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Hlavným cieľom tejto práce bolo vyvinúť nástroj na vyhľadávanie RNA motívov,
ktorý by umožňoval vyhľadávať motívy s povolenými chybami ako sú inzercie a
delécie popri chybách ako nezhoda v primárnej sekvencií a chyba komplementar-
ity v sekundárnej sekvencií, ktoré umožňujú súčasné nástroje (napr. RNABob).
Táto práca bola motivovaná praktickou potrebou biochemika M.S. Andreja Lup-
táka PhD. z University of California at Irvine, ktorý používa RNA vyhľadávacie
nástroje pri hľadaní nových RNA génov so špecifickou funkcionalitou.

Na začiatku práce sa venujeme významu a štruktúre RNA. Uvádzame viacero
spôsobov ako sa dá definovať RNA motív pre účely jeho vyhľadávania.

Pre zvládnutie problematiky inzercií a delécií pri vyhľadávaní RNA motívov sme
vyvinuli nový nástroj RNAMot2, ktorému sa venujeme vo väčšine tejto práce. Al-
goritmus implementovaný v RNAMot2 pozostáva z dvoch základných častí. Prvou
časťou je algoritmus na vyhľadávanie výskytov štrukturálnych elementov daného
RNA motívu, ktorý je založený na dynamickom programovaní. Druhou časťou je
backtracking algoritmus použitý v už existujúcom nástroji RNAMot, ktorý slúži
na skladanie jednotlivých výskytov elementov do výskytu celého motívu. Formát
deskriptoru pre náš RNAMot2 je odvodený od formátu používaného programom
RNABob, ktorý sme doplnili o možnosť povoliť inzercie v sekvenciách štrukturál-
nych elementov daného motívu.

Nový nástroj sme empiricky overili v testoch, kde sa potvrdilo, že vďaka možnosti
povoliť inzercie a delécie náš nástroj dokáže nájsť viac biologicky hodnoverných
výskytov hľadaného motívu ako súčasné nástroje. Hoci sa ukázalo, že RNAMot2
výrazne zaostáva v rýchlosti vyhľadávania, uvádzame záverom práce viacero možných
vylepšení od algoritmických po implementačné, ktorých zapracovanie do RNAMot2
by prinieslo značné zlepšenie výkonu.
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The ultimate goal of this work was to develop an RNA motif search tool that,
besides defects allowed by current tools (e.g. RNABob), also allows insertions and
deletions in the occurrences of the motif elements. The work was motivated by
practical needs of a biochemist Dr. Andrej Lupták from University of California
at Irvine, who uses RNA motif search tools to discover new RNA gens of specific
functions.

Early in the thesis we take a more detailed look on the structure of RNA motifs
and explain their role and importance. We also show how descriptors are used to
define permissible deviations from the prescribed motif.

To address the problem of insertions and deletions in RNA motif search, we
have developed a new search tool RNAMot2 and we dedicate most of the text to
its description and evaluation. The algorithm implemented in RNAMot2 consists
of two parts: the new algorithm for search of individual motif elements based
on dynamic programing, and the backtracking algorithm used in an existing tool
RNAMot. RNAMot2 uses motif descriptors compatible with RNABob, that we
have extended to handle insertions.

Our empirical results have shown that RNAMot2 can be more sensitive than
current tools due to the ability to allow insertions and deletions, however is much
slower. Nevertheless, in the end of the thesis we propose several ways how to
significantly enhance the RNAMot2 time performance in the future.
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Introduction

In this thesis we are going to deal with a bioinformatics problem. In particular, our
problem is directly motivated in biology and we need to use computer science and its
instruments to solve it. From this point of view we can understand the RNA motif search
problem as a problem of searching a text pattern with some additional constraints that
are not present in classic text searching problems. These constraints make the search
considerably more difficult.

In the process of translation from sometimes loose biological motif definitions to a
formal language of computer science, we often have to sacrifice some biological information
in return for efficient algorithms. Today we know that spatial structure that a motif
adopts in 3D is an important piece of information and cannot be ignored. However,
searching with secondary structure (2D) restrictions seems to be a good trade, as 3D
constraints are too demanding. Also Webb et al. [2009] in their paper claim that even
though sequence-based search can uncover conserved regions, a structural-based approach
has proven to be more effective at finding new functional RNAs. However, many current
RNA motif searching tools are not capable to handle even simple mutations such as
insertions and deletions, which may occur. This results in loosing sensitivity.

Our goal is to come up with a solution that is capable of handling insertions and
deletions, which means increase of search sensitivity. Simultaneously, we want the search
to run sufficiently fast in practice. However, also after adding the possibility of insertions
and deletions, it is still art of its own, to express all the essential specific information
defining a motif. We leave this job of revealing which parts and substructures of an RNA
motif are the ’carriers’ of its functionality, to the biology experts.
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1 Biological Background

As we are going to search for RNA motifs, we should have a basic understanding of RNA
functionality and structure. To this goal we dedicate this section. We also define the
RNA motif search problem later in the section. The majority of knowledge we present
here on RNA, we have acquired from Durbin et al. [1998], Brazma et al. [2001].

1.1 Functions and Types of RNA

The first widely known RNA function was its role of a passive intermediary messenger
in translation machinery of genes and proteins from DNA. This type of RNA is called
the messenger RNA (mRNA), and carries information from DNA to the ribosome, where
protein synthesis (translation) takes place. The coding sequence of the mRNA determines
the amino acid sequence of the produced protein.

However, the research over past decades shows that there exist many RNAs that do
not code any protein. These types of RNA are called non-coding RNAs (ncRNA). Non-
coding RNAs adopt sophisticated three-dimensional structures, and some even catalyze
biochemical reactions. The best-known examples of ncRNAs are transfer RNAs (tRNAs)
and ribosomal RNAs (rRNAs), both of which are involved in the process of translation.
There are also non-coding RNAs involved in gene regulation, RNA processing, and other
roles. Certain RNAs are able to catalyse chemical reactions such as cutting and ligating
other RNA molecules. Since the startling discovery of catalytic RNAs in the early 1980s,
a number of new structural and catalytic RNAs have been discovered.

1.2 RNA Structure

Ribonucleic acid (RNA) is a polymer, like DNA, constructed from nucleotides. A chain
of nucleotides is called an RNA sequence or an RNA primary structure, whose ends are
marked 5’ and 3’, respectively. The four nucleotides are abbreviated A, C, G and U, what
stand for Adenine, Cytosine, Guanine and Uracil. In contrast, DNA uses thymine (T)
instead of uracil. Thymine is not found in RNA. Because of this minor difference RNA
does not form a double helix, instead it is usually single stranded, but may have complex
three-dimensional structure due to complementary bonds between the parts of the same
strand.

This happens as some nucleotides can bind together to form a pair. G-C and A-U (A-
T in DNA) form hydrogen bonded base pairs and are said to be complementary. These
two canonical base pairs are also known as Watson-Crick pairs, named after James D.
Watson and Francis Crick, who discovered the helical DNA structure in 1953. In addition
to canonical base pairs, also non-canonical pairs occur in RNA secondary structure. The
most common non-canonical pair is G-U pair, which is almost as thermodynamically
stable as Watson-Crick pairs. Other pairs form as well. Non-canonical pairs distort
regular A-form RNA helices. These distortions, being a reason for RNA spatial structure
deviation, seem to be crucial for functionality of some non-coding RNAs. This also
suggests that for some types of RNA, the spatial structure is much more important than
the sequence itself.

As stated above, RNA, unlike DNA, is typically produced as a single stranded molecule
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Figure 1: An example of an RNA secondary structure. [Durbin et al., 1998]

which then folds intramolecularly to form a number of short base-paired stems (or also
called as helices). This base-paired structure is called the secondary structure of the
RNA, and the form which it adopts in 3D space is called the ternary structure. We
distinguish the following secondary structure elements:

Stem (helix) is composed of two subsequences whose every nucleotide base forms a pair
with the opposite base of the second subsequence. These subsequences are called
strands of the helix (stem).

Loop is a structure consisting of single-stranded subsequences connected together by
base pairs.

Hairpin loop is a loop at the end of a helix.

Hairpin is a simple substructure consisting of a simple stem and loop (it is called so
because the structure resembles a hairpin when drawn).

Bulge. Single stranded bases occurring within a stem are called a bulge if the single
stranded bases are on only one side of the stem.

