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Title: Software for Annotation of Protein Coding Genes

in Yeast Mitochondrial Genomes

University: Comenius University in Bratislava

Faculty: Faculty of Mathematics, Physics and Informatics

Departement: Departement of Computer Science

Supervisor: Mgr. Broňa Brejová, PhD.
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In this thesis we present a software tool for automated computational prediction of

protein coding genes in yeast mitochondrial genomes. Our tool is based on conditional

random fields (CRFs).

To produce an accurate annotation, our tool combines information from several

different sources. We use Exonerate to align reference proteins extracted from model

organisms to the genome being annotated. We also use RNAWeasel to predict the

positions of introns based on their characteristic structural motifs. Finally, we use

multiple alignment of mitochondrial genomic sequences from several yeast species to

look for evolutionary signatures typical for protein-coding regions. These three sources

of information as well as the studied nucleotide sequence form a set of observations

used in our CRF model to predict positions of exons and introns.

We have tested our tool on genes from 33 mitochondrial genomes. Currently, we

predict 78% of genes and 70% of exons perfectly. In future we plan to make our tool

available and easy to use for the life science community.

Keywords: gene finding, mitochondrial genomes, conditional random fields, external

sources of evidence
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Introduction

Cellular and genetic mechanisms are very complex and most of them have not been

fully explained yet. However, there has been a great progress in recent years. Every

year a database of annotated genes grows larger and new applications of genetic engi-

neering are being discovered. This has a huge impact on quality of our everyday life.

Genetically modified organisms and food became an answer to many problems. The

understanding of processes inside cells help us with the fight against deadly diseases

like cancer.

Proteins are encoded in DNA by segments called genes. A gene generally consists

of two types of segments: exons and introns. Introns are non-coding parts of genes

that need to be removed before the process of translation to protein can start. Coding

segments, that are left after the removal of introns, are called exons. The problem of

gene finding is to identify exons and introns in a DNA sequence. It is important to

know the exact positions of exons in a gene because even a little change in a protein

structure may lead to a significant change of its function.

The main aim of this work is to create a program for identifying exact gene structures

in mitochondrial DNA based on a recently developed type of probabilistic models called

conditional random fields (CRFs). One of the advantages of this model is the power

to easily incorporate an external evidence such as output from intron identification

algorithms. This would be problematic in a more traditional hidden Markov model

approach. Size of mitochondrial DNA is much smaller than the size of the DNA

sequence inside nucleus. This enables more computationally expensive strategies to

take place.

In the past, the restricted number of genomic sequences available has limited com-

parative analysis and the development of more-sophisticated gene finding tools which

require sufficient training data. But the situation has changed. Currently there are

many phylogenetically related and relatively well-annotated sequences, but the need for

effective gene finding algorithms remains. Large numbers of phylogenetically related

sequences have opened new possibilities of incorporating evolutionary signatures into

current methods of gene finding.
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Chapter 1

Biological terms

This chapter explains the main principles of protein synthesis in living cells and

points out characteristics of cell and gene structures that are relevant to this work.

More concretely we describe the structure and functions of subcellular organelles called

mitochondria and characteristics of introns - special sequences that are located between

protein coding regions of DNA.

1.1 Genes and protein synthesis

A gene is a region of a genomic DNA sequence, which encodes one or possibly several

proteins. DNA consists of four different molecules: adenine (A), cytosine (C), guanine

(G) and thymine (T). Proteins are synthesized from the DNA template by a complex

molecular machinery consisting of RNA and protein molecules. RNA is another type of

a molecule that stores information. RNA consists of adenine (A), cytosine (C), guanine

(G) and uracil (U) molecules.

1.1.1 Protein synthesis

Protein synthesis is done in three phases (see Figure 1.1):

1. transcription,

2. splicing,

3. translation.

In the transcription phase the two-stranded DNA double helix is unwound and one

strand of DNA molecule is copied into a complementary preliminary messenger RNA

2



CHAPTER 1. BIOLOGICAL TERMS 3

(pre-mRNA) by the protein complex RNA polymerase II.

Splicing removes some portions of the pre-mRNA, called introns; the remaining

parts, called exons, are then joined together. Exons are therefore the part of a gene

that code for proteins. The result of splicing is a mature mRNA molecule. Many

eukaryotic genes are known to have different alternative splice variants, i.e., the same

pre-mRNA producing different mRNAs.

And finally translation is the process of producing proteins according to the mRNA

template. The mRNA sequences can be split up into a sequence of triplets called

codons. Each codon codes for one amino acid. Because there are 64 possible codons and

only 20 amino acids, some amino acids are encoded by several different codons. During

translation, each codon is recognized by a specific transfer RNA (tRNA) molecule.

Each tRNA molecule carries one amino acid which is added to the growing protein.

The translation is terminated when a special stop codon is reached [8].

Protein is therefore a sequence of amino acids. Individual amino acids of the protein

create molecular bonds which cause protein molecule to fold into a specific 3D structure.

This 3D structure plays the key role in determining the function of a protein.

To sum it up, a genome is a sequence of alternating intergenic regions and genes,

where each gene consists of alternating exonic and intronic segments. The first and the

last segment of a gene needs to be an exon.

Figure 1.1: Schematic view of protein synthesis. Blue regions are exons, yellow regions

introns and white are intergenic regions.
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1.1.2 Gene homology

Genes in different species are called homologous if they share the same ancestor. The

differences between the homologous genes are a consequence of the mutations that

happened over a long time period. If a group of organisms of the same kind is separated

from the rest and isolated for a long period of time, it will eventually evolve into a

new species. This is because the mutations happen independently between individual

isolated groups. When a species diverges into two separate species, the divergent

versions of a single gene in the resulting species are said to be orthologous or orthologs.

Genes can be also copied within the same genome. This process can speed up their

evolution and back-up their functionality. These copies of a gene that occupy different

positions in the genome are called paralogous or paralogs. Both orthologs and paralogs

are homologs because they ultimately arose from a single gene either by speciation

or by gene duplication. Homologous genes usually have the same or a very similar

function because they share the same ancestor. For the same reason, they usually

have a similar DNA sequence, and therefore homology between individual genes can

be indentified by alignment algorithms (see Section 2.6).

1.2 Mitochondria

Mitochondria are subcellular organelles of eukaryotic organisms. They play an im-

portant role in the cell because they generate most of the cell’s supply of adenosine

triphosphate, which provides energy for many cellular processes. They also participate

in other processes like aging by interacting with nuclear genes.

Mitochondria are thought to be descendants of bacteria engulfed by an eukaryotic

cell and they contain their own genomes as well as systems for transcription, splicing

and translation that are separate from those of the cytoplasm. Yeast mitochondrial

genomes that we study in this work are circular and contain the same set of approx-

imately 39 genes, encoding 14 proteins, 2 rRNAs, and around 23 tRNAs that can be

distributed on both strands (see Figure 1.2). They are small, usually about 30 kb in

size, therefore contain only a small number of introns.

Whole mitochondrial genomes are used as a powerful source of information for recon-

structing phylogenetic trees, although mitochondrial sequences generally evolve more

rapidly than nuclear sequences. Rapidly evolving portions of noncoding DNA are used

for forensic identification and addressing population structure [7].
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Figure 1.2: Protein coding genes of the mitochondrial genome of yeast Candida or-

thopsilosis. Two of the 14 genes have an intron. The image was created by software

Circos [22].

1.3 Mitochondrial introns

Introns can be divided into four main types considering their splicing mechanism:

spliceosomal introns, nuclear and archaeal tRNA introns, group I introns and finally

group II introns [23]. Group I and group II introns are the only types that are present

in mitochondria. They are characterized by their distinct, conserved RNA secondary

structure. RNA secondary structure is a scheme, by which we can describe what

molecules in the RNA sequence form a chemical bond (see Figure 1.3). Intron distri-

bution is highly uneven among different types of species. For example, group I introns

are abundant in fungal mitochondrial genes, but they are absent from most animal and

protist mitochondrial genomes. Group II introns are common only in plant mitochon-

drial genomes, in which they are the predominant intron type. They are rare in the

other genome types [23].
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1.3.1 Characteristics of group I introns

Size of group I introns can differ from 68 to 3000 nucleotides but most are over 400

nucleotides long. Not all parts of the secondary structure are present in all group I

introns. Splicing typically begins with a U that is paired with a G (see Figure 1.3).

Splicing can rarely start with bases A or C. The last base is usually a G or in rare cases

an A. Group I introns are able to propagate themselves in the genome. The DNA of

some group I introns encodes a protein that can copy the intron elsewhere in a genome

[5].

Figure 1.3: Secondary structure of group I intron. Splicing typically begins with a U

that is paired with a G. The last base is usually a G. The more rare cases are shown

in grey color. The splice sites are indicated by an arrow. P3 and P7 form a structure

that is called a pseudoknot. (figure from reference [23])

1.3.2 Characteristics of group II introns

Group II introns are not very frequent. Their size can differ from 400 to 3400 nucleotids

[6]. All group I introns have well defined secondary structure and fold into a specific

3D structure. Group II introns can be identified by domain V, which is the most

distinctive and best-recognized secondary structure element of group II introns [23].
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Splicing typically begins with a sequence GUGYG and ends with a sequence AY,

where Y refers to bases C or T (see Figure 1.4). Some group II introns are mobile, but

the mechanism by which they propagate differs from that of group I introns [23].

Figure 1.4: Secondary structure of group II intron. Splicing typically begins with a

sequence GUGYG and ends with a sequence AY, where Y refers to bases C or T. The

most distinctive element is domain V. (figure from reference [6])



Chapter 2

Models and algorithms

Our tool uses several existing tools for biological sequence analysis. This chapter

gives a brief perspective on algorithms and models underlying these tools. In particular

many of these tools are based on a class of probabilistic models called hidden Markov

models (HMM). We will also use conditional random fields (CRF), a related class of

models achieving better classification accuracy.

2.1 Hidden Markov models

Hidden Markov models are used for modeling sequence data in bioinformatics as well

as other areas (natural language processing, speech recognition, etc.). In this section

we will introduce them specifically in the context of gene finding.

