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Abstrakt

V tejto práci navrhujeme dátové štruktúry na uchovávanie zarovnaní genó-

mov viacerých organizmov. Cieľom je efektívne mapovať pozície a regióny

z jedného genómu na iný na základe ich evolučných vzťahov. V práci opisu-

jeme niekoľko známych dátových štruktúr, ktoré umožňujú vykonávať ope-

rácie rank a select na binárnych reťazcoch a využívame tieto operácie na

navrhnutie riešenia nášho problému. Toto riešenie sme taktiež naimplemento-

vali a odmerali jeho efektivitu na skutočných údajoch, pričom sme porovnali

viaceré varianty tejto implementácie. V porovnaní s existujúcim nástrojom

na mapovanie liftOver naša implementácia mapuje pozície efektívnejšie, ale

potrebuje viac času na inicializáciu.

Kľúčové slová: zarovnanie, celogenómové zarovnanie, mapovanie pozí-

cií, mapovanie regiónov, rank, select
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Abstract

In this thesis we design data structures for storing alignments of genomes

from multiple species. The goal is to efficiently map positions and regions

from one genome to another based on their evolutionary relationships. We

provide an overview of several known data structures for the rank and select

operations on binary strings and use these operations to design a solution

to our problem. We have then implemented this solution and measured its

performance on real data, comparing several variants of our data structure.

Compared to the mapping tool LiftOver, our implementation maps positions

more efficiently, but requires longer initialization times.

Keywords: alignment, whole-genome alignment, position mapping, re-

gion mapping, rank, select
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Introduction

Aligning sequences encoding genetic information of multiple species is a com-

mon approach to finding similarities between the species. Usually an align-

ment consists of a reference sequence to which one or more other sequences

are aligned in blocks of variable length. There are many software solutions

implementing algorithms that align sequences.

Once these alignments are computed, we are facing another task – we

need to store them in a data structure allowing us to efficiently find regions

in other sequences corresponding to a given region on the reference sequence.

Since whole-genome alignments are large, we want to minimize the amount

of data kept in memory.

A working solution needs to account for the fact that throughout evolu-

tion, the genomes of all species are subject to mutations, which means that

some of the aligned sequences will contain extra substrings which appeared

by insertions while others will have certain regions deleted.

In this thesis, we propose and implement an approach to this problem

using succinct data structures supporting the rank and select operations on

binary strings. We have chosen this approach, because these data structures

are time and space efficient.

We start with a detailed description of the problem along with an overview

of work already done in this area. Afterward we explain known data struc-

tures for rank and select and describe how they can be used to implement

mapping of positions and regions from one genome to another. Finally, we

compare the performance of various rank and select solutions in a practi-
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cal implementation using real-world alignment data and also compare our

solution to an existing mapping tool.
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Chapter 1

Problem statement and related

work

In this chapter we explain why alignments of sequences representing genomes

are important from the biological point of view and formally define the prob-

lem we are aiming to solve. We finish this chapter with an overview of related

work.

1.1 Biological motivation

DNA molecules encoding genetic information in living organisms are orga-

nized in two facing strands which are linear chains of nucleotides. Each

nucleotide contains exactly one base – adenine, cytosine, guanine or thymine

and faces a nucleotide from the opposite strand. Each pair of facing nu-

cleotides contains complementary bases, i.e. a nucleotide with an adenine

base faces a nucleotide containing thymine and a cytosine nucleotide faces

a guanine nucleotide and vice versa. In addition, the structures of the two

strands are reverse to each other, which means the beginning of one strand

faces the end of the other one.

It is natural to represent genomes as sequences of letters A, C, G and T,

corresponding to the four bases. These sequences are obtained from physical

3



agaattgtactgttctgtat------cccaccag

ggaggtg-actggtctgtcccctctgccccccag

Figure 1.1: An example of a real-world alignment. The first sequence is taken

from the first chromosome of a human and the second one is taken from the

27-th chromosome of a dog.

DNA samples via sequencing. We usually store a sequence of bases contained

in a single strand; as the strands are reverse and complementary to each

other, the sequence of the other strand can be easily determined from the

stored one.

There are several tasks where it is convenient to align DNA sequences

of different species. Simply put, it means finding parts of the sequences

where they are sufficiently similar to each other. A real-world example of

an alignment is shown in figure 1.1. Once this is done, we can use this

information to solve other tasks requiring us to relate these sequences to

each other.

One example of such a task is reconstruction of phylogenetic trees. A

phylogenetic tree shows the evolutionary relationships between species. We

assume all of the given species have a common evolutionary ancestor and

try to trace, based on their genetic information, the most probable course

of evolution that resulted in the given outcome. Usually we expect the

species with the most similar sequences to have a close common ancestor

while species whose genetic information differs more have a distant common

ancestor. There are various tree reconstruction algorithms that solve this

problem based on an alignment of sequences from several species [Dur+98].

Another problem where alignments are applied is the search for genes,

i.e. regions of DNA that hold information about proteins. Genes themselves

are less likely to change than other parts of the DNA. That means the re-

gions that vary only slightly even between distantly related species are good

candidates for genes.

Lastly, sometimes we know a certain gene in a given organism, but we do
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not know its function. We can try to look up the corresponding (orthologous)

gene in a different species where the purpose of this ortholog might be better

known and use it as a point of reference.

1.2 Formal definitions

Having an intuitive idea of what an alignment is good for, let us define

it more formally. We start with simple pairwise alignments and then use

them to define alignments of multiple sequences and, finally, whole-genome

alignments.

1.2.1 Pairwise alignments

Pairwise alignments provide the basic building block for more complex align-

ments. They show the similarities between a pair of sequences.

Definition 1.1 An alignment of sequences S0 = a0 . . . an−1 and S1 = b0 . . . bm−1

is a function f : Zn → Zm ∪ {⊥} satisfying the following condition:

(∀i, j ∈ Zn)(f(i) 6= ⊥ ∧ f(j) 6= ⊥ ∧ i < j)⇒ (f(i) < f(j))

In other words, an alignment is a strictly increasing function that maps

positions in the first sequence to positions in the second sequence, but we

allow some of the positions in S0 to have no corresponding position in S1 by

mapping them to ⊥.