Interior loop. Similarly to a bulge, an interior loop is formed of single stranded bases
occurring within a stem. Unlike a bulge, there must be single stranded bases inter-
rupting both sides of the stem.

Multi-branched loop is a loop from which three or more stems radiate.

Pseudoknot is a structure composed of at least two helices that disturb a nested fashion
of base pairs in RNA secondary structure. That is when a strand of one helix lies
in between strands of another helix.

Examples of secondary structure elements can be seen in Figure 1, for a pseudoknot
please refer to Figure 2.

3



Figure 2: Two different representations of a pseudoknotted structure. The representation
in the left emphasizes which base interactions (dotted) cause the pseudoknot. [Durbin
et al., 1998]

More formally, we can define a secondary structure of an RNA strand of length n
indexed 1 . . . n (starting at the 5’ end) as a set S of pairing interactions (ik, jk) between
ik-th and jk-th base of the strand,

S = {(i1, j1), (i2, j2), . . . , (im, jm) ∣ ∀k ∶ 1 ≤ ik < jk ≤ n; ∄k ≠ l ∶ il = ik ∨ jl = jk ∨ il = jk}

The condition ∄k ≠ l ∶ il = ik ∨ jl = jk ∨ il = jk says that every base may form up to one
pair.

By this definition, we can distinguish two fundamental elements of RNA secondary
structure – single-stranded regions and helical regions.

If we add one more condition that S does not contain any two base pairs (i, j) and
(i′, j′) such that i < i′ < j < j′, then we call such a structure pseudoknot-free, because
the condition forbids pseudoknots. The language of pseudoknot-free RNA secondary
structures is context-free, however the crossing interactions of pseudoknots in full gener-
ality would require context-sensitive grammars [Durbin et al., 1998]. Therefore for many
purposes, as for example database searching for RNA homologues or RNA secondary
structure prediction, it is usually acceptable to sacrifice the information in pseudoknots
in return for efficient algorithms.

1.3 The Task

It is relatively common to find occurrences of homologous RNAs that have a common
secondary structure, although their sequences are not so significantly similar. Drastic
changes in sequence can often be tolerated as long as compensatory mutations maintain
base-pairing complementarity. Thus, it would be advantageous to be able to search
for conserved secondary structure in addition to conserved sequence when searching
databases for homologous RNAs.

Consider the following definition of the RNA secondary structure motif search prob-
lem:

4



Input: – An RNA secondary structure motif with primary structure restrictions and
permissible defects definition.

– A genomic sequence over the alphabet {A,C,G,T,U,N}, where ’N’ stands for
any character and ’U’ is treated as ’T’1.

Task: Find all occurrences of the motif in the sequences. A motif match occurrence must
meet the motif constraints with up to admissible amount of defects.

Output: For every place where a match occurs, return its position in the sequence and
the corresponding matching subsequence.

Note that majority of current tools enable to permit only defects of two types: mis-
matches in primary sequence and mispairs in secondary structure. A mispair occurs when
matched bases in positions which should have been paired are not complementary.

Our goal is to develop a tool, which enables also insertions and deletions of a nucleotide
in the pattern of the structure element. The deletion is equivalent to “not inserting” this
nucleotide in the sequence that already does not contain this nucleotide. Since, deletions
can be reformulated as insertions, the problem reduces to insertions.

1.4 RNA Motif Descriptors

Here we present formats used to describe an RNA secondary structure motif. These
formats, called descriptors, are formats used by existing tools with which we deal in
the following section. A descriptor is composed of both higher-order structural elements
and simple sequence patterns. Descriptors of RNAMot [Gautheret et al., 1990] and
particularly RNABob citepeddy1996 are important, as we use it in our new tool.

1.4.1 RNAMot Descriptor Format

The RNAMot descriptor format is a list of structural elements. The list establishes
elements position in the motif and is followed by further specification of every element.
RNAMot distinguishes two types of structural elements: single-stranded regions (noted
as ’s’) and helical regions (noted as ’H’). Helix notations are present twice in the list
to define the positions of both strands composing the helix. Every helix strand is than
described by a single-stranded motif. Thus, any arrangement of structural elements in
the list is permitted, including pseudoknots. The definition of ’s’ regions does not exclude
the possibility that contained bases may be paired, however such hypothetical pairs are
not considered in the search.

More exactly, the list is called the ’map’ of structural elements (see Figure 3a) and is
followed by a description of the properties of each structural element. For helices (’H’)
are defined properties in this order: the minimal length, the maximal length, the number
of mismatches permitted and finally any primary sequence restrictions (Figure 3b and c).
Then for single-stranded elements (’s’) the same properties (except mismatches) can be
used (Figure 3d and e).

1for the purpose of the RNA motif search there is no difference between uracil and thymine
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Figure 3: An example of RNAMot descriptor. [Gautheret et al., 1990]

Primary sequence constraints (patterns) are described by using the IUPAC notation2.
The last two lines of the descriptor are optional declarations of the order in which elements
are searched (Figure 3f, we describe the role of the search order in the next section), and
the total number of base mismatches allowed for the motif (Figure 3g).

In RNAMot descriptors bases that must be present in a motif match are indicated by
upper-case characters and those optional bases by lower-case characters.

1.4.2 RNABob Descriptor Format

Both RNABob algorithm and descriptor format are derived from RNAMot. However,
RNABob brings many enhancements, but also leaves out some features. In RNABob de-
scriptor there is no difference in meaning of upper-cased and lower-cased nucleotide bases,
also neither the element search order nor the total number of allowed base mismatches
can be specified. But the idea of specifying motif topology (map) first, followed by exact
description of elements properties, remains the same. However, the way of specifying
properties of an element is rather new.

Single strand elements have three attributes: the name of the element in the topol-
ogy map, the number of allowed mismatches in this element, and the primary sequence
constraints that apply to this element.

Properties of a helix are specified in a similar manner, so long as mismatches and
primary sequence constraints are given as pairs, separated by a colon “:”. For primary
sequence constraints, the left side is the constraint applied to the upper strand and the
right side is applied to the lower strand of the helix. For mismatches, the left side
constraints the number of mismatches in the upper strand, while the number on the right
constrains the number of mispaired positions in the helix.

The primary sequence constraint can be given as a sequence of characters according
to the IUPAC notation. Allowed length variations are specified with asterisks *, where
each * allows either 0 or 1 ’N’ at that position. Note that if the number and types (gap or

2see Appendix A
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� �
h1 r1 h2 s1 h2 ’ r1 ’ h1 ’

h1 0 :0 NNN:NNN
r1 0 :0 R:N GNAN
h2 0 :0 **NC:GN**
s1 0 UUCG� �

Figure 4: An example of RNABob descriptor.

identity) of positions do not match on the left and the right side of a helix, the descriptor
is invalid.

RNABob also introduces a new type of elements – relational elements. Relational
element is a generalization of a helical element. In the descriptor, it is marked as ’r’.
A relational element has in comparison with a helical element one more property called
transformation matrix of four nucleotides. The transformation matrix specify the rule
for how complementary bases to A-C-G-T are determined in the strands of the relational
element. Helical elements are then nothing more then relational elements with implicitly
defined transformation matrix as TGYR (RNABob allows G-U pairings for helices by
default).

1.4.3 RNAMotif Descriptor Format

The motif description for RNAMotif is complex and consists of four sections called param-
eters, descriptor, sites and score. In the section called parameters are defined variables
used in the rest of the motif description. The descriptor section defines the criteria re-
quired to generate a match. Relations among the elements are defined in the section
sites, while the score section ranks found matches to the constraints defined by the user.
RNAMotif descriptor format rather reminds a scripting language, specially the score sec-
tion. For more details see the paper by Macke et al. [2001] and RNAMotif user’s manual.

We have been working with fairly simple RNAMotifs, as we do not need the sites and
score sections for our purposes. Examples of such RNAMotif descriptor files can be seen
in Appendix B.
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2 Existing RNA Motif Search Tools

Since early 90’s several publicly available RNA motif search tools have been developed
starting by RNAMot [Gautheret et al., 1990]. In the paper by Gautheret et al. [1990],
the authors define the RNA search problem and devise a structural descriptor for RNA
secondary structure and an algorithm based on backtracking. More efficient implemen-
tation of RNAMot appeared in 1996 under the name of RNABob by Eddy [1996]. The
underlying algorithm uses a nondeterministic finite state automaton with node rewriting
rules. Unfortunately, the details of the algorithm has never been documented. Later,
numerous stand-alone and web-service based tools, such as Palingol [Billoud et al., 1996],
RNAMotif [Macke et al., 2001], PatSearch [Grillo et al., 2003], RNAMST [Chang et al.,
2006], and more, were developed allowing users to define RNA motifs according to their
requirements and search for these motifs in sequence databases. RNABob, RNAMotif
and particularly RNAMot are important for this thesis and therefore will be discussed
later in this section in more detail.