Protein-coding genes consist of exons and introns as described in chapter 1. Differ-

ences between these elements can be manifested in many ways. For example at the

nucleotide level bases G and C are more frequent in exonic regions than in intronic

regions. We can also characterize gene structure itself. For example, the last exon of a

gene has to be followed by a stop codon: a special sequence of three nucleotides that

terminates the transcription process. Stop codon is then followed by an intergenic se-

quence. Nuclear genes usually contain many introns, and therefore it is more probable

that a given exon will be followed by an intron than a stop codon.

HMMs can represent both the elements of a gene structure and the associated nu-

cleotide sequence. Gene structure is described in an HMM by a probabilistic finite

state automata. In context of our example, the states with their transition probabil-

ities represent the structural elements such as exon, intron, intergenic sequence or a

stop codon. For example the exon state most probably transitions to itself, because

exons usually contain hundreds of nucleotides, but never transitions to the intergenic

8
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state because only a stop codon state may transtition to the intergenic state. Upon

transitioning to a state, the automata emits a symbol based on a probabilities assigned

to this state. These probabilities are called emission probabilities. In our example, the

emitted symbols represent nucleotides. The fact that bases G a C are more frequent

in exons is taken into account in the emission probabilities of the states.

Each run of an HMM generates two sequences: a sequence of states and a sequence

of emitted symbols. In gene finding, we are usually given the DNA sequence but we

do not know which nucleotides belong to exons or introns. If we assume that this

nucleotide sequence was generated from a model that is very similar to our HMM, we

can use the HMM and ask different questions about the gene structure of our DNA

sequence. For example, we can compute the most probable sequence of states, that

generated our DNA sequence or the most probable state at a specific position of our

sequence. The answers to these questions provide an information about the probable

intronic and exonic regions and may be very close to the reality.

Because HMMs are basically finite state automata, the important algorithms run in

linear time. HMMs have also some limitations that are a consequence of their design.

Gene structures that have a more complicated secondary structure such as group I and

II introns cannot be modelled by HMMs. A more complex models such as stochastic

context-free grammars can be applied to identify such elements but at a cost of at least

cubic time complexity. However in gene finding the studied sequences are usually very

large and even quadratic algorithms are too slow.

We will now define HMMs more formally. An HMM is a probabilistic generative

model that models joint probabilities of two sequences: a sequence of states S and

a sequence of observations X. The random variables representing the ith symbols of

sequences S and X are denoted Si and Xi respectively. The probability of a state in

the state sequence depends only on the previous state. More formally

P (Sn = sn|Sn−1 = sn−1, Sn−2 = sn−2, ..., S1 = s1) = P (Sn = sn|Sn−1 = sn−1). (2.1)

Each state is given a set of transition probabilities. The probability of a state k

transitioning to a state l is denoted by Tk,l.

Tk,l = P (Si = l|Si−1 = k). (2.2)

Additionally each state is assigned a probability Tk of starting the state sequence

S. Finally, each state is associated with a set of emission probabilities ek(b) for each

symbol b, that tell us what is a chance of seeing a symbol b when in state k. More
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formally:

ek(b) = P (Xi = b|Si = k). (2.3)

The previous parameters give a complete description of an HMM.

The probability of an HMM emitting a sequence of observations X from a sequence

of states S (both of length N) can be written as:

P (X, S) = TS1
eS1

(X1)

N
∏

i=2

TSi−1,Si
eSi

(Xi). (2.4)

The most probable path S∗ for a sequence of observations X

S∗ = argmax
S

P (X, S) (2.5)

is usually the main question that we ask in gene prediction with an HMM, because

we are usually interested in the most probable positions of introns and exons. The

most probable path can be calculated by the Viterbi algorithm [12]. This algorithm

is based on dynamic programming. Let vk(i) be the probability of the most probable

path ending in state k at position i of the observation sequence. If we have these

probabilities for all the states at position i, we can calculate them for the states at the

next position by the following formula

vl(i + 1) = el(Xi+1) max
k

(vk(i)Tk,l). (2.6)

The algorithm fills in a table with M rows and N columns from left to right, where M

is the number of states and N is the length of X. Each row corresponds to one state.

The leftmost column contains values vl(1) that can be directly calculated as el(1)Tl.

The algorithm simultaneously fills in a second table with the same number of rows and

N − 1 columns. Its ith column contains values argmaxk(vk(i + 1)Tk,l) that represent

the pointers to the states from which the values of the first table were calculated. The

most probable path can be obtained by following the backpointers in the second table

starting at the row which has the highest value in the rightmost column of the first

table. The time complexity of the Viterbi algorithm is O(M2N) because each cell of

the table takes O(M) time to be filled.

Calculating a probability of a given sequence can be done by the forward algorithm.

We can get the forward algorithm from the Viterbi by simply replacing maximizations

with sums. Let fk(i) be the probability of the observed sequence X1...Xi where the
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last symbol of this sequence is was emitted from state k:

fk(i) = P (X1...Xi, Si = k). (2.7)

Then the corresponding equation is

fl(i + 1) = el(Xi+1)
∑

k

(fk(i)Tk,l). (2.8)

The algorithm works similarly as the Viterbi but does not use the second table. The

leftmost column contains values fl(1) that can be directly calculated as el(1)Tl. The

probability P (X) can be calculated by summing the rightmost column of the table:

P (X) =
∑

k

fk(N). (2.9)

The time complexity of the forward algorithm is O(M2N).

Finally, we can also compute the probability that the observation Xi of the sequence

was emitted by a state k, i.e., P (Si = k|X). It is particularly useful when many paths

have a similar probability as the most probable path. We can then ask what is the most

probable state at each position and create a path from the answers. This problem can

be solved by using a combination of the forward and backward algorithms. Probability

P (Si = k|X) can be written as

P (X, Si = k) = P (X1...Xi, Si = k)P (Xi+1...XN , Si = k), (2.10)

where N is the length of the sequence X. The first factor is the forward probability

fk(i) and we will denote the second term bk(i):

bk(i) = P (Xi+1...XN , Si = k). (2.11)

The recursion equation for computing the backward probabilities is

bk(i) =
∑

l

Tk,lel(Xi+1)bl(i + 1). (2.12)

Finally the desired posterior probabilities can be obtained by formula

P (Si = k|X) =
fk(i)bk(i)

P (X)
, (2.13)

where fk(i) and P (X) can be calculated by the forward algorithm and bk(i) by the
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backward algorithm. The time complexity of the backward algorithm is O(M2N), and

therefore calculating P (Si = k|X) has the same time complexity [12].

2.2 Generalized hidden Markov models

Although HMMs allow us to capture many aspects of gene structure, they have also

limitations. For example it is not easily possible to incorporate arbitrary probability

distribution of individual segments, such as exons into the model. We can in principle

model state length distributions by chains of self-transitioning states, but this approach

is not very flexible and has its own limitations.

A generalized hidden Markov model (GHMM) generalizes the HMM and enables

the use of state lengths. Instead of emitting only one symbol, each state can emit a

string of some finite length. The length of the emitted string as well as the output

string itself are randomly drawn from a state-specific probability distribution.

Sequence of hidden states S = S1S2...SN can be written as a sequence of intervals

(ti, ui, vi)
p
i=1 with starts ti, stops ui, and labels vi such that:

t1 = 1; ui ≥ ti; ui−1 + 1 = ti; up = n; vi−1 6= vi

Sti = Sti+1 = ... = Sui
= vi

(2.14)

A GHMM models the the probability P (S, X) of a segmentation S = (ti, ui, vi)
p
i=1

and the observations X:

PGHMM(S, X) = Tv1

p−1
∏

i=1

Tvi,vi+1

p
∏

i=1

Qvi
(Xti,ui

), (2.15)

where T has the same meaning as in the previous section, and Q1, Q2, . . . , QM are

the emission models, where Qv(Xt,u) is the probability of hidden state v emitting the

observed sequence X from t to u (including length distribution) [9].

The algorithms described in the previous section that compute specific probabilities

for an HMM can also be used on a GHMM. However there is a significant change in the

recursion step of all of the algorithms. The Viterbi algorithm used on a HMM creates a

table with N columns. At each step it searches only the previous column. The Viterbi

algorithm applied on a GHMM needs to search all of the previous columns in order to

model all of the possible state lengths. This increases the running time to O(M2N2).

The same idea applies also to the forward and the backward algorithm.
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2.3 Conditional random fields

A conditional random field is a probabilistic model that has a very similar field of

application as HMMs. The main advantage of CRFs over HMMs is the power to eas-

ily incorporate information that does not have a probabilistic interpretation. Unlike

HMMs, CRFs are not a generative model which means that they do not model the joint

probability of the state labeling and the observations. Instead they directly model the

state labeling conditional on a set of observations. We call such models discrimina-

tive. Another difference is in the training algorithms. HMMs can be simply trained by

counting the transition and emission frequencies. This is not possible with CRFs be-

cause of their structure. Because there is no closed-form solution for assigning optimal

parameters to a CRF, the training is done by numerical optimization techniques.

Given observation sequence X and a sequence of hidden states S (both of length

N), conditional random fields model the conditional probability of P (S|X). Let f be

a set of k functions f1, f2, · · · , fk that we will reference as ”feature functions”. Feature

function fj maps the sequence of observations X, an index i and the states at position i

and i−1 (denoted as Si and Si−1 respectively) to a measurement fj(i, Si−1, Si, X) ∈ R

[27]. Let Fj(S, X) denote a sum over all of the measurements of feature function fj :

Fj(S, X) =

N
∑

i=1

fj(i, Si−1, Si, X). (2.16)

A CRF assigns a probability to the hidden states S by normalizing a weighted expo-

nential sum of feature sums Fj:

P (S|X) =
1

Zw(X)
exp

k
∑

j=1

wjFj(S, X), (2.17)

Zw(X) =
∑

S

exp
k

∑

j=1

wjFj(S, X), (2.18)

where wj denotes the weight of the feature sum Fj , and Zw(X) is the normalizing

constant [11].

An HMM can be simulated by a CRF using a single feature function fHMM with

weight 1.0:

fHMM(i, Si−1, Si, X) =

{

log eSi
(Xi) + log TSi

if i = 1

log eSi
(Xi) + log TSi−1,Si

if i > 1.
(2.19)
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Symbols T and e have the same meaning as in the section 2.1.