An alignment thus defined is best visualized using a table. Each line

contains one of the aligned sequences and each column corresponds to a pair

of nucleotides. If a position in the first sequence maps to ⊥, we represent

this in the table by putting a dash instead of a nucleotide in this column for

the second sequence. Similarly, if a position in the second sequence has no

position from the first one associated, we write a dash above the nucleotide.

We refer to successive groups of dashes as gaps. See figure 1.2 for an example.

5



012 3

--AGC-T

GCA-CGT

012 345

i f(i)

0 2

1 ⊥
2 3

3 5

Figure 1.2: Example of a local alignment of sequences S0 = AGCT and S1 =

GCACGT. Left: visualization as a table, right: alignment function.

GCATATATG

CATATATG-

(a) f1

GCATATATG--------

---------CATATATG

(b) f2

GCATATATG

-CATATATG

(c) f3

Figure 1.3: Multiple possible alignments of a single pair of sequences

Given a pair of sequences there are many possible alignments between

them. Figure 1.3 shows three of the many possible alignments for a pair of

sequences. Clearly, the first two alignments give practically no information

about the similarity of the two sequences whereas the third one makes it

apparent. Therefore we use a scoring system to distinguish useful alignments

from useless ones.

Usually a scoring function assigns a negative score to each gap or pair

of mismatched nucleotides while a positive score is assigned to matching

nucleotides. The score of an alignment is then the sum of scores for each

pair of nucleotides and each gap. This way, an alignment with many equal

nucleotides aligned to each other and only few gaps and mismatches will get

a high score.

For example, let us assign a score of +1 to each pair of equal nucleotides

and −1 to each gap or unequal pair. With this scoring function, alignments

f1, f2 and f3 from figure 1.3 would get scores −9, −17 and 7 respectively.

As we could expect, f3 has the highest score among the three presented

alignments, since it is the only one with equal nucleotides aligned to each

other.
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S0: AAA-GATGTTAAATGA---GTT

S1: -AATGATGTTAAACGA-TTATT

S2: -AA-GGTGCTCAATGAGTTGTT

Figure 1.4: A multiple alignment of three sequences

Aligned sequence pair Score

S0: AAA-GATGTTAAATGA--GTT
9

S1: -AATGATGTTAAACGATTATT

S0: AAAGATGTTAAATGA---GTT
7

S2: -AAGGTGCTCAATGAGTTGTT

S1: AATGATGTTAAACGA-TTATT
7

S2: AA-GGTGCTCAATGAGTTGTT

Figure 1.5: The score of the three-sequence alignment from figure 1.4 com-

puted as the sum of scores of the individual sequence pairs yields 23. Note

that we omit columns that contain only gaps from the pairwise alignments.

1.2.2 Multiple-sequence alignments

The tabular representation shown for simple alignments can be naturally

extended to alignments of multiple sequences, see figure 1.4. We can extend

scoring as well, for example by computing the score of alignment between

each individual pair of sequences in this multiple alignment and adding them

to get the score of the whole multiple-sequence alignment. Refer to figure

1.5 for an illustration.

We provide an alternative definition in which one sequence has a special

meaning.

Definition 1.2 A multiple-sequence alignment of sequences S0, S1, . . . , Sn is

a tuple of functions f1, . . . , fn where fi is an alignment of sequences S0 and Si.

Sequence S0 is called the reference sequence and S1, . . . , Sn are informants.

Using this definition it is impossible to express all the information that can

be contained within a table. For instance, the alignment table presented in
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figure 1.4 contains information about the alignment of S1 and S2 in columns

17 through 19 which are filled with a gap in S0. This cannot be specified

by a multiple-sequence alignment following definition 1.2 as functions fi only

contain information about columns where the reference sequence does not

have a gap. However, for the purposes of this work this definition is sufficient.

1.2.3 Whole-genome alignments

Pairwise and multiple alignments defined above are useful for representing

relationships between relatively short related sequences. We will now turn

our attention to whole-genome alignments. During evolution, portions of

DNA may be reversed, moved or copied to different positions, and therefore

it is impossible to display an alignment of whole genomes in the form of a

simple table. Instead we need to split the genomes into reasonably sized

regions better suited to form simple alignments. Alignments of these short

regions make up whole-genome alignments.

The following set of definitions gives a formal overview of several common

terms.

Definition 1.3 1. A chromosome is a pair (S, id) where S is a sequence

of characters A, T, C, G, each representing a nucleotide, and id is an

identifier of the chromosome.

2. A genome is a non-empty set of chromosomes, where each of the chro-

mosomes has a unique id.

3. A region is a tuple (id, i, j, s), where id identifies a chromosome, i, j are

indices into the sequence S of the chromosome specifying the range’s

end points, and s is either + or − and specifies the strand of the range.

If s is +, the range describes a substring of S starting at i and ending at

j. If s is −, the range describes the reverse of the complement of such

a substring, where A is complementary to T and C is complementary to

G.
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4. A position is a tuple (id, i, s) where id is an identifier of a chromosome,

i is an index into the sequence S of the chromosome and s specifies the

strand.

Pair (CTCCGAACGTGATTG, chr1) is an example of a chromosome. Region

(chr1, 5, 10,+) represents its substring GAACGT, while region (chr1, 5, 10,−)

represents sequence ACGTTC. Similarly, position (chr1, 2,+) points to a T,

while position (chr1, 2,−) points to its complement, which is A.

Definition 1.4 A whole-genome alignment of genomes G0, G1, . . . , Gn is a

set of multiple-sequence alignments, where:

(i) each multiple-sequence alignment aligns a region of a chromosome from

G0 to regions of a subset of genomes G1, . . . , Gn

(ii) each region from G0 lies in the + strand

(iii) each nucleotide of each chromosome in G0 is contained in at most one

multiple sequence alignment

We call G0 the reference genome, and G1, . . . , Gn are informant genomes.