Besides these general purpose motif search tools, tools optimized for search of specific
structural RNA molecules were devised, e.g. tRNAscan-SE [Schattner et al., 2005] to
identify transfer RNA in an RNA sequence, and Riboswitch finder [Bengert and Dan-
dekar, 2004] for riboswitch RNA. For extensive review of current tools, see George and
Tenenbaum [2009].

In this work, we are interested in general tools allowing for search of arbitrary RNA
motifs. These tools can be basically divided into two categories, according to how they
work with a search database: those working on-line and those that need preprocessing.
Further, we can discriminate on the basis of the paradigm used for the search. According
to this, we distinguish tools based on backtracking, and tools using automaton approach.

2.1 The Backtracking Method

The central idea of the backtracking is dividing a motif into several elements (such as
helical regions and single-stranded regions). These elements are subsequently organized
to build a search tree. The search tree is than tried to be matched with the searched
sequence element by element, progressing from leafs up to the root. Algorithms mainly
differ in how the tree is built and matched to a sequence.

The advantage of this approach is the possibility of searching motif elements in ar-
bitrary order. When this order is chosen well, that is when we choose motifs of high
specificity first, the search time can be remarkably reduced. Further, the divide and con-
quer paradigm is used, what means that the problem is divided into smaller subproblems,
solution of which are easier to find and can be combined to get a solution of the original
problem. In this case the problem is reduced to the problem of searching for individual
elements. An important disadvantage is that it is more complicated to ensure integrity
of a found match when its elements are of variable length.

RNAMot and RNAMotif fall into this category, and also we have decided to use this
approach in our RNAMot2. In what follows, RNAMot and RNAMotif are described in
more detail. We dedicate Section 3 to a description of our new tool RNAMot2.
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2.1.1 RNAMot

RNAMot is a program devised by Gautheret et al. [1990]. The most important part of
RNAMot for this thesis is Simple Scan backtracking algorithm described in the paper.
We have used this backtracking algorithm in our RNAMot2, thus we will refer to it also
later in Section 3. The underlying algorithm for motif structural elements matching used
in RNAMot is unfortunately not described in the paper.

The Simple Scan Algorithm

The main procedure stores already matched structural elements in an array of intervals
that authors call a grid. Every interval from the grid stands for the position in the
sequence of a match of a strand in the motif. For example, the following motif:

M =H1, S1,H2, S2,H2, S3,H3, s4,H3, S5,H1

has a corresponding grid:

G = i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11

Single-stranded elements (’s’ regions) and helical elements (’H. . . H’), are searched in the
order in which elements are searched may differ from the order in which they appear in
the motif. The order is determined by a list of elements,

E = se1, se2, . . . , sen

The algorithm successively searches the sequence for each element of list E. Once an
occurrence of an element is found, its position (one interval for single-stranded regions
and two for a helix) is stored into its corresponding position in a grid (for a helix that
are actually two positions, one for its first strand and one for the second). The algorithm
continues the search for the next element in the list E. The search for any element is
confined by the positions of elements already inserted in the grid. If a searched element sei
cannot be found in the sequence, than the position of the previous element sei−1 is removed
from the grid and the algorithm continues with the search of a new occurrence of sei−1.
When the end of list E is reached, we have a complete match of the motif; the solution is
stored and the search goes on recursively. The complete pseudocode is listed bellow, see
Listing 1. The speed of the algorithm is very sensitive to the search order, thus priority
should be given to searching highly specific elements such as single-stranded regions with
strict sequence requirements and well-defined double-stranded (helical) regions. However,
the default search order in RNAMot is constituted of helical elements of the motif ordered
as they appear in the motif.

After the Simple Scan algorithm finsishes, RNAMot continues with a scoring phase.
The goal of this evaluation procedure is to extract optimal solution from many options
provided by the search algorithm.
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Listing 1: The Simple Scan algorithm [Gautheret et al., 1990]� �
Definitions
SE secondary structure element. Contains the following information:

size range, sequence (optional ), number of mismatches (for
helices ) and the number of nucleotides between the two strands
(for helices ). This latter item is calculated by the program.

INTERVAL two integers defining the position of a continuous sequence.
DOMAIN list of one or two intervals (in which a given SE should be found).
GRID array of intervals used to construct and store solutions . Each

interval stands for a given SE.
motif the list of all SEs.
E the list of SEs to be searched.
seq the sequence being analyzed.
G a grid .
D a domain
se an SE.
solutions a list of GRIDS.
match a list of one or two intervals (describing the position of a given

SE in the sequence). A ’helix ’ match is defined by two intervals
and a ’ single−strand’ match by one interval.

Program SIMPLE SCAN (seq, motif, E)
G := [null , null , . . ., null ]
solutions := 0
find motif (1, seq, motif, E, G, solutions)

Procedure find motif (i, seq, motif, E, G, solutions)
se i := i−th SE of E
D := get domain (G, seq, motif, se i)
match := first match (se i, D)
while match < > 0

G := set grid (G, se i, match)
if se i = last SE of E

append G to solutions
else

find motif (i+1, seq, motif, G, E, solutions )
match := next match (se i, D, match)

end while
G := reset grid (G, se i)
end procedure

Function get domain (G, seq, motif, se)
Returns the domain in which se should be found (considering intervals already
set in G and the SEs lengths in ’motif ’). The returned domain is a list of
two intervals in the case of a ’ helix ’ SE or a list of one interval in the case
of a ’ single−strand’ SE.
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Function first match (se, D)
Returns a list of one or two intervals which describes the next occurrence of
a se in the domain D. The returned match is a list of two intervals in the case
of a ’ helix ’ SE or a list of one interval in the case of a ’ single−strand’ SE.

Function next match (se, D, match)
Same as first match except that search starts at positions defined in ’match’.

Function set grid (G, se, match)
Returns the grid G with interval(s) for SE se set to interval (s) in ’match’.

Function reset grid (G, se)
Returns the grid G with interval(s) for SE se set to null .� �

2.1.2 RNAMotif

RNAMotif is based on a two-stage algorithm devised and published by Macke et al. [2001].
In the first stage the given descriptor is converted to a search tree based on the helical
nesting of its elements. Therefore this stage is called the ’compilation stage’. This tree
construction is based on noting that a helix can be represented as a binary tree where
the root of the tree is the helix itself, the left sub-tree is the motif between the strands
of the helix and the right sub-tree is the motif that follows the helix.

A difficulty comes with pseudoknots, as they contain overlapping helices. To solve this
problem the authors propose a tree composed of all the helices that form the pseudoknot
as follows. The root of the structure becomes the left-most helix of the pseudoknot and it
has n− 1 interior nodes (n ≥ 4) that represent the motifs that are contained inside all the
helices that form the pseudoknot. Once again, the right-most sub-tree is the motif that
follows the pseudoknot. Eventually, single-stranded elements are represented as binary
trees that have an null left sub-tree (because, opposite to helices, a single-stranded element
never has any interior elements) and at most one non-null right sub-tree describing the
motif that follows the single-stranded region.

During the first stage also a number of consistency checks take place, for example
testing that all specified lengths of the individual strands of a helix are the same or
testing that if a motif element contains both explicit length specifications and implicit
length constraints derived from sequence specifications, the two are compatible.

The second stage is a depth first search of the tree that was created by the compilation
stage. It begins by searching the sequence for an occurrence of the left-most sub-motif
of the descriptor from the left-most position. In case of several possible solutions, the
algorithm examines all of them. The search algorithm is then recursively called to find
all solutions of the sub-motif of the left-most interior region or, if all interior regions have
been searched, the algorithm is applied to the region following the left-most motif. When
a complete match is found, it is optionally evaluated by a scoring section which accepts
or rejects the particular solution. Capabilities of RNAMotif scoring section are very rich
and this part of RNAMotif belongs to its major strengths. Once all possible matches at
a particular recursion level have been examined, the algorithm returns to the previous
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level and continues with the next unexamined match from the previous level. If the top
level is encountered, the search is moved one position to the right. The search ends when
all positions in the sequence has been examined.