On the other hand, a CRF can loosely be understood as a generalization of an HMM

that replaces the emission probabilities and the constant transition probabilities with

a set of real functions that depend on the whole sequence. None of these functions

need to have a probabilistic interpretation.

For the same reasons GHMMs are a good extension of HMMs, we would like to

generalize CRFs to model a variable-length segmentations of state sequence S. We will

split the state sequence S into a chain of segments similarly as we did in a GHMM.

A sequence of hidden states S = S1S2...Sn can be written as a sequence of intervals

(ti, ui, vi)
p
i=1 with starts ti, stops ui, and labels vi such that these segments satisfy

the restrictions in 2.14. By restricting the interactions of the intervals only to the

immediate neighbors we get a model called semi-Markov CRF (SMCRF). The feature

sum Fj can be written as a sum of feature functions fj:

Fj(S, X) =

p
∑

i=1

fj(vi−1, ti, ui, vi, X). (2.20)

To use an SMCRF to annotate a genome sequence given observations X, one com-

putes the segmentation S with the highest conditional probability P (S|X). The infer-

ence algorithms to compute this are essentially the same and have the same complexity

as those used in GHMMs.

For example the conditional probabilities of a GHMM are mathematically equivalent

to an SMCRF using a single feature fGHMM with weight 1.0:

fGHMM(vi−1, ti, ui, vi, X) =

{

log Qvi
(Xti,ui

) + log Tvi
if i = 1

log Qvi
(Xti,ui

) + log Tvi−1,vi
if i > 1.

(2.21)

We use the same notation as in the section 2.2.

The key issues in the application of CRFs and SMCRFs to gene prediction and

other tasks are the design of the feature functions fj and the selection of the weights

wj. Feature functions use the observations X to assign a real value to each state

labeling of each possible interval and capture properties of the observation data relevant

for classification. They are not required to be independent or have a probabilistic

interpretation.

The traditional way of training the weights wj of a CRF is by conditional max-

imum likelihood (CML). We are given a set of sequences and correct state paths
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(S0, X0), (S1, X1), . . . , (SN , XN). For example, in gene finding we need to know both

the sequence and its real gene structure. Our goal is to find values of the weights

so that we maximize the likelihood of the training data. Assuming a single training

sequence in training data (S0, X0), this is:

wCML = argmax
w

log Pw(S0|X0). (2.22)

The function log Pw(S0|X0) is a concave function of w [30], because its Hessian is the

negative of the covariance matrix of the random variables Fj(S, X0) when S is drawn

from Pw(S|X0). Thus, log Pw(S0|X0) is guaranteed to have a single local maximum

wCML, which is also the global maximum. Because there is no closed-form solution, the

optimization process of assigning weights is done by different numerical optimization

techniques. The existence of a single local maximum guarantees, that these methods

will converge to the optimal solution.

2.4 Gene prediction algorithms

Gene finding usually refers to a process of algorithmic identification of DNA regions

that are biologically functional. These regions are usually protein coding genes but

may also represent some other functional elements, e.g., RNA genes. Here we describe

some of the tools that are used in prediction of protein-coding genes in nuclear genomes

and are based on different probabilistic models described in the previous sections.

2.4.1 GENSCAN

GENSCAN [9] is one of the first gene finding programs. It uses a GHMM to predict

genes in a target sequence. It uses only the target sequence as an input. GHMM

model used by GENSCAN incorporates many of the gene structural properties of ge-

nomic sequences. GENSCAN uses different states that model exonic, intronic and

intergenic regions as well as donor and acceptor splice sites. The typical gene density

and the typical number of exons per gene are modelled through the state transition

probabilities. Each state has its own length distrubution. Length of intronic states

is modelled by exponential distributions. Separate empirically derived length distri-

bution functions are used for initial, internal, and terminal exons and for single-exon

genes. GENSCAN also incorporates many compositional properties of genes that are

modelled in the emission probabilities of the individual states.
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2.4.2 Conrad

Conrad [11] is a gene finder for nuclear genomes based on CRFs. It implements a

variety of training and inference algorithms and several models with different levels of

complexity. A core feature set forms a complete GHMM model somewhat similar to

Genscan. Conrad also contains additional features that model external evidence, for

example ESTs, phylogenetic features for nucleotide substitution models and a set of

heuristics for multiple alignments. The feature weights together with discriminative

training improve the accuracy compared to the GHMM-based tools. The accuracy can

be also further improved by adding features that model additional external information.

Most of these features are in detail described in the section 3.4.

2.5 Tools for finding RNA structural motifs

This section describes some of the currently used algorithms for identifying group

I and group II introns in DNA sequences. These introns are characteristic by their

conserved secondary RNA structure as described in the section 1.3. These structures

can not be modelled by HMMs because the underlying finite state automata cannot

model possible chemical bonds between distant complementary nucleotides. Most of

the RNA structures can be modelled by a context-free grammar where each production

is augmented with a probability [12]. Such a grammar is called a stochastic context-

free grammar (SCFG). There exist several algorithms that infer the most probable

secondary structure. These algorithms use dynamic programming and run in a cubic

time, and therefore predicting secondary structure in longer sequences is very slow.

Unfortunately group I and II introns also contain pseudoknots (see Figure 1.3) that

can not be modelled by a context-free grammar and their detection is an NP-complete

problem. Therefore they are usually not considered in the inference process.

2.5.1 CITRON and Rfam

CITRON [24] is one of the first tools for predicting group I introns. CITRON uses

consensus matrices inferred from 143 group I introns. It uses a hierarchical search

strategy. First it searches for the structural elements that are common in all group I

introns and are easily recognizable. Then it extends its search to other structures.

Rfam [17] is a periodically updated collection of SCFG models and multiple align-

ments of different RNA families. Its models are usually used with the Infernal software

[25] which is one of the best tools for identifying secondary structures in RNA sequences.
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The major problem with CITRON and Rfam is that they consider only the common

core features of group I introns. Group I introns are divided into many subgroups that

significantly differ in both conserved motifs and peripheral elements of their overall

secondary structure. Therefore incorporating different subgroup-specific models should

lead to a substantial increase in sensitivity [23].

2.5.2 RNAweasel

RNAweasel [23] is a fast secondary structure predictor. It searches for secondary

structure of group I and group II introns as well as tRNA a mRNA secondary struc-

tures. RNAWeasel uses a computationally efficient search engine ERPIN [15]. ERPIN

utilizes RNA primary and secondary structure profiles that are trained from training

sets that consists of RNA sequence alignments and secondary structure information.

ERPIN searches for a precisely delimited structural elements both individually or in

combination. This can be done by different search strategies which can substantially

reduce the execution time. RNAWeasel automatically constructs training sets for ER-

PIN and sets various ERPIN parameters based on the users preferences. The main

advantage of RNAweasel is the use of subgroup-specific intron predictors that can be

easily developed and updated.

2.6 Alignment tools

Sequence alignment is a process of finding a possibly optimal pairing between sym-

bols of two or more sequences taking into consideration possible insertions, deletions

and substitutions based on our knowledge of evolutionary processes. We will refer to

insertions and deletions as ”gaps”. Natural selection has an effect on the process of

mutation so that some sorts of change may be seen more than others. The speed factor

plays a very important role in design of alignment algorithms, because the sequences

are usually very long.

2.6.1 Optimal local alignment

Given two sequences X of length M and Y of length N whose symbols are from a

finite alphabet Σ (e.g., Σ = {A, C, G, T}), we want to insert gaps into both sequences,

resulting in sequences X ′ and Y ′ of same length, such that we maximize the pairwise

score of X ′ and Y ′. A gap is represented by a symbol that is not in Σ, e.g., ’-’. Because

gaps represent insertions and deletions of symbols, each gap in the sequence X ′ needs to
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be aligned with a symbol from the sequence Y and vice versa. The score we assign to an

alignment will be a sum of terms for each aligned pair of original symbols plus terms for

each gap. The score should correspond to the logarithm of the relative likelihood, that

the sequences are related, compared to being unrelated. We expect, that identities and

conservative substitutions (those that do not change function of the sequence by much)

are more likely in alignments than we expect by a chance, therefore these terms will be

assigned a positive score. On the other hand, gaps and non-conservative substitutions

will contribute by a negative score, because they are more likely not to occur in real

alignments [12]. An example of an alignment can be seen in Figure 2.1.

Figure 2.1: Example of a pairwise alignment. The resulting alignment was made by

inserting gaps into the original sequences. Two gaps can not be paired.

A very common situation is where we are looking for the highest-scoring alignment

between some contiguous subsequences of X and Y . This problem is called local

alignment. Local alignment algorithms are best used with very diverged sequences that

share short similar subsequences, because they search for all the possible combinations

of these similar regions.

One of the algorithms that addresses the problem of local alignment is the Smith-

Waterman algorithm [12]. The Smith-Waterman algorithm is an algorithm based on

dynamic programming that searches for the local pairwise alignment. The algorithm

returns optimal local alignments for the scoring scheme it uses.

The algorithm fills in a table with M +1 rows and N +1 columns using the following

equation:

F (i, j) = max























0

F (i − 1, j − 1) + s(Xi, Yj)

F (i − 1, j) − d

F (i, j − 1) − d,

(2.23)

where s(Xi, Yj) is the pairwise score of symbols Xi and Yi and d > 0 is the gap

penalization. The table cell F (i, j) holds the score of the best local alignment of the
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subsequences X1X2...Xi and Y1Y2...Yj. First row of the equation corresponds to a

start of a new local alignment, the second row corresponds to aligning symbols Xi

and Yj, and the third and fourth rows represent inserting a gap into sequences Y and

X respectively. Values in the zeroth row and the zeroth column are initialized to 0.

A second table is simultaneously constructed keeping pointers backward similarly as

in the Viterbi algorithm in the section 2.1. When both of the tables are filled in,

the algorithm searches the first table for cells whose score is above a given threshold.

Starting from these cells, the algorithm reconstructs local alignments using the second

table and ending in cells with score 0.

The Smith-Waterman algorithm time and space complexity is O(NM) because each

cell value can be computed in O(1) time.