Put differently, a whole-genome alignment is organised in blocks where

each block aligns parts of a subset of informant genomes to a region of the

reference genome. No part of the reference genome appears in two different

blocks. If within a block an informant does not have any alignment to the

reference genome with a sufficiently high score, it may be omitted from the

block altogether.

1.3 Problem statement

The goal of this thesis is to study the following problem. We want to pre-

process and store a given whole-genome alignment, so that we can efficiently

map positions and regions from the reference genome to each informant. This

allows us to find genes orthologous to known genes in the reference genome
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or regions of informants aligned to other regions of interest from the reference

genome.

In particular, we will support the following two queries:

a) map position(P, g) returns for a given position P = (id, i, s) in the refer-

ence genome the position in the genome Gg aligned to P .

b) map region(R, g) returns for a given region R = (id, i, j, s) in the refer-

ence genome a region in Gg aligned to R.

For single-position queries, in case the reference position is aligned to a

gap, we want either of the two informant positions adjacent to this gap. If

there is no block containing position P , or the block containing P does not

contain a range from genome Gg, the mapping does not exist.

For region queries we need a set of extra constraints for the result. If

the whole region fits within a single alignment block, the mapping is clear

and well defined. However, if the end points of the source region reside in

different blocks, there is a valid mapping only if the following conditions are

met:

i) in all blocks overlapping the query region, the region of the informant

belongs to the same chromosome and the same strand

ii) the positions of regions of the informant sequence contained within these

blocks, ordered by the positions of the respective reference regions, form

a monotonous sequence, and this sequence is increasing for the forward

strand and decreasing for the reverse strand of the informant

In other words, we require the mapped region of the informant to be

colinear to the source region. This means that if we order the blocks involved

by their reference position, regions of the informant have to follow each other.

As a result, it is possible to take such blocks and merge them into a pairwise

alignment between some region of G0 and some region of Gg.

Note that successive blocks do not need to follow one another immediately

in the informant genome Gg. The sequence between successive blocks will

10



correspond to a gap in the reference sequence in the merged alignment. Sim-

ilarly, some blocks might not contain the informant Gg at all, which would

result in a gap within the informant sequence in the merged alignment.

1.4 Input format

Whole-genome alignments can be stored for example using the Multiple

Alignment Format [Maf]. MAF is a simple human-readable text format which

consists of blocks separated by blank lines. This format was introduced with

the Threaded Blockset Aligner and MULTIZ programs [Bla+04].

Lines starting with anything but an ‘s’ contain metadata which is irrel-

evant for our purposes and can thus be ignored. Each line starting with an

‘s’ describes a single sequence region present in the block and contains the

following whitespace-separated fields:

• the name of the sequence, usually consisting of the name of the species

and the name of chromosome

• the position of the region start in the whole sequence of the chromosome

• the length of the region

• the strand of DNA this region resides in

• the size of the whole sequence

• the actual nucleotides of this region, interleaved with dashes represent-

ing gaps

The strand is indicated as either a + or a - sign. In case of a + the sequence

region given is from the forwad strand and in case of a - the region is taken

from the complementary strand with coordinates relative to the beginning of

the reverse strand.

The last field describing the sequence region itself is similar to the tabular

representation of alignments described in the previous section. It is a string

11



track name=euArc visibility=pack

##maf version=1 scoring=tba.v8

# tba.v8 (((human chimp) baboon) (mouse rat))

a score=23262.0

s hg18.chr7 27578828 38 + 158545518 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG

s panTro1.chr6 28741140 38 + 161576975 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG

s baboon 116834 38 + 4622798 AAA-GGGAATGTTAACCAAATGA---GTTGTCTCTTATGGTG

s mm4.chr6 53215344 38 + 151104725 -AATGGGAATGTTAAGCAAACGA---ATTGTCTCTCAGTGTG

s rn3.chr4 81344243 40 + 187371129 -AA-GGGGATGCTAAGCCAATGAGTTGTTGTCTCTCAATGTG

a score=5062.0

s hg18.chr7 27699739 6 + 158545518 TAAAGA

s panTro1.chr6 28862317 6 + 161576975 TAAAGA

s baboon 241163 6 + 4622798 TAAAGA

s mm4.chr6 53303881 6 + 151104725 TAAAGA

s rn3.chr4 81444246 6 + 187371129 taagga

a score=6636.0

s hg18.chr7 27707221 13 + 158545518 gcagctgaaaaca

s panTro1.chr6 28869787 13 + 161576975 gcagctgaaaaca

s baboon 249182 13 + 4622798 gcagctgaaaaca

s mm4.chr6 53310102 13 + 151104725 ACAGCTGAAAATA

Figure 1.6: Sample MAF file taken from the MAF format specification [Maf]

consisting of letters and dashes where each letter represents a nucleotide and

dashes indicate gaps. Usually the fields in a MAF file are indented with

spaces to make them vertically aligned within each block. This makes MAF

files more human-readable.

An example of a short MAF file is presented in figure 1.6.

1.5 Related work

In this section we give a brief overview of known solutions to the mapping

problem we have defined and other related problems.
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TGAAG---CGTACCGTT

CGAAGTCCCCTAG--TT

5 0 3

5 2 0

2

Figure 1.7: Example of an alignment (left) with its corresponding chain

(right). The first number in the first line indicates that the alignment starts

with 5 gapless columns. The other two numbers in the line indicate that

there are no nucleotides in the first sequence and 3 nucleotides in the second

one between the two leading gapless blocks. The last line only contains one

number as it corresponds to the last block.

1.5.1 LiftOver

LiftOver is a utility which is a part of the Kent source utilities, used in

the UCSC genome browser [Ken+02]. This tool works with pairwise whole-

genome alignments and maps regions from one genome in the alignment to

the other.

