 87 76 95 92
SNAP 21 17 70 70 78 75 92 92

Among methods using unsupervised iterative training, ExonHunter and GeneMark perform at similar levels of sensitivity and specificity. Using
extrinsic evidence and filtering in iterative training (the new feature introduced in this article) improves performance of ab initio gene finding mainly
on gene level; the performance approaches that of supervised training with curated training sets. Sensitivity (sn) is a percentage of annotated features
correctly predicted by each method. Specificity (sp) is a percentage of predictions that are true positives. Internal coding exon (int. exon) sensitivity
and specificity excludes first and last coding exons which are typically annotated less accurately.
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clone can identify 30 or more PETs. For the purpose of
the S. japonicum project, 688 210 PETs were sequenced,
yielding 307 056 distinct tags with average multiplicity of
2.2. Mapping of the PETs to the current S. japonicum
assembly yielded 4735 clusters of PETs, with average
span of 10 193 bp (see Materials and methods section).
A typical relationship of a PET and a gene structure is

shown in Figure 4. We have compared our set of 4735
PETs to a set of 957 genes supported by full-length
cDNA transcripts (see Materials and methods section).
Out of 812 PETs that intersect at least one full-length
cDNA transcript, 622 (76%) match both transcript ends
within 100 bp tolerance and 512 (63%) within stricter
30 bp tolerance. The PETs cover 65% of the genes in the
full-length cDNA set (54% with 30 bp tolerance),
although we expect that the overall genome coverage
will be lower, since both cDNA sequencing and PET
sequencing is biased toward genes with high expression.
Mapping of PETs to the genome provides two kinds of

extrinsic information for gene finding. First, the tags map
to gene boundaries and so they should be adjacent to an
intergenic region. In ExonHunter, we use this information
by elevating the probability of the intergenic region label
within short regions outside both tags in a mapped PET
(extending for 150 bp starting at 10 bp outside of identified
tags). Additionally, a typical PET spans the full extent
of a transcript, and so the region between two paired
tags should contain exactly one gene. To include this
information in ExonHunter, we would need to increase
the probability of all labels except intergenic over the
whole extent of the gene. In preliminary experiments,
this led to undesirable artifacts in predicted gene struc-
tures, so we have not used this feature in this article.
Thus, our current use of PETs discourages ExonHunter
to extend a gene beyond boundaries determined by the
PET, but ExonHunter can still predict multiple genes or
no gene at all in that region.
The use of PETs slightly improves exon sensitivity and

specificity of ExonHunter (roughly by 1%); however, it
increases the number of completely correctly predicted
genes in our full-length cDNA set from 325 to 361

(roughly by 4%). Figure 4 shows how an ExonHunter
prediction can change by using the PETs.

Another simple use of PETs is to cut out the portion of
the genome between the two tags and running a gene
finder on such sequence fragments. ExonHunter, as well
as many other HMM-based gene finders, can be easily
modified so that it predicts at most one gene in a given
sequence. We have used this mode to predict genes in
some of the PETs that did not overlap any predictions.

S. japonicum gene predictions and evaluation

To predict protein-coding genes in the newly sequenced
S. japonicum genome, we have applied two iterations of
the training strategy described above, starting from
ExonHunter parameter set estimated from the C. elegans
curated gene set. We have used ESTs from S. japonicum
and S. mansoni, homology to Swissprot proteins (human,
C. elegans, S. cerevisiae and Schistosomas), Pfam domains,
PETs and a custom sequence repeat library (see Materials
and methods section) as the extrinsic evidence.

In each of the two iterations, we have run ExonHunter
on the draft of S. japonicum genomic sequence. The final
predictions were produced by running ExonHunter with
all extrinsic evidence and applying a simple postproces-
sing, where we filtered out predictions with significantly
conflicting external evidence and those that were very
short. After the filtering, we were left with 16 687 predicted
genes.

To evaluate the quality of our predictions, we have
assembled a set of 951 nonoverlapping full-length
cDNAs with 3860 coding exons, sequenced as part of
the S. japonicum genome project (see Materials and
methods section). These cDNAs were excluded from our
extrinsic evidence so they did not affect our predictions
directly. However, the cDNAs may partially overlap
independently obtained ESTs used as extrinsic evidence.

The predicted coding regions have a median length of
651 bp and median number of exons 3. This is comparable
to the cDNA-testing set with a median coding length
657 bp and median number of exons 4. Table 2 shows a
comparison of the predictions overlapping the testing set
and the gene structures based on the full-length cDNAs.
ExonHunter predicts 75% of the exons in our cDNA set
correctly. The fraction grows to 85% when we consider
only internal exons. Start and stop codons are harder to
predict than splice sites, and at the same time their anno-
tation in our cDNA set is less reliable. More than a third
of the cDNA genes are predicted completely correctly. We
have also evaluated specificity by considering all predicted
exons that are located at most 100 bp beyond a testing
gene boundary. Roughly 66% of them coincide exactly
with a cDNA exon. As we see in the table, the prediction
accuracy has increased substantially after the first iteration
of the training, but no further accuracy gain was achieved
by the second iteration.