2.6.2 BLAST

BLAST [2] is one of the most widely used bioinformatics programs that searches for

local alignments. The algorithm emphasizes speed over sensitivity. The speed factor

is very important because genome databases are usually very large and it would be

impossible to use algorithms that run in quadratic time, such as the Smith-Waterman

algorithm.

BLAST first searches for a short high scoring local alignments called seeds between

the query sequence and sequences in the database. For example if seeds are exactly

matching substrings of length w, they can be found efficiently by hashing all substrings

of length w in the query sequence. After seeding is done, BLAST continues to extend

the seeds until the alignment score drops below the predetermined threshold. The

BLAST algorithm uses a heuristic approach which may miss some high-scoring align-

ments, either because they do not contain high scoring seed or because the extension

has failed to find an optimal alignment. Nonetheless tests on real data show that

BLAST is over 50 times faster than the Smith-Waterman algorithm.

2.6.3 Exonerate

Exonerate [28] is a generic tool for pairwise sequence comparison. It is a collection of

different nucleotide and protein alignment models that can produce both gapped and

ungapped alignments. Exonerate implements exhaustive dynamic programming algo-

rithms and many different heuristics for speeding up the search. In our work we use one

of the more complex models, called protein2genome which aligns a DNA sequence to a

homologous protein allowing long gaps in the DNA sequence corresponding to introns
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in the gene. The model incorporates splice site restrictions and intron phases. A simi-

lar model of alignment was introduced earlier in Genewise [4]. It uses two pair-HMMs

that emit symbols from two sequences at each step. The first pair-HMM models the

translation of the DNA sequence to a protein sequence incorporating possible introns

and the other pair-HMM models the alignment between the resulting protein and the

homologous protein. These two pair-HMMs are then merged into one HMM.

2.6.4 MUSCLE

MUSCLE [13] is a tool for creating multiple alignments of protein sequences. The

multiple alignment problem is a generalized version of the pairwise alignment problem

described in the section 2.6.1. More than two sequences are allowed to be aligned

and each column must contain at least one non-gap symbol, so that the gap insertions

maximize the sum of aligned column scores. These scores have the same meaning as in

the section 2.6.1. Accurate multiple alignments can significantly improve the accuracy

of gene finding [29] because they provide a very strong evidence about the positions

of coding regions as shown in the section 2.7. However computing an optimal multi-

ple sequence alignment for arbitrary number of sequences is NP-hard, and therefore

heuristic algorithms such as MUSCLE are usually applied to this problem.

MUSCLE works in three stages. In the first stage MUSCLE calculates a pairwise

distance between the input sequences and clusters them into a tree according to these

distances. This is done by heuristic algorithms that are fast but not very accurate.

MUSCLE then constructs the multiple alignment from the leaves up. An alignment of

all sequences in a subtree is represented as a profile which lists frequencies of individual

characters in each column and is treated as a sequences of special symbols with a special

alignment scoring function. At each internal node MUSCLE constructs a profile which

is a pairwise alignment of children profiles. At the end of the first stage, the root

contains the initial multiple alignment. In the second stage, MUSCLE uses the multiple

alignment from the first stage as an input for the Kimura distance measure which is

much more accurate than the heuristics used in the first stage. Then the algorithm

constructs a new multiple alignment using the new tree similarly as in the first stage. In

the third stage MUSCLE removes an edge from the tree. The tree is then divided into

two subtrees. The profile of the multiple alignment in each subtree is then computed

again and these profiles are re-aligned into a new multiple alignment of all sequences.

If the score is improved, the new alignment is kept, otherwise it is discarded. Stage

three is repeated until convergence or until a user-defined limit is reached.



CHAPTER 2. MODELS AND ALGORITHMS 21

2.7 Comparative analysis

In comparative analysis we use multiple sequence alignments to study various aspects of

the sequences. For example, a multiple alignment provides information that is needed

to construct phylogenetic trees. A phylogenetic tree is a rooted or unrooted binary tree

where each node is a random variable. Leaf nodes correspond to the observed organisms

in the multiple alignment, whereas internal nodes correspond to their ancestors. One

column of the multiple alignment forms a complete set of leaf observations. Each tree

branch is assigned a length corresponding to the evolutionary time between these two

organisms. Multiple alignment, together with the tree and its branch lengths, help

us to distinguish whether a region of the multiple alignment is more likely coding or

noncoding because the rate of substitutions is usually much higher and has a different

characteristics in noncoding regions than in coding regions. In order to quantify this

likelihood, we use probabilistic models of substitution explained in the following text.

2.7.1 Substitution rate matrices

Given a set of M residues, we would like to model a probability of a residue a having

being substituted by a residue b in time t denoted as P (b|a, t). This can be represented

as an M × M probability matrix that depends on time t, which we call a substitution

matrix and denote by S(t):

S(t) =













P (A1|A1, t) P (A2|A1, t) . . . P (AM |A1, t)

P (A1|A2, t) P (A2|A2, t) . . . P (AM |A2, t)

. . . . . . . . . . . .

P (A1|AM , t) P (A2|AM , t) . . . P (AM |AM , t)













. (2.24)

A natural expectation is that the probability P (b|a, t + s) can be written as

P (b|a, t + s) =
∑

b

P (a|b, t)P (b|c, s) (2.25)

for all a,c,s and t. In other words matrix S(t) is multiplicative, i.e., S(t)S(s) = S(t+s).

A rate of substitutions between different pairs of residues is usually not the same.

These rates can be modelled by a rate matrix. Given a rate matrix Q a substitution

matrix for a short time S(ǫ) is approximately given by S(ǫ) ≃ (I + Qǫ), where I is the

identity matrix.

An example of such a rate matrix is the K80 rate matrix [20] that has a following
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form:

QK80 =













∗ κ 1 1

κ ∗ 1 1

1 1 ∗ κ

1 1 κ ∗













, (2.26)

where symbol ’*’ is a value such that the corresponding row sums to 0.

The matrix models substitution rates between nucleotides T, C, A, G. The K80

model distinguishes between transitions and transversions. Transitions are substitu-

tions between purines (nucleotides A and G) or between pyrimidines (nucleotides T and

C). Transversions are substitutions between purines and pyrimidines and vice versa.

Transitions are a more common form of mutation than transversions, so a parameter κ

denoting the ratio between the transition and transversion rate is usually greater than

1. The K80 model assumes equal base frequencies (πT = πC = πA = πG = 1
4
).

Another example of a nucleotide rate matrix is the HKY85 model [19]. It is very

similar to the K80 model with a difference that it allows unequal base frequencies

(πT 6= πC 6= πA 6= πG):

QHKY 85 =













∗ κπC πA πG

κπT ∗ πA πG

πT πC ∗ κπG

πT πC κπA ∗













. (2.27)

We can also model substitution rates of codons. Such an example is the GY84 model

[16]. It uses a 64 × 64 matrix where the substitution rate qi,j between the ith and jth

codon is

qi,j =































0, if the two codons differ at more than one position,

πj, for synonymous transversion,

κπj , for synonymous transition,

ωπj, for nonsynonymous transversion,

ωκπj, for nonsynonymous transition,

(2.28)

where πi is the frequency if the ith codon, κ is the transition/transvertion ratio with

the same meaning as in the K80 and HKY85 models, and finally ω is the ratio of

nonsynonymous and synonymous substitution rates. Synonymous substitutions are

those that do not change the amino acid encoded by the codon. Many of the protein-

coding genes do not change very much in the process of evolution. This happens for

example in genes that play a key role in the metabolic processes. Even a mutation

of a single nucleotide could be potentially fatal to the organism, and therefore non-
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synonymous mutations that change the structure of the encoded protein are very rare

in these genes. Synonymous mutations do not change the resulting amino acids, and

therefore they are seen much more often. Parameter ω for these types of genes is

therefore much smaller than 1. In some genes non-synonymous mutations may happen

faster than synonymous. This is especially true in genes that code for proteins that

play a role in the immunity response, because the larger is the variety of proteins an

organism can produce, the larger are the possibilities of fighting bacterial and viral

diseases.

A substitution matrix S(t) can be obtained from a rate matrix Q by matrix expo-

nentiation

S(t) = etQ, (2.29)

where matrix exponentiation is defined as

eQ =

∞
∑

k=0

1

k!
Qk. (2.30)

2.7.2 Felsenstein algorithm

Given a rooted binary phylogenetic tree T with N leaves and its branch lengths, rate

matrix Q with M rows and columns, frequencies of symbols π in the root node and the

observed symbols in the leaves of the phylogenetic tree denoted as C, one can compute

the probability P (C|T, Q, π) using the Felsenstein algorithm [14]. The Felsenstein

algorithm is a dynamic programming algorithm. It fills in a table with 2N −1 columns

and M rows. The jth column corresponds to the jth node of the tree and the ith

row corresponds to the ith symbol. The cell located in the ith row and the j column

denoted as pi,j contains a probability P (C ′|T ′, Q, π) where T ′ is a subtree of T rooted

in the jth node and C ′ ⊆ C are the leaf observations of T ′. Value pi,j can be calculated

as follows:

pi,j =















1, if j is a leaf and observes the symbol i,

0, if j is a leaf and does not observe the symbol i,
∏

child y

∑

symbol x

[

etj,yQ
]

ix
, if j is an inner node,

(2.31)

where y is a child of the jth node and tj,y is the edge length between the jth node

and the yth node. If values of the root node are located in the rth column, then the

probability P (C|T, Q, π) can be written as

P (C|T, Q, π) =
∑

i

πipir, (2.32)
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where πi is the probability of the ith symbol.

2.7.3 PAML and PhyML

PAML (Phylogenetic Analysis by Maximum Likelihood) [31] is a package of programs

for phylogenetic analysis of DNA and protein sequences using maximum likelihood. It

implements many different codon and nucleotide substitution models. In this work we

use PAML to train the parameters of the rate matrices we use from a given multiple

alignment. However PAML does not include tools for determining the tology of trees

with a larger number of species.

We use program PhyML to determine the tree topology [18]. PhyML is based

on the maximum-likelihood principle which means it aims to construct a tree that

would maximize the likelihood of the observed multiple alignment in some probabilistic

substitution model. PhyML uses a simple hill-climbing algorithm that adjusts tree

topology and branch lengths simultaneously. The algorithm builds an initial tree using

a fast distance-based method and then iteratively modifies the tree to obtain a higher

likelihood. The algorithm usually needs only a few iterations to reach an optimum.