The disadvantage of this approach is impossibility to determinate a search order
different from the order determined by the tree structure.

Similarly to Gautheret et al. [1990] also Macke et al. [2001] gives no word on how
occurrences of the motif elements are searched in the sequence.

2.2 Automaton Approach

The motif search can be also formulated as a problem in the domain of formal languages
and automata. From this point of view, the motif requirements are a formal language of
all its possible instances. That is, all words, that are plausible occurrences of the motif
in a genomic sequence over the alphabet of nucleic acids. The search problem becomes a
problem of recognizing such a language corresponding to the motif. What we need is an
automaton which accepts (recognizes) the language and its computation can be efficiently
implemented as a computer program.

The structure of helices (two complementary strands) implies, that the motif language
is no simpler then context-free languages that can be accepted by deterministic push-down
automata. But pseudoknots make a motif more complex and cause that deterministic as
well as nondeterministic push-down automata are not capable of its acceptance. However,
a Turing machine is surely enough, since the algorithms mentioned above can be carried
out by a Turing machine.

For the purpose of developing a motif search tool more exact classification would not
bring a significant benefit, because implementation of such an automaton would probably
not be efficient. Nevertheless, using automaton approach to obtain a hybrid method can
be worthwhile. An example of this is RNABob.

2.2.1 RNABob

RNABob is a search tool developed by Eddy [1996]. Regrettably, no paper on it has
been published. We have only fragmentary information about how does it work from
its short user’s guide and the source code. It is said to be an efficient implementation
of RNAMot using a nondeterministic finite state automaton with node rewriting rules.
Further, for primary sequence matching RNABob uses a regexp subroutine and Rabin-
Karp algorithm3.

3a string searching algorithm using hashing
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3 The New Algorithm

We named the new algorithm as RNAMot2. It uses the backtracking technique of
RNAMot [Gautheret et al., 1990]. However, we have developed a new element matching
algorithm, which is based on dynamic programming and is capable of finding an element
match with up to specified amount of defects. If RNABob (an efficient RNAMot im-
plementation) is used, the specified defect can only be a mismatch in primary sequence
constraint or a mispairing in a helix. With RNAMot2 we bring a new feature, the ability
to allow another defect. We enable to specify an insertion of a nucleotide base in the motif
element. Since a deletion can be equivalently reformulated as an insertion, we this way
enable deletions as well. The following text is dedicated to this new dynamic program-
ming and RNAMot2 implementation. The backtracking needed to combine individual
elements is identical to RNAMot Simple Scan algorithm described in Section 2.1.1.

3.1 Dynamic Programming Used in RNAMot2

To solve the matching problem, we have devised an individual recurrence for both single-
stranded elements and helical elements. The recurrences can be solved by dynamic
programming. To facilitate implementation of dynamic programming, we equivalently
formulate every recurrence in a form of backward recurrence and in a form of forward
implications.

3.1.1 The Recurrence for Single Strand Elements

The task is to find all occurrences of pattern P in text T with at most M mismatches
and N insertions of symbol I. Insertions in a match before the first and after the last
symbol of P are forbidden, moreover adjacent insertions are forbidden too. Note, that in
order to keep track of positions in P and T , and of number of occurred mismatches and
insertions, we create four corresponding dimensions of the recurrent function. Further,
to meet the latter condition, we add the fifth dimension which stands for the fact that
latest aligned symbol of T is insertion.

In what follows we define a function S:

Si,j,m,n,b ∈ {0,1} ;

i ∈ {0..∣T ∣} , j ∈ {0..∣P ∣} ,m ∈ {0..M} , n ∈ {0..N} , b ∈ {0,1}

Si,j,m,n,b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 iff P [1..j] can be aligned with a suffix of T [1..i]
with m mismatches and n insertions;
if b = 1 then T [i] is insertion

0 otherwise

Backward recurrence

Initial condition: ∀i ∈ {0..∣T ∣} Si,0,0,0,1 ∶= 1

The recurrence:
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Si,j,m,n,0 =⋁

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⋁
b
Si−1,j−1,m−x,n,b x ∶= (int)(T [i] does not fit P [j])

Si,j−1,m,n,0 iff P [j] =’∗’ (skip a wild card)

Si,j,m,n,1 =⋁

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Si−1,j,m,n−1,0 iff T [i] fits I (insertion)

Si,j−1,m,n,1 iff P [j] =’∗’ (skip a wild card)

Forward implications

Initial values: ∀i ∈ {0..∣T ∣} Si,0,0,0,1 ∶= 1

Implications:

x ∶= (int)(T [i + 1] does not fit P [j + 1])

Si,j,m,n,0 ⇒ Si+1,j+1,m+x,n,0
Si,j,m,n,0 ∧ P [j + 1] =’∗’ ⇒ Si,j+1,m,n,0

⋮ ∧ T [i + 1] fits I ⇒ Si+1,j,m,n+1,1

Si,j,m,n,1 ⇒ Si+1,j+1,m+x,n,0
Si,j,m,n,1 ∧ P [j + 1] =’∗’ ⇒ Si,j+1,m,n,1

3.1.2 The Recurrence for Helical Elements

The task is to find all occurrences of helical pattern P ∶ P ′ where P , P ′ are strand patterns
(∣P ∣ = ∣P ′∣ and P ′ is complementary to P ) in text T with at most M mismatches, MP
mispairings and together up to N insertions of a symbol I in both strands. Insertions
are not allowed in a match before the beginning and after the end of a strand pattern.
Insertions must not be adjacent nor opposite in the helix. For this purpose we extend
the recurrent function for single strand elements.

We define a function H as follows:

Hi,j,k,m,p,n,b ∈ {0,1} ;

i, j ∈ {0..∣T ∣} , k ∈ {0..∣P ∣} ,m ∈ {0..M} , p ∈ {0..MP} , n ∈ {0..N} , b ∈ {0,1}

Hi,j,k,m,p,n,b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 iff P [1..k] can be aligned with a suffix T ′ of T [1..i] with
m mismatches, P ′[1..k] can be aligned with a prefix T ′′

of T [j..∣T ∣] with no mismatch, T ′ and T ′′ contain together
n insertions, and between T ′ and T ′′ are p mispairings;
if b = 1 then exactly one of T [i], T [j] is insertion

0 otherwise
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Backward recurrence

Initial condition: ∀i, j ∈ {0..∣T ∣} Hi,j,0,0,0,0,1 ∶= 1

The recurrence:

x ∶= (int)(T [i] does not fit P [k])
y ∶= (int)(T [j] is not complement of T [i])

Hi,j,k,m,p,n,0 =⋁

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⋁
b
Hi−1,j+1,k−1,m−x,p−y,n,b iff T [j] fits P ′[k]

Hi,j,k−1,m,p,n,0 iff P [k] =’∗’1 (skip a wild card)

Hi,j,k,m,p,n,1 =⋁

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hi−1,j,k,m,p,n−1,0 iff T [i] fits I (insertion)

Hi,j+1,k,m,p,n−1,0 iff T [j] fits I (insertion)

Hi,j,k−1,m,p,n,1 iff P [k] =’∗’1 (skip a wild card)

Forward implications

Initial values: ∀i, j ∈ {0..∣T ∣} Hi,j,0,0,0,0,1 ∶= 1

Implications:

x ∶= (int)(T [i + 1] does not fit P [k + 1])
y ∶= (int)(T [j − 1] is not complement of T [i + 1])

Hi,j,k,m,p,n,0 ∧ T [j − 1] fits P ′[k + 1] ⇒Hi+1,j−1,k+1,m+x,p+y,n,0
⋮ ∧ P [k + 1] =’∗’1 ⇒Hi,j,k+1,m,p,n,0

⋮ ∧ T [i + 1] fits I ⇒Hi+1,j,k,m,p,n+1,1
⋮ ∧ T [j − 1] fits I ⇒Hi,j−1,k,m,p,n+1,1

Hi,j,k,m,p,n,1 ∧ T [j − 1] fits P ′[k + 1] ⇒Hi+1,j−1,k+1,m+x,p+y,n,0
⋮ ∧ P [k + 1] =’∗’1 ⇒Hi,j,k+1,m,p,n,1

3.2 Extension of RNABob Descriptor

The descriptor format of RNAMot2 is essentially derived from the format of RNAMot
while taking over all changes brought by RNABob as described in Section 1.4. Therefore
descriptors of RNABob are fully compatible with our RNAMot2. However, we add two
features.