The genes predicted by ExonHunter were further
curated, resulting in a set of 12 657 genes (unpublished
data) that were used for further S. japonicum genome ana-
lysis. Table 2 shows that the curation process further
increased specificity of the predictions.

0 1000 2000 3000 4000

ExonHunter without PETs
ExonHunter with PETs

Full-length cDNA

Super-advisor score (coding)

S.man. ESTs

S.jap. ESTs

Proteins & domains

PET
Repeats

Figure 4. Influence of PETs on ExonHunter predictions. The PET
mapped to the genome sequence correctly identifies the extent of the
transcript supported by full-length cDNA (the transcript includes
untranslated regions shown as shaded areas). The prediction of
ExonHunter without PETs incorrectly identifies start of the gene and
adds two spurious exons to the transcript. Using PETs not only helps
to identify the start site, but also corrects the reading frame of the first
exon and acceptor site of the second exon.
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Note that the genes in the full-length cDNA set are
more likely to be represented in the EST set due to the
same sampling bias toward highly expressed genes, and
therefore the prediction accuracy on this small evaluation
set is likely higher than the overall genome average.
Indeed, 78% of gene predictions overlapping the full-
length cDNAs have at least half of their coding positions
supported by the evidence, whereas only 44% of all pre-
dicted genes achieve this level of support.

One advantage of ExonHunter is its ability to seam-
lessly combine evidence from multiple sources. Figure 5
shows an example of a gene supported by ESTs on both
ends, whereas the middle part is supported by S. mansoni
ESTs and a Swissprot match. A PET delineating gene
boundaries was also used as evidence.

We have also compared the ExonHunter predictions to
the core gene set identified by CEGMA (7). CEGMA is
designed to find genes in a newly sequenced organism
based on profiles of 458 eukaryotic conserved ortholog-
ous groups (KOGs) (22) that are well-conserved over
a variety of six eukaryotic species (human, Drosophila,
Arabidopsis, C. elegans, S. cerevisiae and S. pombe).
These genes can serve as a training set and as an indica-
tion of genome completeness. By running CEGMA on
S. japonicum genome, we have obtained 264 core gene
predictions. The CEGMA core genes overlap 70 cDNAs
in our testing set, giving us an opportunity to compare the
quality of the CEGMA core genes and ExonHunter
predictions (all of these cDNAs also overlap an
ExonHunter prediction). ExonHunter achieves higher
prediction accuracy than CEGMA (Table 3), although
due to the small size of the testing set, the improvement
is not statistically significant (gene level sensitivity,
P=0.08, sign test). We have observed that ExonHunter
predictions seem to be more accurate on transcript
ends. Figure 5 shows an example where ExonHunter
predicted extension is supported by protein evidence (i.e.
is likely coding), and the resulting protein matches the
CEGMA protein profile better than the corresponding
CEGMA core gene.

Only 264 CEGMA core genes (out of possible 458
KOGs) were found in S. japonicum. This number is
lower than in the other species tested by Parra et al. (7);
the smallest number of core genes (�300) was predicted

in the protozoan parasite Toxoplasma gondii, while in each
of the other three eukaryotic species tested (Anopheles
gambiae, Ciona intestinalis and Chlamydomonas
reinhardtii), CEGMA predicted more than 400 core
genes. The low number of genes found in S. japonicum
can be either due to fragmented sequence assembly,
large divergence from the species represented in the pro-
files, atypical gene loss or errors in the CEGMA predic-
tions. Indeed, Parra et al. (7) ascribe the low number of
core genes in T. gondii to the large divergence from the
other reference genomes.
By running CEGMA’s final filtering step on the

ExonHunter predictions instead of the predictions pro-
duced by the CEGMA pipeline, we were able to predict
core genes for 59 additional KOGs. Therefore, we con-
clude that the CEGMA pipeline misses some genes due
to gene prediction errors. In contrast, we have found only
six genes predicted by CEGMA that either did not occur
among ExonHunter predictions, or the corresponding
ExonHunter prediction did not match the KOG profile
sufficiently to pass the filter. The total number of core
genes discovered either by ExonHunter or the CEGMA
pipeline is 323 (which is an increase of 22% compared to
the CEGMA core genes).