Chapter 3

MtConrad: system for

mitochondrial gene finding

3.1 Problem statement

The problem of gene finding is to identify exons and introns in a DNA sequence. Most

of the research in gene finding concentrates on genes in nuclear genomes. Some of the

programs that address this problem were described in the section 2.4. In this work we

predict genes in yeast mitochondrial genomes which is a much less studied problem.

Yeast mitochondrial genes lack the clear exon boundary rules typical for nuclear genes.

More precisely nuclear spliceosomal introns are bounded by a specific pair of nucleotides

on both ends (nucleotides GT at the 5’ end and AG at the 3’ end). Lack of such rules

makes identifying precise exon boundaries in yeast mitochondrial genomes much harder.

On the other hand, mitochondrial genomes are short and contain only a small set of

well-conserved genes which allows us to use methods that are more difficult to apply

on nuclear genomes.

A commonly used method for finding genes in mitochondrial genomes is aligning a

known protein from a close organism to the studied genome. The resulting alignment

then serves as a good starting point as it gives a good global view of the probable exonic

and intronic locations. The protein alignments are then usually manually corrected to

obtain the desired annotation. However this method alone cannot be always trusted.

For example, larger exonic insertions in the studied genome can be mistaken for an

intron. The alignment algorithm also has a high chance of missing the precise exon

boundaries if there is a nonsynonymous mutation at the splice site.

Another approach is to specifically look for introns in the sequence. This is possible

because yeast mitochondrial introns have a very conserved secondary structure. There

25
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exist several tools for prediction of these structures, e.g., RNAWeasel [7] or Infernal

[25]. The problem with this approach is that in many cases these tools predict only

a partial structure of the intron and usually do not indicate the exact position of the

splice sites.

In this work we present a software tool for automated computational prediction of

protein coding genes in yeast mitochondrial genomes that combines these two previ-

ously used methods as well as other techniques originally developed for nuclear gene

finding.

Sequences of many yeast mitochondrial genomes are already available and constitute

another valuable source of information. In particular, multiple alignment of mitochon-

drial genomic sequences from these species in combination with different evolutionary

models may provide a valuable information about the exact position of exons.

This year a new program called MFannot [1] was released, however it has not yet

been published, and therefore the details of its methods are not known. It is the

first program that directly addresses the problem of mitochondrial gene finding. We

compare its results with MtConrad in the section 4.3.

3.2 Overall approach

Our tool is based on the Conrad gene finder described in the section 2.4.2. We use

algorithms for training and inference with SMCRF implemented in Conrad, but modify

the model extensively to adapt it to characteristics of mitochondrial genomes and

available sources of information. We build on the basic state model that allows exons

and introns on both strands but does not include more complicated situations such as

alternative splicing. To use the information in the target DNA sequence, we use the

core GHMM features and modify them to fit the structure of mitochondrial genomes.

These changes consist of exon and intron boundary structure modifications, different

state length limits and different caching settings.

In addition to the core features we use several sources of external information: pro-

tein aligned to the target DNA sequence, position of introns based on their secondary

structure and comparative analysis of multiple alignment.

We use Exonerate [28] to align a protein from a model organism to the target

sequence. We analyzed the accuracy of the alignments and created a set of features

that correspond to the information that the alignments provide.

We use RNAWeasel [23] to predict the positions of introns based on their secondary
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structure. We ran RNAWeasel on our data set and analysed the output similarly as

we did with protein alignments. Based on the results of our analysis we created a set

of features for this information source.

We have transformed the output from these programs into sequences of symbols

called ”evidence tapes”. Evidence tape has the same size as nucleotide sequence it

originated from. Each symbol on the evidence tape gives a specific information about

the nucleotide at the same position in the nucleotide sequence (see Figure 3.1).

Finally, we use several nucleotide and codon substitution models on the multiple

alignment. We do not use evidence tapes for this source of evidence instead we use

log-likelihood values from the model.

Figure 3.1: Example of evidence tapes.

To compare and check the results of our model we have also implemented a simple

HMM that uses the same evidence tapes as MtConrad.

3.3 Sources of evidence

Here we describe the characteristics of the evidence we used. First we discuss and

compare protein alignments and intron RNA structure prediction. Second we examine

the trained parameters of the rate matrices used in comparative analysis.

3.3.1 Protein alignment and intron RNA structure

Since there are only few distinct ortholog groups in the genome we study and proteins

in each group have similar sequences, we can use the knowledge of some representative
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Test name TP FP TN FN sens spec
Exonerate coding 257084 1881 309661 10792 0.96 0.993
Exonerate intron 181390 3456 394295 277 0.998 0.981

RNAWeasel intron 66513 1010 396741 115154 0.366 0.985

Table 3.1: The table shows how good are individual tapes in predicting positions of
intronic and exonic nucleotides. (TP - true positives, i.e., a predicted positive match
that is as a matter of fact true; FP - false positives, i.e., a predicted positive match that
is as a matter of fact false; TN - true negatives; FN - false negatives; sensitivity(sens)
= TP/(TP+FN), specificity(spec) = TP/(TP+FP))

gene and its protein to predict the probable positions of coding nucleotides. To select a

representative protein from each group, we used a gene from Saccharomyces cerevisiae

if the group contained it, otherwise we used a gene from Candida albicans. We then

aligned each nucleotide sequence to its representative protein using Exonerate. Because

the sequences are short, we used quadratic time algorithm to predict the optimal align-

ment. We took the alignment with the highest score and converted it to an evidence

tape. The resulting evidence tape consisted of symbol 0 - 4. Symbols 1 and 2 represent

positions of aligned protein on plus and minus strand respectively. Symbols 3 and 4

represent positions between aligned sections on plus and minus strand respectively thus

forming potential introns. Symbol 0 represents a sequence surrounding the alignment,

presumably located in an intergenic region.

Another evidence tape can be created by looking for RNA secondary structures typ-

ical for group I and II introns. We predicted positions of these structures with program

RNAWeasel. The program searches for secondary structure patterns of group I and II

introns. The evidence tape for this program consists of symbols 0-2. Symbols 1 and 2

represent predicted intron positions on plus and minus strand respectively. Symbol 0

represents no evidence. RNAWeasel predicted 134 secondary intron structures in our

dataset out of which 13 were group II introns and 121 were group I introns.

We individually analyzed the strength of each tape by comparing them against

the real annotation. Then we measured how good were the tapes at correcting bad

predictions of other tapes simply by counting the corrected nucleotides. Both tapes

proved to be very informative. Exonerate tape showed a very good approximative

power in both intron and exon locations (see Table 3.1).

Exonerate successfully predicted 101 out of 282 splice sites. RNAWeasel prediction

was even better in specificity. The only setback of RNAWeasel prediction is that the

true information it provides is a subset of Exonerate prediction. Particularly Exonerate

corrected 1009 positions with incorrect RNAWeasel predictions. These were nucleotides

that RNAWeasel predicted as introns but Exonerate labeled them correctly as coding.
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Test name Corrected predictions
Exonerate coding corrected Weasel 1009 nucleotides
Exonerate intron corrected Weasel 0 nucleotides

Weasel corrected Exonerate 10 nucleotides

Table 3.2: Number of corrected nucleotides.

On the other hand RNAWeasel has managed to correct only 10 of Exonerate’s incor-

rectly predicted nucleotides (see Table 3.2).

All RNAWeasel false positive errors have occured in three sequences where RNAWeasel

predicted a large intron significantly overlapping an exon (see Figure 3.2).

Figure 3.2: Example of an error produced by RNAWeasel.

There was no overlapping with exons in any other cases. This result is very good,

because RNA secondary structure of group I a II introns tend to overlap with exons on

their edges. RNAWeasel successfully predicted only one out of 282 splice sites which is

not a good result, but many of the predicted introns had boundaries very close to the

splice site, usually within 5-20 nucleotides (see Figure 3.3). We also tried to use Rfam

[17] for intron prediction, but the results were much worse.

Figure 3.3: Typical output produced by RNAWeasel. Rectangles in the lower part

represent exon positions. Lines in the upper part represent predicted introns. Most of

the predicted introns are very close to one of the exons.
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Position πA πC πG πT
K80 HKY85

ts tv ts/tv ts tv ts/tv
Exon 0 0.34 0.09 0.22 0.35 0.51 0.34 1.50 2.37 1.42 1.66
Exon 1 0.24 0.19 0.13 0.44 0.39 0.28 1.39 1.74 1.24 1.40
Exon 2 0.50 0.06 0.04 0.40 0.44 0.69 0.65 6.68 2.73 2.44
Intron 0.44 0.08 0.12 0.36 0.64 0.94 0.69 7.16 3.97 1.8

Intergenic 0.44 0.07 0.07 0.44 0.55 0.98 0.56 9.03 4.03 2.24

Table 3.3: Table shows the nucleotide frequencies (πA, πC , πG, πT ) as well as transition
(ts) and transversion (tv) rates of the K80 and HKY85 models trained on the exonic
(phase specific), intronic and intergenic regions of our input data.

3.3.2 Comparative genomics

We have trained a separate substitution rate matrix for introns, intergenic regions and

three positions in a codon. Details of the training process are described in the section

4.1.4. The parameters of the K80 and HKY85 rate matrices are shown in Table 3.3.

Nucleotides located in the zeroth and first exon phase have a higher GC content than

the rest of these genomes which are very AT rich. Introns have a slightly elevated GC

content because some of the introns contain an open reading frame (a sequence that

can possibly code for a gene) in their DNA sequence. Transition and transverion rates

correspond to the rate of mutation in individual gene structure elements. We can see

that the rate is higher in intronic and intergenic positions and lower in codon positions.

The parameters of the GY94 for exonic regions were κ = 0.65 and ω = 0.09. The

codon frequencies were estimated from frequencies of exonic nucleotides in different

exon phases (see Table 3.3). The parameter ω that models the nonsynonymous/syn-

onymous rate ratio was similar to our expectations that the synonymous rate should be

much higher than nonsynonymous rate (see Section 2.7.1). The parameter κ = 0.65 is

not a standard value because the transition rate is usually higher than the transversion

rate in exonic regions.