First and foremost, we add the ability to specify the number and type of allowed
insertions in the structural element of a motif. The type of insertion specify which
nucleotide bases can be inserted, using the characters according to IUPAC notation4.

1 ∀k (P [k] =’∗’ ⇔ P ′[k] =’∗’)
4see appendix A on page 31
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� �
h1 r2 s1 r3 r4 s2 r5 s3 r4 ’ r2 ’ h1 ’ r5 ’ s4 s5 s6 r3 ’

h1 0 :0 G:Y
r2 0 :1 NNNNN* :*NNNNN TGCA
s1 0 NN[ 1 5 0 ]
r3 0 : 1 : 1 ***NNNNNN:NNNNNN*** :A TGCA
r4 0 :0 NNN:NNN TGCA
s2 0 TY
r5 0 :0 C:G TGCA
s3 0 HCG*Y
s4 0 N
s5 0 NNN[ 1 5 0 ]
s6 0 C*RA*

R s3 s6 s2 r4 r5 h1 r2 r3 s4 s5 s1� �
Figure 5: An example of RNAMot2 descriptor. Pay attention to definition of r3 element
into which one insertion of Adenosine is allowed. The last line is reorder command
specifying the search order.

Secondly, we bring back the RNAMot reorder command which specify the order in
which elements are searched. If this command is absent or does not contain all elements,
it is automatically supplemented by all remaining elements in order calculated by an
unsophisticated heuristic which prefers longer elements with fewer wild cards.

An example of RNAMot2 descriptor can be seen in Figure 5. More descriptors are
listed in Appendix B.

3.3 Implementation Notes

Implementation of the RNAMot backtracking technique is quite straightforward and is
done similarly to pseudocode in Section 2.1.1. The computation of the correct search
domain of an element according to already matched elements is more tricky, though.
Also, to carry out the dynamic programming as stated above in an array is infeasible,
thus we require a different approach.

3.3.1 Search Domain Computation

For a single strand element, search domain is a pair of intervals. The first interval restricts
where the next match must begin while the second interval restricts where it must end.
Note that these two intervals are usually not disjoint.

These intervals are computed from another two intervals which we named upper do-
main bound and necessary coverage interval. Upper domain bound is an upper estimate
of the interval where a next match is allowed to occur. The necessary coverage interval
is the interval which necessarily must be covered by a next valid match. Both upper
domain bound and necessary coverage interval can be computed from the gap between
the first element already matched on the left and the first element already matched on the
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max length of s2 max length of s4

min length of s2 min length of s4
upper domain bound

necessary coverage interval
s5 matchs1 match

Figure 6: Ilustration of how the search domain is calculated. Here we have a partly
matched motif composed of five single strand elements labeled from s1 to s5. Let the
search order to be s1, s5, s3, s4, s2. We can see that elements s1 and s5 have already
been matched and the search domain for s3 needs to be computed. Carrying out the
computation stated in the text, we optain the search domain formed by the two green
intervals.

right, as the gap boundaries cut by minimum and maximum length of so far unmatched
elements in between, respectively (see Figure 6). When we have the upper domain bound
and necessary coverage interval it is obvious that a valid match must start at a position
between the beginning of the upper domain bound and the beginning of the necessary
coverage interval while its end must be in the interval between the end of the necessary
coverage interval and the end of the upper domain bound.

For a helical element, search domain is composed of domains for its two strands that
are calculated as stated above. The minimum and maximum distance permitted between
the strands is not taken into account here, but during the computation of the dynamic
programming.

Looking for element matches with restrictions given by its search domain guarantees
the consistency of the entire motif match, which is the ultimate purpose of search domains.

3.3.2 The Search for Structural Elements

Computing the dynamic programming in classic manner is inefficient due to the number
of dimensions and sparse incidence of ones. Thus, we represent a table of dynamic
programming as a list of coordinates where the ones occur. For this purpose, we use
self-balancing red-black binary search tree implemented in C++ STL. Insertion of an
element or finding an element in a red-black tree takes a time logarithmic in the number
of the elements in the tree.

Therefore, instead of filling a table, we are rather coloring a graph. Vertices of the
graph are coordinates of the table and edges are given by the corresponding function
defined in Section 3.1. More accurately out-going edges are given by forward implications
and incoming edges by the backward recurrence. For coloring the graph, we need to
search the graph starting from the initial conditions. This is done by breadth first search
in time linear in the number of vertices times the logarithmic factor coming from the
red-black tree. That is O(∣T ∣∣P ∣ ⋅ log ∣T ∣∣P ∣) and O(∣T ∣∣P ∣2 ⋅ log ∣T ∣∣P ∣2) for single-stranded
element, and for helical element, respectively. If we want to reconstruct a match or find
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� �
Sta r t i ng rnamot2 : v e r s i on dev1 . 7 , May 2010
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Database f i l e : database /dm chr2R . f a
Desc r ip to r f i l e : d e s c r i p t o r s / r17 . des
Search order : H1 H2 S2 S1
F i l t e r out over lapp ing h i t s : no
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

seq− f seq−t name d e s c r i p t i o n
−−−−−− −−−−−− −−−−−−−−−−−− −−−−−−−−−−−−

10909 10925 chr2R
|GGTT|A|AA|ATTA|TT|AATC|
13391 13407 chr2R

|TGGG|A|CG|ATTA|TG|TCTG|
127690 127706 chr2R
|GAGA|A|AA|ATTA|TT|TTTC|
145280 145296 chr2R
|TTAA|A|GG|ATTA|TT|TTAG|� �

Figure 7: An example of RNAMot2 output.

its beginning, we need to trace the process back to the initial condition. This operation
has liner time complexity in the length of the match.

3.4 Input and Output Formats

RNAMot2 takes exactly two parameters. The first parameter is a path to a file containing
motif descriptor to be searched and the second is a path to the sequence database which
is a text file in FASTA format.

In FASTA format symbol ’>’ precedes a single-word name for the sequence, the rest
of the line is taken as description. Subsequent lines contain the sequence itself, e.g.

>gi|173609|gb|M28984|ACARRDX A.castellani 5S ribosomal RNA
GGATACGGCCATACTGCGCAGAAAGCACCGCTTCCCATCCGAACAGCGAAGTTAAGCTGCGCGAGGCGGT
GTTAGTACTGGGGTGGGCGACCACCCGGGAATCCACCGTGCCGTATCCT

Output is printed on the standard output and consists of a header and of a list of
matches found. The header contains elementary information about the run of RNAMot2,
including identification of RNAMot2 version, used database and descriptor files, and the
order in which elements were searched. Matches in the list are in the order as they were
found in the database file from its beginning to its end. Every match is compounded of
two lines. The first line gives the name and description (if any) of the sequence where
this match occurs, the beginning position where the match starts in the sequence and
the ending position where the match ends. This line is followed by a line containing the
match itself, which is the substring of the sequence defined by the starting and ending
positions. A symbol of pipe ’|’ delimits individual elements of the match. For example
see Figure 7.
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4 Experimental Results

In this section we evaluate RNAMot2 performance. The implementation of the algorithm
is described in the previous section. We compare RNAMot2 to RNABob and RNAMotif.

Empirical tests are composed of two main categories. The first is search time of a
program and the second category is the number of non-overlapping matches found (that is
the maximum integer N , such that there exist N disjunct intervals containing all results).
We compare the number of matches in this way because matches found by a program
may overlap and the main goal of the motif search is not to find many motif matches at
the same place, but rather to identify the regions where the motifs occur.

4.1 Motifs Used in the Evaluation

We decided to use both simple and more complex motifs. From the category of simple
motifs we used the following motifs:

� Motif of consensus binding site for the phage R17 coat protein [Eddy, 1996, Durbin
et al., 1998]. In the following text we refer to this motif as “R17 ”.

� Motif of an simple artificial structure with a bulge [Macke et al., 2001].

� Motif of a simple pseudoknotted structure, it is extremely degenerated and makes a
lot of matches. [Eddy, 1996].

For further evaluation of performance and features unique to RNAMot2, we used motifs
used in practice by biologists. That are these motifs:

� Generalized motif of a tRNA cloverleaf [Eddy, 1996].

� Motif of Hepatitis delta virus ribozyme (HDV ribozyme) [Lupták, 2010].

� Motif of Sassanfar aptamer (adenosin) [Lupták, 2010]. In the following text we
refer to this motif also as “ATPapt”.