Table 2. Accuracy of ExonHunter iterative training on S. japonicum

Iteration Gene (%) Exon (%) Int. exon (%) Nucleotide (%)

sn sp sn sp sn sp sn sp

0 31 28 71 56 80 56 92 80
1 38 35 75 66 85 68 93 85
2 38 35 75 66 85 68 93 85
Curated 40 40 73 70 82 72 91 86

We compare our gene predictions to a set of 951 full-length cDNAs. The accuracy improves in the first training iteration and remains level
afterwards. Selected ExonHunter predictions were included in a human-curated annotation which has somewhat higher accuracy than raw
ExonHunter results. Sensitivity (sn) is the percentage of annotated features correctly predicted by each method. Specificity (sp) is the percentage
of predictions that are true positives. Specificity is computed by considering only gene predictions that overlap the loci covered by the cDNA
sequences and their flanking regions (see the text for more details).

0 1000 2000 3000 4000 5000

Full-length cDNA

CEGMA

ExonHunter

Super-advisor score (coding)

S.man. ESTs

S.jap. ESTs

Proteins & domains

PET

Sequence repeats

Figure 5. CEGMA and ExonHunter predictions of vacuolar proton
pump subunit C homolog. ExonHunter combines evidence from
S. japonicum and S. mansoni ESTs, as well as SWISSPROT protein
to predict the gene structure. The ExonHunter prediction of this gene
is of better quality than the core gene predicted by the CEGMA
pipeline.
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DISCUSSION

With the arrival of rapid low-cost sequencing technologies
(23), we face the imminent challenge of analyzing increased
number of previously uncharted genomes. Producing high-
quality gene annotations of both well-characterized and
novel protein-coding genes is one of the first steps required
for such analysis. Since the characteristics of protein-
coding genes vary between species, most gene-finding
techniques require a high-quality curated training set of
several hundred genes, before the parameters of a gene
finder can be trained for a particular genome.
In this article, we proposed a new technique that does

not rely on such large training sets. Instead, we use extrin-
sic evidence, together with an iterative training method, to
replace the training set. This way, we can produce high-
quality gene annotations by an automated process in early
stages of the genome project. Using our techniques, we
have produced initial gene annotations for S. japonicum
genome, and we found those predictions to be of high
quality by comparison to full-length cDNA sequences
produced in later stages of the project.
Earlier work (2,3) concentrated on similar iterative

methods for training ab initio gene finders. However,
gene finders incorporating additional evidence, including
ESTs and protein databases, have been previously shown
to produce superior gene predictions (4). By introducing
this additional evidence to both the iterative training
providing more reliable training sets, and the final gene
prediction step, we have achieved significantly higher
accuracy of the final predictions.
Using large amounts of data is essential in training

more complex models of splice sites and other sequence
elements (24). For example, instead of iterative training,
one option is to train S. japonicum gene finders on a
portion of the 951 full-length cDNA set now available.
Even though this set is already larger than many training
sets used in gene finding, it only contains 3860 coding
exons, whereas we were able to identify approximately
33 000 supported exons in each iteration of our training
method. Use of this larger number of exons for training
may allow for far more richly parametrized models.
While ESTs and protein databases are commonly used

as a source of information in gene prediction, PETs have
not been used in gene prediction yet. PETs can be
obtained by a low-cost high-throughput protocol and
can provide essential information about the boundaries
of individual transcripts and alternative starts and ends

of transcribed regions. Even with our simple approach
of incorporating PETs as a source of evidence, we
achieved modest improvements in accuracy. Perhaps an
even greater improvement could be achieved by methods
for evidence combination that could use PETs more fully.
PETs indicate only the extent of a transcript and need to
be combined with other sources of information to specify
the full exon–intron structure of the gene. At the same
time, they introduce long-range dependencies over the
whole extent of a gene, whereas gene finders typically con-
sider evidence independently for every position, as in
ExonHunter (5), or for every exon and intron, as in
Augustus (25) and Jigsaw (26). Therefore, development
of methods capable of using incomplete information span-
ning whole genes or even larger regions remains a
challenge.
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Table 3. Accuracy of CEGMA and ExonHunter compared to a set of 70 full-length cDNAs

Iteration Gene (%) Exon (%) Int. exon (%) Nucleotide (%)

sn sp sn sp sn sp sn sp

ExonHunter 64 61 88 84 92 87 99 96
CEGMA 53 52 80 82 81 83 94 95

Sensitivity (sn) is a percentage of annotated features correctly predicted by each method. Specificity (sp) is a percentage of predictions that are true
positives. CEGMA core gene predictions only overlap 70 full-length cDNAs; we are comparing the quality of ExonHunter and CEGMA predictions
on this set. To evaluate specificity of ExonHunter, we have only considered gene predictions that overlap the loci covered by these cDNA sequences
and their flanking regions (see the text for more details).
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