CHAPTER 3. MTCONRAD: SYSTEM FOR MITOCHONDRIAL GENE FINDING31

3.4 MtConrad model

In this section we describe details of the probabilistic model underlying our tool. It is

based on the basic model called Interval13 used in Conrad. Conrad model was designed

for nuclear genomes so modifications had to be done to adjust the core features for

prediction of mitochondrial genes and to adapt it for new sources of external evidence.

Recall from the section 2.3 that probability distribution over gene structures in a

SMCRF is defined as P (S|X) = 1
Zw(X)

exp
∑k

j=1 wjFj(S, X) and each feature sum Fj

can be expressed as a sum of terms Fj(S, X) =
∑p

i=1 fj(vi−1, ti, ui, vi, X). We will first

describe the set of states and allowed transitions between them and then individual

features in detail.

3.4.1 State model

The state model consists of 13 states. One state models intergenic regions, 3 states

model coding regions of genes located on plus strand, 3 states model intronic regions on

plus strand and similarly 6 states model the genes on minus strand. More complicated

cases such as genes within introns were not modelled. The states and transitions

between them are depicted in Figure 3.4.

Figure 3.4: MtConrad hidden state model.
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States. We use Interval13 state model. All of the positions below are 0-based so the

first nucleotide of the sequence has index 0. Each state of the model generates the

whole segment, thus the over all model is SMCRF described in the section 2.3.

1. Intergenic

Intergenic state represents bases between adjacent genes including the stop codon

but not including the start codon of genes.

2. Exoni, i = 0, 1, 2

This state represents an exon located on a plus strand where the first base of

each codon is located at position k in the nucleotide sequence such that k = i(

mod 3), the second base of codon at position k = i + 1( mod 3) and the third

base at position k = i + 2( mod 3), more generally the nucleotide at position k

in the sequence is at position (k − i)( mod 3) in a codon.

3. Introni, i = 0, 1, 2

This state represents an intron of a plus strand gene, splitting a codon with i

nucleotides to the right and (3− i) nucleotides on the left. We need three intron

states to ensure that the next exon continues in the correct reading phase.

4. Exonmi, i = 0, 1, 2

This state represents an exon located on a plus strand where the third (leftmost)

base of each codon is located at position k in the nucleotide sequence such that

k = i( mod 3), the second base of codon at position k = i + 1( mod 3) and

the first (rightmost) base at position k = i + 2( mod 3), more generally the

nucleotide at position k in the sequence is at position (−k + 2 + i)( mod 3) in a

codon.

5. Intronmi, i = 0, 1, 2

An intron of a minus strand gene, splitting a codon with i nucleotides to the left

and (3 − i) nucleotides to the right.

Transition constraints. Transitions between states ensure that only valid gene

structures can be produced. For example, the sum of exon lengths has to be dividable

by three. We use the same transition constraints as in Conrad. Because states in the

model are defined by their position in the sequence the transition constraints are also

dependent on the position. In the following Sk represents state at position k in the

sequence. We describe the transitions only for the plus strand, the transitions for the

minus strand are analogous. The allowed transitions in the model are as follows:
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- Start of a gene: if Sk−1 is intergenic and k = i( mod 3) there is a possible

transition to Sk=Exoni.

- End of a gene: if Sk−1 is Exoni and k = i( mod 3) there is a possible transition

to Sk=integenic.

- Donor site (start of an intron): if Sk−1 is Exoni and k = i− j (mod 3) there is a

possible transition to Sk=Intronj .

- Acceptor splice site (end of an intron): if Sk−1=Introni and k = j − i (mod 3)

there is a possible transition to Sk=Exonj .

Length constraints. Individual states in Conrad have minimum and maximum

lengths. It is important because the algorithms used for training and inference of

SMCRFs (see sctions 2.2 and 2.3) run in O(N2) time, where N is the length of the

sequence. Using maximum state lengths decreases the time complexity to O(NM),

where M is the maximum length used among states. Minimal length of each state

should be at least of the size of the boundary model used on the state ends. These

boundary models represent typical sequences occurring on exon boundaries. We used a

minimum exon length of 9, a minimum intron length of 15, and a minimum intergenic

length of 18 bases.

We had to increase the maximum length of the intron states from 600 to 3500 bases

because mitochodrial introns are larger than nuclear introns. We lowered the maximum

exon length from 5000 to 3000. The largest mitochondrial exon in our data set was

around 2000 bases long.

Base constraints. The model requires specific bases at transitions around intergenic

state. In particular, all genes must start with ATG codon and end either with TAG

or TAA codon. We decided to use only the start codon ATG although the genetic

codes we were working with (Code 3: Yeast Mitochondrial Code and code 4: The

Mold, Protozoan, and Coelenterate Mitochondrial Code) contain a larger set of start

codons. We encountered only 5 cases of ATA start codon in our data set so we decided

not to include other start codons in the model. We have removed the nuclear splice

site constraints from the Conrad model. These constraints also speed up the SMCRFs

inference and training algorithms.
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3.4.2 Core features

Core features model functions that depend only on the reference sequence and current

and previous state. Together they are equivalent to a complete GHMM model for gene

prediction as shown in equation 2.21. These functions were used in every test we made

(in combination with some subset of evidence features).

Reference features. Reference features correspond to emission probabilities of an

HMM. They return the log probability of each nucleotide based on the surrounding

sequence and the current state. For each nucleotide the probability depends on the

three previous nucleotides, or in case of minus strand states on the three following

nucleotides. The dependence on the adjacent nucleotides allows us to model frequencies

of 4-tuples of nucleotides.

We use the model from Conrad without any changes. The model uses five sets of

log probabilities: one for intergenic regions, one for introns and one for each position

of codon. Log probabilities are trained from the training data and initialized with

pseudocounts of 1 to prevent zero probabilities. Plus and minus strands are trained

together and any training or evaluation on the minus strand is done on the reverse-

complement counterpart of the examined sequence. This reduces the amount of free

parameters and the amount of required training data. Bases near the boundary of the

segment are evaluated to 0 because they are evaluated by separate boundary features.

A total of five features are defined for the reference features. These features do not

correspond directly to the five log probability tables. Instead they are for intergenic,

plus strand introns, minus strand introns, plus strand exons, and minus strand exons.

Each feature has its own weight.

Length features. The three length features compute the log probability for state

length distributions of introns, exons, and intergenic regions. We used the same model

for length distribution as used in Iterval13 model. Intergenic distances are modeled

using an exponential distribution, and the exon and intron distributions are modeled

as a mixture of two gamma distributions.

Transition features. The transition feature models the frequency of various state

transitions between segments, and corresponds to the transition matrix of a GHMM.

This feature is represented by one weight. Because we use the same model as Conrad

We use the transition features from Conrad without any changes. Intergenic state

has six possible transitions to exon state but only two are valid at a given position
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in the sequence (one on each strand). Both of these transitions have a probability of

0.5. This is to prevent nonsense parameters in the situations where the training data

contains a vast majority of plus strand genes.

Each exon state has four possible transitions: three to intron state and one to an

intergenic state. At every position only one of the transitions to intronic states is

valid. The only free parameter used in this model is the probability P of transitioning

to intron state. Transitioning to intergenic state has a probability of 1 − P . This

probability is determined from the average number of introns in each gene.

Three possible transitions exist out of each intron state, but at any given position,

only one of these will be valid. This transition probability is therefore set to 1.0.

Boundary features. The boundary features model nucleotide signals on the state

boundaries. We use the same boundary features as Conrad. These features are trained

from the training data and represented by position weight matrices (PWMs) and are

initialized with pseudocount of 1 to prevent zero probabilities. PWMs model position-

specific frequencies of nucleotides on the boundaries. We use them to capture the

boundary rules described in the section 1.3. The number of nucleotides taken into

consideration is consistent with the reference features. There are four types of signals:

- Splice donor extends 3 bases into the exon and 6 into the intron

- Splice acceptor extends 6 bases into the exon and 9 into the intron

- Start signal extends 9 bases into the intergenic region and 6 into the exon

- Stop signal extends 3 bases into the exon and 9 into the intergenic region

Each of these signals has its own feature both for plus and minus strand. This gives

together eight weights.

3.4.3 Evidence features

Evidence features incorporate evidence gained from external programs or from mod-

els that use multiple alignments.

Exonerate features. Exonerate provides a very strong evidence of intron and exon

locations. In contrast to the core features, we do not estimate any frequencies from

training data for these features and we use only simple indicator functions which are
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incorporated by appropriate weights. Such an approach would not be possible in an

HMM. We split the features into two subsets with ten features total: features evaluating

nucleotides and features evaluating edges (exon boundaries). It is reasonable to use

edge features because Exonerate successfully predicted a substantial amount of splice

sites.

We use five nucleotide features each evaluating to 1 under specific conditions and

zero otherwise. Four features represent a situation when the current labeling of the

position agrees with the Exonerate labeling. This includes labellings for exons/introns

on the plus/minus strands. The last feature represents a negative situation when

Exonerate did not predict exon or intron but the current label is not an intergenic

state. We would expect that this feature will have a negative weight while the previous

four positive.

Similarly we model features evaluating edges. Four features evaluate to 1 if the

donor/acceptor splice site agrees with the exonerate prediction. If none of the four

features was evaluated at a given boundary then the last feature is evaluated to 1.

Conrad contains a set of features called EST features. These features use a set of

similar indicator functions as we do. We extend these features by adding indicator

functions for different strands.

Intron features. RNAWeasel provides a very specific information about intron nu-

cleotides. However it does not predict any splice sites, therefore we did not model edge

features.

We use tree features to model output from RNAWeasel that are similar to Exonerate

features. Two features (one for each strand) correspond to the situation when the

current state agrees with the prediction of RNAWeasel and one feature corresponds to

the situation when RNAWeasel predicted an intron nucleotide but the current state is

intergenic. Each of these features evaluate to 1.

Nucleotide comparative features. We use comparative features to evaluate differ-

ent nucleotide substitution models whose input is a multiple alignment column. Before

these features can be used, they need to be initialized with a specific nucleotide substi-

tution rate matrices. We have used Kimura80 [20] and HKY85 [19] substitution rate

matrices described in the section 2.7.1.