When using RNAMot2 to search for the motif of a tRNA cloverleaf and HDV ribozyme,
we have also used a descriptor with reorder command to determine which elements of
the motif should be searched first. Moreover, for the motif search of HDV ribozyme and
ATPapt, we have also allowed for insertions allowed in some of the helices. Impact of
stated changes on performance of RNAMot2 is discussed later in this section. For exact
descriptors used, please see Appendix B.

4.2 Used Genomic Sequences

We have chosen real RNA and DNA sets of sequences as follows:

� gbrna.111.0 which contains all of the sequences of the RNA section of Genbank,
release 111, from April 1999. This data set contains a total number of 2264722
bases.
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� dm-chr2 which is the second chromosome of Drosophila melanogaster, it contains
21146708 bases. [UniGene]

� dm-chr3 which is the third chromosome of Drosophila melanogaster, it contains
27905053 bases. [UniGene]

4.3 Testing Environment

All tests were run on a dual-processor computing cluster equipped with two quad-core
Intel®Xeon®2.27GHz processors and 16GB of RAM. Despite the number of processing
cores available, only a single core per program run was used.

On the machine was running operating system Ubuntu 9.04. Further, we have used
C/C++ compiler GCC 4.3.3, GNU parser generator Bison 2.3, and fast lexical analyzer
generator – FLEX 2.5.35. The last two stated programs are needed for RNAMotif to run.

We were using RNABob v2.1 released in 1996. It was compiled with the following
flags:

CFLAGS = -O3 -D POSIX C SOURCE=200112

The second flag was required for backward compatibility with legacy C code.
RNAMotif was used in its latest version v3.0.5 released in 2008. Compilation was

performed with the same flags as for RNABob.
Our programRNAMot2 is implemented in C++ as a console application and was also

compiled with optimization of highest level (-O3).

4.4 Methodology

Every motif was searched in every sequence database by every program. In addition,
to see how the search order of motif elements and allowed insertions into a motif affect
the performance of RNAMot2, we have also carried out several RNAMot2 searches with
modified descriptors.

Search time of every program was measured by the built-in shell command time. We
have used the real time spent by the process, not taking into account time spent on
system calls, paging, etc.

As stated earlier in this section, the number of matches means the maximum number
of non-overlapping matches in the output. We have created a simple tool to facilitate
such evaluation.

4.5 The Results

All results are in joint Table 1. Subsequently, for every motif there are two graphs, one
for the number of matches and one for search time.
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gbrna.111.0 dm-chr2 dm-chr3
# matches time (s) # matches time (s) # matches time (s)

motif of R17
RNABob 1 0.18 187 2.55 225 3.31
RNAMotif 1 0.07 187 0.71 225 0.98
RNAMot2 358 7.83 187 74.95 225 97.85

motif of a simple bulge
RNABob 4875 0.69 12790 6.13 16845 8.04
RNAMotif 3401 0.22 9834 1.93 13113 2.53
RNAMot2 6185 23.93 12792 213.14 16845 291.23

motif of a simple pseudoknot
RNABob 2390 0.92 15392 8.09 20513 10.66
RNAMotif 3557 3.31 34476 33.12 45974 43.71
RNAMot2 3116 24.99 15392 264.61 20513 335.42

motif of a tRNA cloverleaf
RNABob 367 2.1 399 25.73 541 34.02
RNAMotif 299 2.18 0 26.46 0 34.89
RNAMot2 534 2237.07 399 22188.7 541 31980.5
RNAMot2
w/ reorder

534 8.34 399 83.58 541 112.75

motif of HDV ribozyme
RNABob 5 51.55 7 918.95 3 1200.19
RNAMotif 32 62615.2 – >86400 – >86400
RNAMot2 – >86400 – >86400 – >86400
RNAMot2
w/ reorder

38 1003.9 5 29421.3 3 37490.8

RNAMot2
w/ reorder
& insert.

42 1014.07 11 28578.2 7 39830.4

motif of ATPapt
RNABob 0 0.06 0 0.85 0 2.48
RNAMotif 0 0.07 0 0.64 0 0.85
RNAMot2 0 4.21 0 40.98 0 53.54
RNAMot2
w/ insert.

0 4.22 0 40.06 0 53.10

Table 1: The results

4.5.1 R17

In gbrna.111.0 RNAMot2 has found much more occurrences of R17 than its competitors,
however these additional hits were usually composed of significant amount of N characters
that stands for any base. Such characters occur in the database when a part of RNA/DNA
is unknown.

From the figure 9 is obvious that our RNAMot2 is quite slower, anyway its search
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time is acceptable.

4.5.2 Bulge

The situation with this motif is rather balanced, but RNAMotif is falling behind returning
less hits.

The search time needed by RNAMot2 is considerably higher but can be assessed
as real-time. From the ratio of output quality and search time, we find it better than
RNAMotif.

4.5.3 Pseudoknot

RNABob and RNAMot2 are performing from the output point of view very similarly.
However, RMAMotif returns lots of hits with insertions which were not specified in the
descriptor. One of such extra matches is “GTTTT CT TTGAT AGAAC GAAA GTCAG” at posi-
titon 824 in Amblyomma americanum 18S rRNA sequence from gbrna.111.0 database,
whose alignment to the seqence is as follows:

GTTTT CT TTGAT CAAGAAC GAAA GTCAG
GTTTT CT TTGAT --AGAAC GAAA GTCAG

RNAMotif has allowed insertion of “CA” into the second helix of the pseudoknot, what is
not allowed by the descriptor as can be seen in Figure 24 (Appenix B).

Despite the fact that the insertions are not allowed by the descriptor, this behavior
is probably desired by RNAMotif authors, as they want to find as many as possible
reasonable matches (with little defects according to descriptor). RNAMotif then rely on
its robust scoring section.

The graph of search time in Figure 13 proves RNAMot2 to be again slower, however
with more demanding motif the gap ratio is showing to decrease.

4.5.4 tRNA

Again, RNAMot2 and RNABob returns almost the same results. We have no explanation
to what happened with RNAMotif that it did not found a single match in chromosomes
of Drosophila melanogaster.

When it comes to more real and complex motif, the situation is about to change. For
the first time in our set of tests we have used reorder command of RNAMot2 to help the
program to decide which elements of the motif should be search first. As we can see in
Figure 15, the search time of RNAMot2 has been significantly reduced and is not very
falling behind the time of RNABob and RNAMotif.

4.5.5 HDV ribozyme

This motif is the most demanding motif from our test. RNAMot2, without good search
order specified by user in descriptor, was not able to finish in 24 hours. Also, RNAMotif
runs out of the time limit when searching in chromosomes of Drosophila melanogaster
that are roughly 10 times longer than the length of gbrna.111.0 database. Therefore zero
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number of hits in Figure 16 means that a program did not managed to finish in 24 hour
time limit.

Because this motif may occur with an insertion of Adenosine into one of its helices,
we run RNAMot2 also with modified descriptor allowing one insertion of this type.

When looking at the number of discontinued number of hits found, RNAMot2 is doing
well and with allowed insertion it finds considerably more plausible matches.

From search time point of view RNABob is performing the best by far. RNAMot2
with reorder command finished within the time limit with time from ∼8 to ∼11 hours on
chromosomes of Drosophila melanogaster. So, good search order shows to be crucial for
RNAMot2 time performance, while an insertion to the motif had not significant influence
on the search time.

4.5.6 Sassanfar aptamer

For this motif, we have graph only for search time because none of the programs found
a match in the databases. From this test-run, we can see that if elements of a motif are
not occurring often in a database then every program is quite fast.

4.6 Results Summary

Our tests have shown that RNAMot2 and RNABob usually find the same set of matches
when searching the same descriptor. But with the new feature enabling to allow insertions
in the motif elements is RNAMot2 even more sensitive. Due to the feature more of
plausible motif occurrences, such with specified mutations, can be found. This fact
documents the test with motif of HDV ribozyme. RNAMot2 is also more sensitive then
RNAMotif. This is important when searching for new genes.

The drawback of our RNAMot2 is speed. In this field RNAMot2 sometimes consid-
erably falls behind the others. However, also our tests reveal that the time performance
can be improved significantly. To this we dedicate the next section.
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5 Future Work

The experimental results stated in the previous section imply that our RNAMot2 needs
some improvement in the area of time performance. Here, we present several ideas which
should help to reach the desired progress in this field.