The pairwise alignment needs to be processed into a set of chains before-

hand. A chain represents how a pair of regions of two sequences is aligned to

each other. It consists of a list of blocks, where each block corresponds to a

gapless set of successive columns of the alignment. (Note the difference be-

tween blocks in liftOver chains and blocks in whole-genome alignments that

correspond to whole chains.) In each chain block three numbers are stored:

the length of the block and for each sequence the number of nucleotides that

have to be skipped to reach the following block. Figure 1.7 shows an example

of an alignment along with the chain corresponding to it.

Each block of the pairwise alignment is transformed into a chain. LiftOver

then reads this set of chains into memory and uses it to find region mappings.

The chains are stored in memory using a technique called binning.

Binning is a method of storing intervals by putting each into a bin which

is determined by the end points of this interval. This technique divides

the space of all possible intervals into multiple levels of bins. There is one

top-level bin, which represents the whole range of possible coordinates. The
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second level contains eight smaller non-overlapping bins that divide this range

into equal parts. Each level is a subdivision of the previous one in a similar

manner.

Each bin can only contain intervals fully contained in the range corre-

sponding to this bin. Conversely, each interval belongs to the smallest bin

capable of accommodating it. Within bins, intervals are stored as linked

lists.

LiftOver stores the chains in bins based on their position in the reference

genome. When mapping a region, it searches through all bins overlapping

this region to find the chain containing it and then walks through the list

of chain blocks to find the end points of the queried regions and their cor-

responding positions in the informant, thus finding the aligned informant

region. Therefore the running time is in the worst case linear, but in practice

each bin contains only a small number of chains and most chains are rela-

tively short, which means that in the average case, the performance of this

tool is sufficient.

1.5.2 SAMtools

The Sequence Alignment/Map format and a set of tools accompanying it,

called SAMtools [Li+09], are designed to store alignments of many short

sequences to a single long contiguous sequence. This is mainly useful for

DNA sequencing where the equipment is only capable of extracting short

reads from DNA molecules, which are then aligned to a reference sequence.

Due to the nature of these alignments, instead of mapping positions or

regions from one sequence to another, SAMtools implement slightly different

types of queries, such as retrieving the number of reads aligned to a given

position. Because the amount of data retrieved from modern sequencing

instruments is usually orders of magnitude higher than the sizes of MAF

files we are working with, the files cannot be loaded into memory.

In addition to the SAM format, which is text-based, these tools also

implement support for BAM, the Binary Alignment/Map format. This is a
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binary compiled version of a SAM file, which significantly reduces the storage

requirements and speeds up operations on alignments stored in this format.

1.5.3 Nested Containment Lists

In 2006, Alekseyenko and Lee [AL07] proposed a data structure to store

intervals, which supports efficient search for intervals overlapping a queried

range. Their experiments show that this technique is more efficient than

binning used in LiftOver.

Intervals may correspond to alignment blocks or other genomic features.

In contrast to our problem, authors also consider overlapping intervals (our

blocks are non-overlapping in the reference genome).

The NCList data structure stores intervals in a list sorted by their starting

positions. If an interval is contained in another one that precedes it, instead

of being stored in the same list, it is stored in a separate NCList within the

containing interval. Thanks to this invariant, the coordinates of interval ends

in one level of the list are also increasing in the list sorted by interval starts.

To find all intervals overlapping a queried range, binary search is used

on the outermost list of intervals to find the first interval with overlap. The

list is then traversed sequentially starting from this interval until the first

interval with no overlap with the query range is encountered. All intervals

thus traversed are part of the resulting set because they intersect the query.

From the property we mentioned follows that none of the intervals appearing

further in the list overlap the range. As each interval may store a list of

intervals contained in it, this algorithm is applied recursively on all lists

nested in the traversed intervals.

In the worst case, the running time of this algorithm is linear in the

number of stored intervals. Nevertheless, it performs well in cases where

there are not many levels of the nested structure.
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Chapter 2

Proposed data structure

Our solution to the defined mapping problem is based on the rank and select

operations on binary strings. In this chapter we provide a definition of these

operations and an overview of currently known solutions. Then we show

how they can be used to solve the problem and describe the structure of our

implementation.

2.1 Rank and select

Let B[1..n] be a bit vector. Operation rank(B, i) returns the number of

elements equal to 1 in B[1..i]. Operation select is the inverse operation to

rank. Given a number i, it returns the position of the i-th bit set to one.

For example, in bit string 0111001001, the value of rank(4) is obtained as

the sum of its first four elements, which means rank(4) = 0 + 1 + 1 + 1 = 3.

In the same bit string, the value of select(4) is 7.

In the rest of this section we will walk through a list of known algorithms

and data structures that can be used to implement these two operations.

The goal of these data structures is to provide fast query time while at the

same time using as little memory as possible.
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2.1.1 Rank

Naive prefix sums

A trivial solution for rank is to store an array of prefix sums for the whole

sequence. Each element of this array will then store the rank of the cor-

responding bit. To store each element, we need log2 n bits, therefore this

solution requires O(n log2 n) bits in total.

For very long bit sequences, this amount of memory is too high. To

alleviate this problem, various succinct data structures have been invented.

A data structure is considered succinct if the data stored in addition to the

original bit string is asymptotically smaller than the bit string itself.

Jacobson

Jacobson [Jac88] proposes a solution for rank with constant time per query

and o(n) extra space (excluding the bit vector itself). This works by splitting

the original vector into b blocks of length b′ =
⌊
log2 n

2

⌋
, which are then grouped

into s superblocks of length s′ = b′ · blog2 nc.
For each of the s superblocks we precalculate the rank of the bit imme-

diately preceding it. That is, if i is the zero-based index of the superblock,

this value is

Rs(i) = rank(B, i · s′)

Then, for each block we calculate the rank of the preceding bit considering

only the region of the original vector covered by its containing superblock. If

i is the index of the containing superblock, Si is the substring corresponding

to this superblock and j is the index of the block, this value is

Rb(j) = rank(Si, j mod s) = rank(B, j · b′)− rank(B, i · s′)

Lastly, for each bit sequence T of length b′ and for each k < b′ we calculate

the rank of the k-th bit in T :

Rp(T, k) = rank(T, k)
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Figure 2.1: An example of Jacobson’s structure for rank. In this example,

n = 36, b′ = 4 and s′ = 12.