We use five position-specific phylogenetic features: one feature models intergenic

regions, one intronic regions and three features model different codon phases. Each

features is assigned its own nucleotide substitution model that was trained from the
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training data a fits the evolutionary characteristics of the modelled region (see Table

3.3).

These features evaluate to log probabilities of the the multiple alignment columns

in the given evolutionary model. The evaluation is carried out by the Felsenstein

algorithm (see Section 2.7.2). Complementary nucleotides are used for the minus strand

states.

Nucleotide comparative features are based on the phylogenetic features used in Con-

rad. We had to change the implementation of inputs and evolutionary models because

the Conrad implementation did not allow to use different target organisms in both

training and inference. We have changed the implementation of the K80 model train-

ing algorithm so it can now also train the HKY85 model.

Codon comparative features. We have extended the nucleotide-based phylogo-

netic features to be also applicable with codon substitution models. Such models are

not present in Conrad. In particular we use the GY94 codon substitution model [16]

(see Section 2.7.1). Its parameters were trained using the PAML software [31]. The

process of trainig the GY94 model is described in the section 4.1.4. We use the GY94

model for the exonic states and the HKY85 model for the intronic and intergenic states.

We have trained the HKY85 model from intronic data.

At each exon state we calculate the positions of the three codon phases in the

reference sequence and use the multiple alignment columns at these positions as an

input for the Felsenstein algorithm so that alignment columns with gaps in the reference

sequence are not used. The feature then returns the log probability of this alignment.

We calculate the log probability of a codon alignment only if the current position in

the sequence is in the third codon position (second phase). We use complementary

bases for the minus states.

The second feature is evaluated for every intronic and intergenic state using the

HKY85 model. The evaluation process is identical to one used in the nucleotide compar-

ative features so that we again evaluate triplets of columns together and omit columns

with a gap in the reference sequence.

We do not evaluate boundary positions of the exonic segments. For the plus exonic

segments we do not evaluate first two nucleotides and for the minus exonic segments

we do not evaluate the last two nucleotides. This is to prevent the intronic columns to

be used in the codon alignment when the splicing did not occur between two codons.

We have created two separate features that evaluate these boundary exonic positions.

They use the same GY94 model. They take the exonic boundary columns and fill in
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the missing codon columns with columns that consist of gaps. The first feature models

the log probability of exonic boundaries with one missing column and the other one

with two missing columns.

3.5 Evidence-HMM

To compare the performance of our SMCRF system with some baseline and to evaluate

strength of individual evidence we have created a simple HMM that incorporated the

probabilistic information that could be obtained from our information sources.

Figure 3.5: HMM states for plus strand. Three columns of states in the middle corre-

spond to three possible codon positions. All intron states can be separated into three

groups (I0, I1 and I2) based on the position in the codon. Generating stop codon

(TAA/TAG) is forbidden. Letters inside the states represent nucleotides that they

emit. Letters with an apostrophe are forbidden.

We modelled both plus and minus strands. Exon states were forbidden to generate

stop codons. This is achieved by phase-specific exon states that emit different nu-
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cleotides and adding different intron states between these exon states (see Figure 3.5).

Minimal length of introns was set to 14 nucleotides with starting pad of length 5 and

ending pad of length 9. This is achieved by adding a chain of states before and after

each intron state. Intron states that are in the same group (I0, I1 and I2) have the

same emission and transition probabilities. We used only start codon ATG, because

the other one (ATA) was very rare in the data.

Each state is associated with four random variables:

1. a nucleotide of the predicted sequence (X1),

2. a multiple alignment column from 33 organisms (X2),

3. symbols 0-5 for Exonerate output (X3),

4. symbols 0-4 for RNAWeasel output (X4).

We consider all of the variables conditionally independent so the probability of a

given observation at a given state is:

P (X1, X2, X3, X4|S) =

4
∏

ı=1

P (Xi|S), (3.1)

therefore the emission probabilities of each state are a product of four probabilities. The

probabilities of the Exonerate and RNAWeasel symbols as well as probabilities of the

nucleotide symbols were trained simply by counting the frequencies from the training

data. For comparative analysis (to compute P (X4, S)) we used the K80 nucleotide

substitution model and trained the parametes (transition and transversion rate, root

nucleotide probabilities) from the training data. We used the Felsenstein algorithm

(see Section 2.7.2) to calculate the probability of the multiple alignment column and

multiplied it with the other probabilities. Similar evidence tapes were used in gene

finder TWINSCAN [21].
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Results

In this chapter we present the accuracy results of our system on a set of yeast mi-

tochondrial genomes. To conduct such tests, we had to first assemble a set of yeast

mitochondrial genomes and their annotations, and estimate parameters of the model.

We describe details of the data preparation and parameter estimation first, followed

by the test results.

4.1 Data preparation

This section describes techniques that were used to prepare and analyze the data. The

goal is to gain a perspective on the quality of the annotated sequences. Prepared data

will be later used by our program for training and testing. The preparation can be

divided into multiple parts:

1. collecting data,

2. extraction of desired parts,

3. generating the phylogenetic tree,

4. generating evidence from external programs,

5. analysis of the evidence.

4.1.1 Collecting data

We have obtained a set of 33 annotated mitochondrial genomes in Genbank format

from different yeast species (Saccharomycetaceae taxonomy group). A majority of

40
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these genomes is from the Genbank database [3], the rest are unpublished genomes

provided by prof. Nosek from Faculty of Natural Sciences, Comenius University in

Bratislava. The file of each genome consists of the DNA sequence and an annotation in

a machine-readable text format describing location of protein-coding genes and other

functional elements, their names and function. The level of annotation was different

in almost every sequence which made automated processing of these files complicated.

These are the most important differences between annotations that we had to deal

with:

- missing annotation of introns,

- incorrect protein translations (not agreeing with the DNA sequence),

- nonstandard use of annotation tags (files not adhering to the format).

We had to manually correct the problematic files. Some of the files were not usable so

we omit them from our analysis.

4.1.2 Extraction of desired parts

Using Bioperl library we have extracted protein-coding genes with the surrounding

sequence of fixed length. The length of this sequence on each side of a gene was set to

200 nucleotides. The surrounding sequence was allowed to contain functional elements

(parts of adjacent genes, tRNA genes and others).

We have kept only genes that had an orthologous gene at least in three other organ-

isms. Orthology between genes was easily identified by the same gene names or gene

name synonyms in the annotation. Proteins of genes with unique names were aligned

against predicted orthologous groups to find any additional orthologies. By this pro-

cedure we have managed to extract 323 genes that could be sorted into 15 orthologous

groups. The smallest group contained genes from 13 organisms.
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Figure 4.1: Graphical alignment of COX1 proteins from 33 organisms with positions

of introns. Each row represents a protein from one organism. Positions of introns in

different codon positions are labeled as ”flags” of different color. The sequences are

very similar and most of the introns are located in the same positions. The picture was

generated in program Malin [10].

256 genes were located on the plus strand and 67 on the minus strand. Average

number of exons per gene was 1.44 with 141 introns in the whole set. Average length

of an exon was 577 nucleotides. Average length of an intron was 1289 nucleotides.

Most of the introns were located in COX1 and COB genes. Aligned COX1 genes and

positions of their introns can be seen in Figure 4.1. The largest gene was approximately

13000 nucleotides long.
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4.1.3 Generating the phylogenetic tree

Substitution models we use in MtConrad require a phylogenetic tree with branch

lengths representing evolutionary distances between different organisms and their an-

cestors. Because we did not have a suitable phylogenetic tree of species in our set we

needed to create one from our data.

Figure 4.2: Phylogenetic tree of input species.

First, we created a multiple alignment of protein sequences in each orthologous

group using MUSCLE (see Section 2.6.4). Then we merged all the created alignments

into one alignment by concatenating their columns. Using this alignment and program

PhyML (see Section 2.7.3) we constructed the final phylogenetic tree in Newick format.

This tree can be seen in Figure 4.2.

4.1.4 Estimating parameters of the rate matrices

We used a Nelder-Mead simplex method [26] implemented in Conrad to train the pa-

rameters of the K80 model. Nelder-Mead simplex method is used to minimize a function

of multiple variables without derivatives. We have also modified the implementation

of this method to estimating parameters of the more complex HKY85 model.

We used PAML [31] to generate parameters of the GY94 model (see Section 2.7.1).
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First we extracted coding DNA of each gene. Then we translated these sequences

and aligned them using MUSCLE (see Section 2.6.4). Finally we created a codon

multiple alignment by mapping the codons back to the protein multiple alignment and

replacing each gap in the protein alignment by three gaps. Using this codon multiple

alignment and the phylogenetic tree (see Section 4.1.3) as an input, we ran PAML

with parameters icode=4, model=0, NSites=0 and CodonFreq=2. We extrated the

parameters of the GY94 model from the PAML output. PAML also generated new

lengths for individual tree edges because the definition of the edge length for codon

substitution models differs from the definition used for nucleotide substitution models.

4.2 Evidence-HMM results

In this section we describe the accuracy results of the Evidence-HMM with different

combinations of evidence sources. These results will provide a baseline for the strength

of individual tapes. Another reason is that the HMM can be trained and tested very

efficiently in comparison with CRFs, and therefore we can test different configurations

much more faster.

Test State match Perfect
Exon Coding nucl.

sens spec sens spec
1 H, E, W, C 74.5% 57.7% 0.452 0.267 0.961 0.993
2 H, W, C 62.5% 21.0% 0.237 0.070 0.872 0.859
3 H, E, W 74.6% 59.6% 0.463 0.274 0.959 0.994
4 H, E, C 82.7% 56.1% 0.482 0.326 0.960 0.995

5 H, E 83.4% 56.7% 0.493 0.360 0.961 0.995
6 H, C 59.1% 15.0% 0.193 0.049 0.841 0.832
7 H, W 65.0% 57.6% 0.483 0.298 0.908 0.752

8 H 66.8% 55.1% 0.499 0.351 0.916 0.728

Table 4.1: Results for different evidence sets used by Evidence-HMM. The first column
contains the used evidence sources in the test (H = emission + transition in HMM;
E = Exonerate; W = RNAWeasel; C = comparative). The second column contains
the number of perfectly predicted states. The third column contains the number of
perfectly predicted sequences. Columns four and five contain sensitivity and specificity
of exon prediction. Finally the sixth and the seventh columns contain the sensitivity
and specificity of coding nucleotides (i.e., we are not considering codon positions)

To train and test the evidence-HMM, we have used 319 out of 323 gene sequences.