5.1 Suitable Search Order

In the previous section, we have shown that the search order of individual elements can
significantly affect running time. By a good search order we want to achieve that as little
as possible partly matches which cannot be spread to full matches advance to next level
of the backtrack search. In other words, we want to cut false branches of the backtracking
as soon as possible and spend as little time as possible at places where it is not to match
the entire motif.

Thus we should first search for highly specific elements whose random occurrence in
a sequence is unlikely. For example, single strand elements with strict primary sequence
requirements and well-defined helical elements are often highly specific. On the other
hand, elements of very variable length and/or motif, should be searched the last, since
they can actually help to fill the gap between adjacent elements.

Elements of high specificity and a good search order is a matter of heuristic involving
statistics. A research of this issue can bring significant speed-up of the search for complex
motifs with many elements. Current implementation enables a user to specify the search
order, but in the future choice of a good ordering should be automated.

5.2 Filtering

Even with a good search order of elements, the very first elements are searched in the
entire sequence (which is usually very large) or in its large portion. The time complexity of
the dynamic programming for single-stranded elements is basically linear in the length of
the sequence and pattern. For helical elements the dependence on the length of a pattern
is quadratic. Also, we have to take into account the time complexity of operations over
the underlying data structure which are logarithmic in case of the used balanced search
tree.

We have to pay this price if we want to execute an absolutely correct element searching,
but may be in the first step of the search, we would like to prefer speed in favor of the
quality. Here comes the idea of filtering. The goal of filtering is to sort out as many
segments of the sequence in which the motif occurrence is not possible, while the time
used is shorter than the time of the correct search. Only the surviving segments of the
sequence are searched by the correct more-time-consuming search.

Such filtration can be done in many different ways. Here, we present ideas based on
algorithms for approximate string matching [Gusfield, 1997].

The first method is devised by Baeza-Yates and Perleberg [1992] and have been used
in their BYP method for k-difference approximate string matching. It is based on the
following lemma:

Let r = ⌊
∣P ∣
k+1⌋, and partition P into consecutive r-length regions. Suppose P

matches a substring T ′ of T with at most k differences. Then T ′ must contain
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at least one interval of length r that exactly matches one of the r-length
regions of the partition of P .

On this lemma we can base a filtering method also for our problem. First, we choose from
the searched motif M elements with well defined primary sequence constraints. Denote
this constraints as patterns Pi. For such Pi we know the number ki of allowed defects5.
Secondly, by partitioning the Pi according to the lemma we are getting a set of partitions
Si. Let S = ⋃i Si. Than the lemma implies that an occurrence of the motif M must
contain all the elements of S as non-overlapping substrings.

This is a standard searching problem that can be solved by well-known liner-time al-
gorithms, such as Aho-Corasik or Boyer-Moore extended to set matching. After applying
the filter only those parts of the sequence which contains occurrences of all strings from
S close together and in correct order would be searched by our algorithm.

In addition to filtering methods used in algorithms for approximate string matching,
also the algorithms itself can be used for filtering as well. Since there are linear and sub-
liner expected time algorithms [Gusfield, 1997], the idea above can be adopted. However,
the algorithms usually cannot be easily modified to cope with IUPAC nucleic acids nota-
tion6 used to describe primary sequence constraints. The problem is caused by characters
with ambiguous meaning. The problem arise, for example, when a suffix tree is used.

5.3 Faster Data Structure

In present RNAMot2 implementation, as stated in Section 3.3.2, usage of Red-black
trees adds a logarithmic factor to the time complexity of the dynamic programming. In
expected case this factor can be eliminated by changeover to hash maps whose operations
are of constant time complexity in expected case.

5.4 Trade Memory for Speed

There is also possibility of trading more memory for speed. One way of doing this is to
do more caching. Another method can be the Four-Russians speed-up [Arlazarov et al.,
1970, Gusfield, 1997]. This approach leads to speed-up of the dynamic programming. The
general idea lies in precalculation of a function for blocks of original dynamic programming
table. The table is then filled in block after block rather than cell by cell.

5.5 Parallelism

The previous statements apply to algorithm itself, nevertheless that is not the only point
to which optimization applies. In practice, the real time spent on a run is what counts
when speaking about time performance. Modern machines bring another possibility to
cut the time. Since a searched sequence, if significantly longer than a search motif, can
be easily divided into shorter sequences (with appropriate overlap) then the problem can
be divided into smaller instances which can run in parallel. Taking advantage of today’s
multi-core systems may lead to a significant speed-up.

5that is the number of allowed insertions and mismatches in the corresponding element
6see Appendix A on page 31
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Conclusion

Applications of computer science is usually have an interdisciplinary aspect. In this
work we consider a problem, where informatics and biology meet in bioinformatics. We
have been dealing with a problem proposed by biological science which can be exactly
formulated in the language of computer science as a pattern matching problem. Chemical
principles in nature cause the searched patterns – RNA motifs – to be decomposable
into elements that contain internal dependencies. Moreover, biological variability, as for
example mutations and similar chemical properties of some different nucleotide bases
or base pairs, make the definition of an RNA motif more abstract and also leads to
requirements where complex error patterns are allowed. The ability to meaningfully
define admissible errors is important, as only matches with variations that do not change
biochemical functionality of the motif substantially are desired. All the conditions make
the search problem more difficult, however the search must be efficient enough to enable
motif search in extensive genomic databases.

In this work, we have designed a new tool facilitating the search. We named the
tool RNAMot2. RNAMot2 search algorithm basically consists of two parts. One part is
an element matching algorithm based on dynamic programming and the second part is
a backtracking algorithm to combine the individual motif element matches in a match
of the entire motif. We adopted a backtracking algorithm from existing tool RNAMot
[Gautheret et al., 1990].

As stated above, the possibility to search with errors is very important for finding
plausible matches. For this purpose, besides errors definable by current tools, we have
introduced possibility to allow insertions of a nucleotide base (of defined type) into the
motif element sequence. Furthermore, since a deletion of a nucleotide base (of defined
type) in the motif element sequence can be equivalently reformulated as an insertion, we
brought by this way support for deletions, too. In order to enable such new declaration, we
have supplemented the RNABob motif descriptor and we have proposed a new dynamic
programming algorithm for element search.

We tested RNAMot2 and compared its performance with RNABob and RNAMotif.
Our empirical results have proven that RNAMot2 can be considerably more sensitive due
to allowing insertions and deletions. Our tool has turned out to be significantly slower,
however, tests on descriptors with good reorder command have revealed one of possible
ways to reduce RNAMot2 search time. We also propose more ways to accomplish further
time reduction, for example sequence prefiltering and code optimization.
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A Appendix: The IUPAC Notation

Symbol Meaning Mnemonic

DNA Bases A Adenosine Adenosine
C Cytosine Cytosine
G Guanine Guanine
T Thymine Thymine

Ambiguity Characters R G + A puRine
Y T + C pYrimidine
S G + C Strong interactions (3H bonds)
W T + A Weak interactions (2H bonds)
K G + T Keto
M A + C aMino
D G + T + A Not-C (D follows C in alphabet)
H T + A + C Not-G (H follows G)
B G + T + C Not-B (B follows A)
V G + A + C Not-T or U (V follows U)
N G + A + T + C aNy

Table 2: The IPUAC nucleic acid notation
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B Appendix: Used Descriptors

In this appendix we present exact listings of all descriptors of motifs which were used for
performance assessment of our RNAMot2 against RNABob and RNAMotif.