Figure 2.1 shows an example of a bit sequence with the precomputed

values of Rs and Rb for each block and superblock.

Now, using these three precomputed tables we can express the rank of

any bit of the original bit vector B as

rank(B, i) = Rs

(⌊
i

s′

⌋)
+Rb

(⌊
i

b′

⌋)
+Rp(T, i mod b′)

where T is the substring of B of length b′ starting at b′
⌊

i
b′

⌋
+ 1. Clearly, this

operation can be done in O(1).

The table storing precalculated values of Rs requires log2 n bits per su-

perblock, which makes the following total.

O(s · log2 n) = O

(
n log2 n

log2
2 n

)
= O

(
n

log2 n

)
To store the precomputed values of Rb, we need log2 s

′ bits per block

(since s′ is the length of substring Si), which is

O(log2 s
′ · b) = O

(
n

log2 n
· log2(b

′ log2 n)

)
= O

(
n(log2 b

′ + log2 log2 n)

log2 n

)
= O

(
n log2 log2 n

log2 n

)
Finally, the table storing Rp has 2b′ rows, b′ columns and each element

requires log2 b
′ bits, therefore its memory requirements are

O
(

2b′ · b′ · log2 b
′
)

= O
(

2
1
2
log2 n · log2 n · log2 log2 n

)
= O

(√
n · log2 n · log2 log2 n

)
As each of the three tables requires o(n) space to be stored, the whole

data structure requires o(n) bits in addition to the original bit sequence.
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González et al.

González et al. [Gon+05] improved the memory requirements in practical

applications by fixing the size of blocks at a multiple of 32 bits, omitting the

layer of superblocks and using population counting combined with bitwise

operations instead of the Rp lookup table.

Population counting is an operation which, given a word w, returns the

number of bits in w set to 1, which is the rank of its last bit. This operation

is implemented in some CPUs; González et al. implemented it by splitting

the word into bytes and using a lookup table of 256 elements.

The authors compare the performance and memory requirements for var-

ious combinations of block size and population counting implementations.

They show that in practical applications, their implementation is both faster

and has a smaller memory footprint compared to Jacobson’s solution, al-

though asymptotically it is worse.

Raman, Raman, Rao

Raman et al. [RRR02] described a solution that does not need to store the

original bit sequence. Its memory requirements are

n ·H0(B) +O

(
n log2 log2 n

log2 n

)
bits where H0(B) is the zero-th order empirical entropy of sequence B defined

as follows

H0(B) = −n0

n
log2

n0

n
− n1

n
log2

n1

n

where n0 is the number of 0 bits and n1 is the number of 1 bits in B. For

each bit string B, the value of H0(B) is a real number from the interval

[0, 1]. This value equals 1 for sequences where the number of 1 bits equals

the number of 0 bita,s and it is small for sequences where most of the bits

have the same value.

Instead of the blocks themselves, the data structure stores the number of

1s within each block,u and the lexicographical order of the block among all
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Figure 2.2: Demonstration of the compression used by Raman et al. For block

01001, the population count is 2 and it is the third block with this population

count in lexicographical order. Since there are 10 blocks with population

count 2, we need dlog2 10e = 4 bits to store the position in lexicographical

order and additional dlog2 6e = 3 bits to store the population count. In this

example the compressed representation is longer than simply storing the 5

bits of the block, but for longer block sizes it is generally more space-efficient.

possible blocks with the same number of 1s as shown in figure 2.2. This way,

the data structure requires a smaller number of bits per block for blocks with

a small number of zeroes or ones. The overall memory might be even smaller

than the uncompressed length of B. At the same time it retains the ability

to perform constant-time rank using modified lookup tables similar to those

in Jacobson’s data structure.
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2.1.2 Select

Trivial solutions

Once rank is implemented, an easy way to perform select is to do a binary

search using rank in O(log2 n) time, i.e. for a given i find the smallest j such

that rank(B, j) ≥ i.

Simple as it is, this is not an optimal solution; select is possible in O(1)

time as well. However, the known data structures are in general more com-

plicated than those for rank.

For bit sequences containing a small number of 1 bits, we can directly

store an ordered list of positions at which these are located. This makes it

possible to answer a select query in constant time. However, this is only

efficient for really sparse bit sequences; in the average case, to store such a

list we need Θ(n log2 n) bits, which makes this a suboptimal solution.

Clark

Clark’s implementation of select [Cla98] works with O
(

n
log2 log2 n

)
bits in ad-

dition to the bit vector. It splits the original bit string into variable width

substrings, each containing log2 n log2 log2 n ones. There are two cases of how

these substrings are handled. For very sparse ones, the positions of all 1 bits

are stored and for dense substrings, the same procedure is repeated. In the

end, the second-level dense substrings are handled by a lookup table similar

to table Rp used in Jacobson’s rank implementation.

González et al.

González et al. implemented a solution based on binary search. It takes

advantage of the two layers of structures used to solve rank. First, binary

search is used to find the block containing the answer, then a sequential

search within the block finds the answer. Their benchmarks show that for

bit sequences of lengths up to 226, their implementation is faster than Clark’s
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constant-time algorithm, while also keeping the memory overhead signifi-

cantly lower.

Raman, Raman, Rao

The structure proposed by Raman et al. is capable of constant-time select as

well. Groups of successive blocks are created based on the positions of every(
log2

2n
log2 n

)2
-th bit. As in Clark’s solution, the answers for sparse groups

are stored directly. For each sparse group, an additive interval tree with a

branching factor dependent on n is created. This tree stores in each node

the sum of the range it spans and makes it possible to find the block within

which the result is located. The variable branching factor allows for O(1)

bound depth, which is needed for select queries to run in constant time.

2.2 The use of rank and select for position

and region mapping

In this section we describe how a whole-genome alignment can be prepro-

cessed and stored in order to make it possible to use rank and select to

implement the map position and map region operations. We provide a the-

oretical description and an estimate of time and memory complexity of the

solution upon which our implementation is based. We also describe some

possible improvements that are not part of the implementation.