Four sequences were discarded because they contained an intron with length of 1. The

model was tested using a 6-fold holdout testing, which means that the data set was

divided into six parts and iteratively five parts were used for training and one for

testing. The statistics of all six tests were then joined together. We tested the model
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Test State match Perfect
Exon Coding nucl.

sens spec sens spec
1 H, E, W, C 75.9% 71.4% 0.576 0.520 0.982 0.992
2 H, W, C 68.9% 59.2% 0.523 0.393 0.925 0.817
3 H, E, W 75.6% 70.5% 0.568 0.514 0.979 0.992
4 H, E, C 79.3% 71.7% 0.589 0.541 0.982 0.993

5 H, E 78.9% 70.8% 0.586 0.536 0.979 0.993
6 H, C 68.9% 58.6% 0.517 0.370 0.920 0.801
7 H, W 68.1% 55.4% 0.508 0.376 0.921 0.773

8 H 66.8% 55.1% 0.499 0.351 0.916 0.728

Table 4.2: Test with transition and nucleotide emission log probabilities multiplied by
30.

on all combinations of the given evidence (8 tests total) and found the most probable

annotation using the Viterbi algorithm (see Table 4.1).

The model had a good sensitivity and specificity of coding nucleotides. The number

of perfectly predicted exons was not very good. The number of predicted exons in the

basic model was almost two times higher than in the correct annotation. The more

information we used, the more jumps between exon states and intron states occurred

because of the lowered weight of the transition probabilities. This is why comparative

analysis did not improve in the basic model. This happened especially in the exon

regions. We tried to fix this problem by multiplying selected log probabilities. The

results were very positive as can be seen in the second test although the modifications

were not optimal.

We have performed a set of alternative tests with modified log probabilities of state

transitions and nucleotide emissions (see Table 4.2). This method partially simulates

weights used by CRFs.

These tests clearly show that Exonerate is the most valuable source of evidence.

This can be seen in tests 1 and 2 of table 4.2 where the accuracy of the predictions

notably drops when Exonerate tape is omitted. Comparative analysis positively im-

proved the prediction in every aspect compared to using only the testing sequence (tests

8 and 6). Evidence provided by RNAWeasel seems to have the smallest positive effect.

This is mainly because the evidence effects relatively a small number of nucleotides.

RNAWeasel combined with Exonerate gives worse predictions in this model than Ex-

onerate alone. This is probably because RNAWeasel’s true predictions are a subset

of Exonerate’s true predictions. All of these results are consistent with our previous

conclusions.

We have also tested a state model with allowed ATA start codon (see Table 4.3).
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Test State match Perfect
Exon Coding nucl.

sens prec sens spec
1 H, E, W, C 75.8% 69.5% 0.563 0.513 0.980 0.991
2 H, W, C 68.4% 56.7% 0.518 0.394 0.923 0.808
3 H, E, W 75.5% 68.9% 0.557 0.509 0.978 0.991
4 H, E, C 79.1% 69.9% 0.576 0.535 0.979 0.992

5 H, E 78.8% 69.2% 0.575 0.531 0.978 0.992
6 H, C 68.2% 56.1% 0.517 0.367 0.919 0.792
7 H, W 67.4% 52.3% 0.499 0.367 0.918 0.763

8 H 66.0% 51.7% 0.490 0.334 0.915 0.719

Table 4.3: Allowed start codon ATA. Transition and nucleotide emission log probabil-
ities are multiplied by 30.

Only 5 out of 323 sequences contained start codon ATA. The results were quite similar

although it is clear that in this model it is not optimal to allow it.

4.3 MtConrad results

We have tested MtConrad on a set of 323 genes. The model was tested using a 6-fold

holdout (see Section 4.2) testing with different configurations of evidence features (see

Table 4.4). The combination of Exonerate + RNAWeasel + HKY85 outperformed every

other MtConrad test. This test predicts 78% of sequences perfectly and has 70% exon

sensitivity. It has also the best intron sensitivity reaching 55%. The tests show that

adding either RNAWeasel, or comparative analysis improves the prediction accuracy.

This is in contrast with the results from Evidence-HMM where adding RNAWeasel tape

has lowered the accuracy of the prediction. The accuracy of the prediction is notably

better than with Evidence-HMM although characteristics for coding nucleotides are

very similar (see Table 4.2). We have compared our results also with MFannot [1].

Because MFannot has not yet been published the results are hard to interpret. MFannot

has a much better sensitivity and specificity of both exons and introns. MtConrad has

a better sensitivity of coding nucleotides and perfectly predicted more sequences, which

implies that MtConrad has a better accuracy on intronless genes.

Figure 4.3 illustrates improvements in accuracy achieved by MtConrad compared to

the evidence tapes it uses.
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Test name Match Perfect
Exon Intron Coding nucl.

sens spec sens spec sens spec
1(Exonerate) 87.6% 75.2% 0.645 0.716 0.444 0.562 0.968 0.993

2(Exoner.+RNAW) 90.0% 75.9% 0.669 0.729 0.503 0.566 0.973 0.993
3(K80) 91.6% 76.5% 0.702 0.734 0.552 0.577 0.989 0.991

4(HKY85) 91.2% 78.0% 0.700 0.742 0.552 0.594 0.985 0.993
5(GY94) 90.0% 77.4% 0.680 0.729 0.483 0.538 0.979 0.990

6(MFannot) 93.0% 74.3% 0.766 0.809 0.820 0.820 0.936 0.998

Table 4.4: MtConrad test results and results of MFannot. The first column contains
name of the test, the second column contains the number of state matches and the
third column shows the number of perfectly predicted sequences. Columns 4-9 show
sensitivity and specificity of exons, introns and coding nucleotides. Test 1 shows results
for Exonerate evidence features. Test 2 is a combination of Exonerate and RNAWeasel.
Tests 3, 4 and 5 use both Exonerate and RNAWeasel as well as one of the substitution
models (whose name is in brackets).

Figure 4.3: Visualization of MtConrad’s input and output for gene COB from yeast
Saccharomyces pastorianus. Exonerate tape provides a very good information about
the positions of exons although it did not predict the splice sites very well (red arrows
represent the incorrectly predicted splice sites). RNAWeasel tape (introns) is less sen-
sitive but very specific. We can see that the information from comparative analysis
approximates the positions of introns very well (higher values are more likely exon
positions). In this instance MtConrad predicted the annotation perfectly.



Conclusion

In this thesis we have created and tested a tool for annotation of protein coding genes

in yeast mitochondrial genomes called MtConrad. MtConrad is based on conditional

random fields. Conditional random fields allow us to incorporate information from

many information sources, even if it does not have a probabilistic interpretation. To

produce accurate annotation, our tool combines information from several different ex-

ternal sources. We use Exonerate to align reference proteins extracted from model

organisms to the genome being annotated and RNAWeasel to predict the positions of

introns based on their characteristic structural motifs. We also use multiple alignment

of mitochondrial genomic sequences from several yeast species to look for evolutionary

signatures typical for protein-coding regions.

To estimate parameters of our model and to test its accuracy, we have assembled

a set of 33 yeast mitochondrial genomes. First we test the accuracy of RNAWeasel

and Exonerate on their own and then in various combinations in a simpler tool based

on hidden Markov models called Evidence-HMM, which we have developed for this

purpose. Finally, we test our main tool MtConrad and show that it predicts 78% of

genes and 70% of exons perfectly.

We demonstrate that each of our external sources increases the prediction accuracy.

We also show that MtConrad has a better accuracy than the Evidence-HMM. We

have also compared our tool to MFannot, a recently developed tool that has not yet

been published. We show that MFannot has a better exon and intron sensitivity than

MtConrad while MtConrad has a better sensitivity of coding nucleotides and is better

in predicting intronless sequences.

In future we plan to further improve prediction accuracy of our tool. We want to

use support vector machine to improve the accuracy of the splice site prediction. We

also want to incorporate additional information from RNAWeasel, in particular the

categorization of the predicted introns to increase the accuracy of our position weight

matrices.

The website of our tool is http://compbio.fmph.uniba.sk/mtconrad/. In future

we plan to run our tool as a web service so that it can be conveniently used by life

science researchers.
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Fakulta: Fakulta matematiky, fyziky a informatiky

Katedra: Katedra informatiky
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V tejto práci prezentujeme softvér na ȟladanie protéın-kódujúcich génov v mito-

chondriálnych genómoch kvasiek. Náš nástroj je založený na pravdepodobnostnom

modeli zvanom conditional random fields.

Pomocou tohoto modelu kombinujeme informácie z rôznych zdrojov , aby sme dosi-

ahli zvýšenú presnosť predikcie. Po prvé, zarovnávame protéıny z modelových ograniz-

mov k anotovanému genómu pomocou programu Exonerate. Po druhé, použ́ıvame

program RNAWeasel na predikciu charakteristických štrukturálnych mot́ıvov mito-

chondriálnych intrónov a pomocou tejto informácie určujeme ich poźıciu. Ako posledné

použ́ıvame viacnásobné zarovnania mitochondriálnych DNA sekvencíı z rôznych druhov

kvasiniek, v ktorých ȟladáme regióny, ktoré sa vyznačujú vlastnoštami charakteris-

tickými pre kódujúce časti génov. Tieto tri zdroje informácíı spolu so skúmanou DNA

sekvenciou tvoria množinu pozorovańı, ktorú použ́ıvame v našom pravdepodobnostnom

modeli na ȟladanie exónov a intrónov.

Náš nástroj sme otestovali na sade 33 mitochondriálnych genómov, kde predpovedáme

78% génov a 70% exónov úplne správne. V budúcnosti plánujeme spŕıstupnǐt tento

nástroj tak, aby sa jednoducho použ́ıval.

Kľúčové slová: ȟladanie génov, mitochondriálne gény, conditional random fields,

externé zdroje informácie
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