B.1 R17

This motif is consensus binding site for the phage R17 coat protein. It is composed of a
stem with a single-base A bulge and a 4-base loop. [Eddy, 1996]� �
h1 s1 h2 s2 h2 ’ h1 ’

h1 0 :0 NNNN:NNNN
h2 0 :0 NN:NN
s1 0 A
s2 0 AUYA� �

Figure 19: Listing of R17 descriptor for RNABob and RNAMot2

� �
parms

wc += gu ;

desc r
h5 ( tag =”1” , l en =4)

s s ( l en =1, seq=”A” )
h5 ( tag =”2” , l en =2)

s s ( l en =4, seq=”ˆAUYA$” )
h3 ( tag=”2” )

h3 ( tag=”1” )� �
Figure 20: Listing of R17 descriptor for RNAMotif

B.2 Bulge

This is a motif of an simple artificial structure with a bulge. [Macke et al., 2001]� �
h1 s1 h2 s2 h2 ’ s3 h1 ’

h1 0 :0 NNN:NNN
s1 0 N**
h2 0 :0 NNN:NNN
s2 0 GNRA
s3 0 N**� �

Figure 21: Listing of descriptor of a bulge for RNABob and RNAMot2
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� �
parms

wc += gu ;

desc r
h5 ( l en =3, s t r i c t =3 )

s s ( minlen =1, maxlen=3 )
h5 ( l en=3 )

s s ( seq=”ˆGNRA$” )
h3
s s ( minlen =1, maxlen=3 )

h3� �
Figure 22: Listing of descriptor of a bulge for RNAMotif

B.3 Pseudoknot

This is a motif of a simple pseudoknotted structure. It is not modeled on anything in
particular, and is extremely degenerated and makes a lot of matches. [Eddy, 1996]� �
h1 s1 h2 h1 ’ s3 h2 ’

h1 0 :0 NNNNN:NNNNN
h2 0 :0 NNNNN:NNNNN

s1 0 N**
s3 0 NNN**� �
Figure 23: Listing of descriptor for a simple pseudoknotted structure for RNABob and
RNAMot2

� �
parms

wc += gu ;

desc r
h5 ( tag =”1” , l en=5 )

s s ( minlen =1, maxlen=3 )
h5 ( tag =”2” , l en=5 )
h3 ( tag=”1” )

s s ( minlen =3, maxlen=5 )
h3 ( tag=”2” )� �

Figure 24: Listing of descriptor for a simple pseudoknotted structure for RNAMotif
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B.4 tRNA

Generalized descriptor of a tRNA cloverleaf. However, it does not find them all. [Eddy,
1996]� �
h1 s1 h2 s2 h2 ’ s3 h3 s4 h3 ’ s5 h4 s6 h4 ’ h1 ’ s8

h1 0 :2 NNNNNNN:NNNNNNN
h2 0 :1 *NNN:NNN*
h3 0 :1 NNNNN:NNNNN
h4 0 :1 NNNNN:NNNNN
s1 0 TN
s2 0 NNNN**********
s3 0 N
s4 0 NNNNNN*
s5 0 NN********************
s6 0 TTC****
s8 0 NCCA� �

Figure 25: Listing of tRNA descriptor for RNABob and RNAMot2

� �
h1 s1 h2 s2 h2 ’ s3 h3 s4 h3 ’ s5 h4 s6 h4 ’ h1 ’ s8

h1 0 :2 NNNNNNN:NNNNNNN
h2 0 :1 *NNN:NNN*
h3 0 :1 NNNNN:NNNNN
h4 0 :1 NNNNN:NNNNN
s1 0 TN
s2 0 NNNN**********
s3 0 N
s4 0 NNNNNN*
s5 0 NN********************
s6 0 TTC****
s8 0 NCCA

R s8 h4 s6� �
Figure 26: Listing of tRNA descriptor for RNAMot2 using reorder command
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� �
parms

wc += gu ;

desc r
h5 ( minlen =7,maxlen=7)

s s ( seq=”ˆTN$” )
h5 ( minlen =3,maxlen=4)

s s ( minlen =4,maxlen=14)
h3
s s ( l en =1)
h5 ( minlen =5,maxlen=5)

s s ( minlen =6,maxlen=7)
h3
s s ( minlen =2,maxlen=22)
h5 ( l en =5)

s s ( l en =7, seq=”ˆTTC”)
h3

h3
s s ( seq=”ˆNCCA$”)� �

Figure 27: Listing of tRNA descriptor for RNAMotif
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B.5 HDV ribozyme

This is a loose form of Hepatitis delta virus (HDV) ribozyme motif. [Lupták, 2010]� �
h1 r2 s1 r3 r4 s2 r5 s3 r4 ’ r2 ’ h1 ’ r5 ’ s4 s5 s6 r3 ’

h1 0 :0 G:Y
r2 0 :1 NNNNN* :*NNNNN TGCA
s1 0 NN[ 1 5 0 ]
r3 0 :1 ***NNNNNN:NNNNNN*** TGCA
r4 0 :0 NNN:NNN TGCA
s2 0 TY
r5 0 :0 C:G TGCA
s3 0 HCG*Y
s4 0 N
s5 0 NNN[ 1 5 0 ]
s6 0 C*RA*� �

Figure 28: Listing of HDV ribozym descriptor for RNABob and RNAMot2

� �
h1 r2 s1 r3 r4 s2 r5 s3 r4 ’ r2 ’ h1 ’ r5 ’ s4 s5 s6 r3 ’

h1 0 :0 G:Y
r2 0 :1 NNNNN* :*NNNNN TGCA
s1 0 NN[ 1 5 0 ]
r3 0 :1 ***NNNNNN:NNNNNN*** TGCA
r4 0 :0 NNN:NNN TGCA
s2 0 TY
r5 0 :0 C:G TGCA
s3 0 HCG*Y
s4 0 N
s5 0 NNN[ 1 5 0 ]
s6 0 C*RA*

R S3 S6 S2 r4 r5 h1 r2 r3 s4 s5 s1� �
Figure 29: Listing of HDV ribozym descriptor for RNAMot2 using reorder command
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� �
h1 r2 s1 r3 r4 s2 r5 s3 r4 ’ r2 ’ h1 ’ r5 ’ s4 s5 s6 r3 ’

h1 0 :0 G:Y
r2 0 :1 NNNNN* :*NNNNN TGCA
s1 0 NN[ 1 5 0 ]
r3 0 : 1 : 1 ***NNNNNN:NNNNNN*** :A TGCA
r4 0 :0 NNN:NNN TGCA
s2 0 TY
r5 0 :0 C:G TGCA
s3 0 HCG*Y
s4 0 N
s5 0 NNN[ 1 5 0 ]
s6 0 C*RA*

R s3 s6 s2 r4 r5 h1 r2 r3 s4 s5 s1� �
Figure 30: Listing of HDV ribozym descriptor for RNAMot2 using reorder command and
insertions

� �
desc r

h5 ( tag=”h1r2 ” , minlen =6, maxlen=7, seq=”ˆG”)
s s ( minlen =2, maxlen=152 )

h5 ( tag=”r3 ” , minlen =6, maxlen=9)
h5 ( tag=”r4 ” , minlen =3, maxlen=3)

s s ( seq=”ˆTY$”)

h5 ( tag=”r5 ” , minlen =1,maxlen=1, seq=”C”)
s s ( seq=”ˆHCG$”)
s s ( minlen =1,maxlen=2, seq=”Y$”)

h3 ( tag=”r4 ”)
h3 ( tag=”h1r2 ”)
h3 ( tag=”r5 ”)

s s ( minlen =4, maxlen=154 )
s s ( minlen =1, maxlen=2, seq=”ˆC”)
s s ( minlen =2, maxlen=3, seq=”ˆRA”)

h3 ( tag=”r3 ”)� �
Figure 31: Listing of HDV ribozym descriptor for RNAMotif
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B.6 Sassanfar aptamer (adenosin)

More strict form of Sassanfar aptamer (adenosin) motif. [Lupták, 2010]� �
h1 r2 s1 r3 h4 s2 h4 ’ r3 ’ s3 r2 ’ h1 ’

h1 0 :0 ***** :*****
r2 0 :0 NNNN:NNNN TGCA
r3 0 :0 CNNN:NNNG TGCA
h4 0 :0 ***** :*****

s1 0 GGAAGAAACTG
s2 0 NNN[ 1 7 ]
s3 0 G� �
Figure 32: Listing of Sassanfar aptamer (adenosin) descriptor for RNABob and RNAMot2

� �
h1 r2 s1 r3 h4 s2 h4 ’ r3 ’ s3 r2 ’ h1 ’

h1 0 : 0 : 1 ***** :***** :A
r2 0 :0 NNNN:NNNN TGCA
r3 0 :0 CNNN:NNNG TGCA
h4 0 : 0 : 1 ***** :***** :A

s1 0 GGAAGAAACTG
s2 0 NNN[ 1 7 ]
s3 0 G� �
Figure 33: Listing of Sassanfar aptamer (adenosin) descriptor for RNAMot2 using reorder
command and insertions

� �
desc r

h5 ( minlen =4,maxlen=9)
s s ( seq=” ĜGAAGAAACTG$” )
h5 ( minlen =4,maxlen=9, seq=”CNNN$”)

s s ( minlen =3,maxlen=20)
h3
s s ( seq=”ˆG$” )

h3� �
Figure 34: Listing of Sassanfar aptamer (adenosin) descriptor for RNAMotif
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