2.2.1 Single-position mapping

The problem of mapping a single position in the reference genome to a given

informant can be divided into two subproblems. First, we need to find the

block containing the specified position, and then we have to find the position

in the informant within this block.
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Finding the block

The first subproblem can be solved in two ways. The first possibility is to

sort the blocks by their position in the reference sequence. Then we can use

binary search to find the right block.

The second approach uses rank. Again, we need to sort the list of blocks.

Then, we create a bit sequence of the same length as the whole reference

sequence. For each block, we mark the position at which the range from

the reference sequence contained within this block begins with a 1 in the bit

sequence. All other bits are set to 0. Calling rank(p) on this sequence yields

the number of blocks beginning before position p. This is also the index into

a sorted array of blocks.

The time complexity of a search using binary search is O(log2m) where

m is the number of blocks, the solution using rank requires O(1) per query.

Both require preprocessing before a search can be performed. The first ap-

proach needs to sort the blocks, which can be done in O(m log2m). The

second one needs to sort the blocks as well, and in addition it needs to create

a bit sequence of the same length as the reference sequence, which we will

denote by n. The total time required to preprocess the list of block to use

rank is O(m log2m+ n).

Since binary search does not require any precomputed structures except

for the list of blocks, its memory requirements are O(1) in addition to the

list. The solution based on rank requires an amount of memory dependent

on the implementation used. However, since the bit sequence will in general

contain very few one bits compared to zeroes, its empirical entropy will be

low, which makes the Raman et al. implementation a good candidate.

Mapping a position within a block

To map positions within a block, we will preprocess the multiple-sequence

alignment in the following way. For each line of the alignment, we create a

bit sequence of the same length as the line. In this bit sequence, we store

a 1 in each position corresponding to a nucleotide and a 0 in each position
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corresponding to a gap. To prepare these bit sequences we need O(b ·s) time,

where b is the length of the block and s is the number of lines in it.

After the data structures for these bit sequences are prepared, we use the

following algorithm to find the result of map position(P, g):

1. subtract the starting position of the region in the reference sequence

overlapping this block from the given position P , let us mark it as p′

2. call select(p′) on the bit sequence corresponding to the reference line,

the result c is the column in this block containing position p

3. call rank(c) on the bit sequence corresponding to the requested infor-

mant Gg, denote the result as r

4. add the starting position of the informant region to r to obtain the

resulting position

Since both rank and select can be performed in O(1) time, the time

complexity of this operation is constant.

2.2.2 Region mapping

Algorithms for single-position mapping can be subsequently used to solve

region mapping. First we need to find blocks containing the end positions

of the region. If the whole region falls within a single alignment block, the

answer is obtained simply as the mapping of its end positions to the informant

genome.

If the region spans multiple blocks, we have to verify that a valid answer

exists. The trivial solution is to iterate through the list of blocks from the

block containing the first position of the source region on, verifying the mono-

tonicity of the aligned informant regions between each two adjacent blocks.

The running time of this algorithm is linear in the number of blocks in this

range. In the worst case this is O(m) where m is the number of blocks in the

whole-genome alignment. The memory required by this algorithm is O(1) in

addition to the structures needed to map positions.
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This approach can be improved by precomputing groups of successive

blocks such that regions inside one group can be mapped. This computation

needs to be done for each informant separately. We can assign a unique ID

to each of these groups and store the ID of group for each pair of block and

informant. Then for each map region query we just compare the group IDs

for blocks containing the boundaries of the queried region, corresponding

to the requested informant and test if they are equal, which is possible in

constant time.

These groups can be prepared using the following algorithm. We initialize

the group ID for the first block with 0 for each informant. Then we iterate

over all alignment blocks. For each pair of successive blocks we test each

informant whether it follows the region in the previous block. For each

informant passing this test we set the group ID to the same value as in the

previous block, otherwise we increase it by 1. This can be carried out in

O(m · g) time and to store the precomputed IDs, we need O(m · g · log2m)

bits.

To improve this even further, we can reduce the memory required to

store the IDs using rank. For each informant we will create a bit sequence

of length m. Each bit of this sequence corresponds to one alignment block

and indicates whether the block breaks colinearity with the preceding one.

In other words, instead of assigning an ID increased by one to such blocks,

we set their corresponding bits in the bit sequence to 1. Then, given a block,

we find its ID by calling rank on the respective bit sequence.

Clearly, the preprocessing time remains O(m ·g) and we can still perform

queries in O(1) time, however, the memory requirements have dropped to

m · g + o(m · g) bits.

2.3 Implementation design

We have implemented the data structure described in the previous section.

Our goal was to create flexible data structure which can be used to measure
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WholeGenomeAlignment

AlignmentBlockStorage
BinSearchAlignmentBlockStorage

RankAlignmentBlockStorage

AlignmentBlock

SequenceDetails

BitSequence (libcds)

Figure 2.3: UML class diagram of the main classes in our implementation

the impact of various changes in the data structure on its performance. In

this section we present the layout of our implementation. We decided to

use libcds [Cla], an open-source library of compact data structures, which

provides implementations of the rank and select data structures described

in section 2.1. This allows us to measure the efficiency in terms of speed and

memory of each rank and select implementation in this particular applica-

tion.

The language of choice was C++, as this is the language in which libcds

is written. In addition, it compiles compiles into fast machine code and

provides a high degree of control over object size and lifetime, allowing for

low-level optimizations while also supporting object-oriented design.

The basic structure of the classes is shown in figure 2.3. In addition the

implementation contains a few other classes and functions, which simplify

reading MAF files.

The most straightforward way of storing bit sequences is to create a sepa-

rate instance of BitSequence (provided by libcds) for each row of each align-

ment block. However, all implementations have a certain constant memory

overhead, which means keeping fewer instances with each storing a longer
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bit string is more efficient than having many instances with short bit strings.

Therefore we considered two additional alternatives: keeping a single bit se-

quence for each alignment block and making a single bit sequence global for

the whole alignment.

These shared bit sequences then simply contain concatenations of the

individual lines. For each line we store the index of the position within the

global bit string where the line begins. When performing rank, we then

need to subtract the rank of the stored index from the result. Similarly,

when performing select, we need to add the rank of the stored index to the

argument. This effectively means that we have to double the number of rank

and select operations in exchange for possibly considerable savings in terms

of memory consumption.

The following paragraphs give an overview of bit sequence implementa-

tions provided by libcds. A description of individual classes in our imple-

mentation follows. For each class we provide an estimate of the memory size

of its instances. We assume the size of an integer to be 64 bits. We will

denote the number of blocks as m, the length of the reference sequence as n,

the number of lines in the whole-genome alignment as `, and the number of

distinct chromosomes present within the alignment as g.

2.3.1 BitSequence in libcds

Libcds provides an abstract class called BitSequence, which defines opera-

tions rank1, select1 and access, among others. This interface is implemented

by the following subclasses.

• Class BitSequenceRG implements the rank and select operations as

proposed by González et al. [Gon+05] It takes a parameter specifying

the block size at runtime as the number of 32-bit words per block.

• Class BitSequenceRRR implements the compressed data structures de-

scribed by Raman et al. [RRR02]
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2.3.2 Class WholeGenomeAlignment

This class encompasses the whole alignment extracted from a MAF file and

provides the high-level mapping operations defined in section 1.3. Currently

only the linear-time region mapping algorithm is implemented.

Internally, each sequence name is assigned a unique 32-bit integer. This

integer is called a sequence ID. The public interface of this class uses strings

to identify sequences, which means it needs to store one map which translates

strings into IDs and a vector of strings to perform the mapping in the other

direction.

Each instance also contains a pointer to an instance of class Alignment-

BlockStorage, which acts as a collection of alignment blocks.

The size of an instance of WholeGenomeAlignment in bytes is at least

twice the sum of lengths of the names of distinct sequences plus 4g (as each

ID is a 32-bit integer). In the approach with a single BitSequence instance

global to the whole alignment, this class stores an additional pointer to the

instance, which takes 8 bytes.

A more precise estimate of memory size is not possible, as the size of the

map is dependent on the implementation of the standard template library

provided by the compiler used. On the other hand, these structures are stored

only once per whole-genome alignment, and in the average case the number

of sequences will be orders of magnitude lower than the number of blocks or

lines, which means that a higher constant factor in the size of this class will

have a smaller impact on the overall memory footprint than constant factors

in classes such as AlignmentBlock or SequenceDetails.

2.3.3 Class AlignmentBlockStorage

This abstract class defines the interface of a collection which stores the blocks

of an alignment. It is implemented by classes BinSearchAlignmentBlockStor-

age and RankAlignmentBlockStorage. This class hierarchy implements the

strategy design pattern.
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The interface defined by this class provides the following operations:

• adding an AlignmentBlock instance

• finding an AlignmentBlock by position in the reference sequence

• iteration through the list of blocks in the order of their position in the

reference sequence

In order to support iteration, this class and all of its subclasses are ac-

companied by a collection of iterator classes with the same interface as the

standard template library iterators.

2.3.4 Class BinSearchAlignmentBlockStorage

This class implements the AlignmentBlockStorage by storing pointers to

AlignmentBlock instances in a vector. This vector is sorted on the first

read access and binary search is used to find the block containing the given

position.

There are two data members in this class: a boolean to indicate whether

the vector needs to be sorted and a vector of pointers. By shrinking the

unused capacity of the vector at the same time as it is sorted, instances of

this class achieve in-memory size of 8m + 1 + c bytes. The c constant is

claimed by the vector instance and its value is 24 bytes on 64-bit Linux with

GCC 4.4.

2.3.5 Class RankAlignmentBlockStorage

This class implements block search using the Raman et al. implementation

of rank. Same as BinSearchAlignmentBlockStorage, it stores pointers to

instances of AlignmentBlock in a vector which is sorted and shrunk on first

access. In addition, an instance of class BitSequenceRRR from libcds is

created in this stage.
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Consequently, the members of this class are the same as in BinSearchAlign-

mentBlockStorage with an additional pointer to a BitSequenceRRR instance,

the size of which depends on n and m.

2.3.6 Class AlignmentBlock

Instances of this class represent individual blocks in the alignment. Each

block consists of several lines represented by instances of SequenceDetails.

These instances are stored in a vector, which keeps the instances directly

as opposed to pointers. This vector is sorted by the ID of the sequence

whose region the particular SequenceDetails instance represents. Similar to

BinSearchAlignmentBlockStorage, the vector is sorted and shrunk on the

first read access, which means that an additional boolean flag is required to

indicate whether this has been already done.

The memory required per instance is therefore 1 + c bytes, where c is

the vector overhead, as in the discussion of BinSearchAlignmentBlockStor-

age. This quantity does not include the size of the stored SequenceDetails

instances. An additional 8-byte pointer to a BitSequence is stored if BitSe-

quence is shared for all instances of SequenceDetails within a block.

The most notable method in this class takes a position in the reference

sequence, which has to lie in this block, and the ID of an informant for which

a region needs to be present in the block, and returns the position in this

informant sequence aligned to the queried reference position.

2.3.7 Class SequenceDetails

Each instance of this class represents a single line of the alignment. Its

members include the starting position of the region represented by this line

(integer), the size of the whole chromosome to be able to convert positions

in various strands (integer), information about the strand (boolean), ID of

the sequence to which this region belongs (32-bit integer) and a pointer to a

BitSequence.
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If each BitSequence is owned by a single SequenceDetails, a shared ptr

needs to be used. This smart pointer class counts references to objects man-

aged by its instances and once this count reaches zero, it deletes the instance.

It is required in order to ensure the BitSequence owned by each instance of

SequenceDetails is properly freed. Note that we cannot do this in the de-

structor of SequenceDetails because instances are copied and deleted by the

vector in AlignmentBlock, which means at some point the same instance of

BitSequence might be shared by multiple instances of SequenceDetails.

This increases the number of bytes by an amount specific to the im-

plementation of the C++ standard library, making the size of this class

8 · 2 + 4 + 1 + d = 21 + d bytes, where d is the size of the shared ptr imple-

mentation.

We can replace the shared ptr with a regular pointer if the BitSequence

is shared with other instances as in this case the BitSequence is owned by

an instance of AlignmentBlock or WholeGenomeAlignment. Also, additional

members are required, namely, the index in the BitSequence where this par-

ticular line begins (integer) and the length of the block (integer), which means

the total size is 8 · 5 + 4 + 1 = 45 bytes.

This class also implements the methods in which rank and select are used

to translate sequence positions into alignment block columns and vice versa.

It is also responsible for recalculating positions in the reverse strand to their

corresponding positions in the forward strand.

2.3.8 Memory size estimate

We may now proceed to estimate the amount of memory required to store

the instances of our classes based on parameters m, ` and g specified earlier,

not including the memory required by the instances of BitSequence.

For each whole-genome alignment, one instance of WholeGenomeAlign-

ment and one AlignmentBlockStorage is required; m instances of Alignment-

Block and ` instances of SequenceDetails.

With the option of storing a separate instance of BitSequence per line,
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this amounts to

(4g + 2s) + (8m+ 1 + c) +m · (1 + c) + ` · (21 + d)

bytes. s is the sum of lengths of the names of distinct sequences.

When each instance of BitSequence is owned by a block, the expected

amount of memory in bytes is

(4g + 2s) + (8m+ 1 + c) +m · (9 + c) + ` · 45

Finally, in the case of a single BitSequence instance being global to the

whole alignment, the expected number of bytes is

(4g + 2s+ 8) + (8m+ 1 + c) +m · (1 + c) + ` · 45
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Chapter 3

Performance and testing

In this chapter we measure the efficiency of our implementation using real-

world data. The tests were performed on a machine running 64-bit Linux

2.6.32 with 8 Intel Xeon CPU cores running at 2.26 GHz, 8 MB CPU cache

and 48 GB of RAM. We used the GCC 4.4 C++ compiler with -O3 opti-

mizations.

3.1 Used test data

All tests described in this chapter were performed using the same alignment

file. We chose the alignment of the human chromosome 2 to the following

species: chimpanzee, orangutan, rhesus macaque, marmoset, mouse, rat, and

dog. The length of this human chromosome is 243,199,373 nucleotides.

The alignment file was provided by Brian Raney from UCSC. [Ran10] It

contains

• 489 different chromosomes

• 1,201,710 alignment blocks

• 7,765,103 sequence lines

• 1,367,643,053 nucleotides and 129,273,663 gaps
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Figure 3.1: Distribution of block and line lengths in the test file. Left: full

range in logarithmic scale. Right: lengths up to 1000 in linear scale.

• its total size is 1762.2 MB

Figure 3.1 displays the distribution of block lengths within the file. It

shows that the vast majority of blocks are short (less than 500 columns).

The total number of bits required to be stored in instances of BitSequence

representing nucleotides and gaps is equal to 1,496,916,716, which makes the

lower bound for the memory required to represent uncompressed bit strings

187,114,590 bytes or 178.4 MB.

We generated a list of 2,000,000 positions in the reference chromosome

selected at random from all positions that can be mapped to the genome

of a rhesus macaque (an old world monkey). These positions are used in

subsequent speed comparisons to ensure each query is valid and therefore

performs all operations.

3.2 Ownership of BitSequence

In this section we assess the three options of storing BitSequence instances,

described in section 2.3. We measure their impact on memory requirements

and the speed of position mapping.

The effect on memory usage was measured in two ways. First, we used

a fake implementation of BitSequence, which discards the sequence itself

and only stores the required control structures amounting to 16 bytes. The
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Implementation Used memory Expectation

one BitSequence per line 925 MB 312 MB

one BitSequence per block 478 MB 380 MB

one global BitSequence 506 MB 371 MB

Table 3.1: Memory usage with fake BitSequence. The expectation is based

on estimates provided in 2.3.8 and values listed in section 3.1.

amounts of memory used by the three implementations after loading the

whole MAF file are listed in table 3.1.

As we can see, the measured values differ significantly from the expecta-

tion. One likely reason is that the compiler pads the data types to better

fit into memory. If we round the sizes of AlignmentBlock and SequenceDe-

tails to the nearest multiples of 8, the estimate for the second case grows to

410 MB. Another reason might be a dynamically allocated structure used by

vector, which would increase the size of AlignmentBlock. In addition, Linux

does not provide a reliable and efficient method to determine the amount

of memory used by a process, therefore our tool calculates the total size of

virtual memory segments of the process not backed by a file, which might

include some irrelevant segments.

The fact that using one global instance of BitSequence results in higher

memory consumption than using a separate instance for each AlignmentBlock

despite an opposite expectation might be caused by the algorithm used to

read a MAF file in the former case. As the final size of the bit string cannot

be known in advance, a fixed-length bit string is created first and its capacity

is doubled each time it is filled. This means large amounts of memory are

allocated and freed repeatedly while reading a MAF file. Usually, library

functions to deallocate memory keep a certain amount of memory in reserve

instead of releasing it immediately.

Finally, the disproportional difference in the first case is likely to be caused

by the implementation of shared ptr. This smart pointer class needs to store

a shared object containing a counter, the managed pointer and a deallocator,
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Implementation Load time Memory usage Mapping time

one BitSequence per line 56 s 2480 MB 8.8 µs

one BitSequence per block 51 s 768 MB 11.0 µs

one global BitSequence 52 s 603 MB 15.8 µs

Table 3.2: Memory usage and position mapping times with the three ap-

proaches to BitSequence sharing. Load time is the time required to read

the whole MAF file, mapping time is the average from 2,000,000 position

mappings.

which means the size of its instances is likely multiple times the size of an

instance of SequenceDetails itself.

We also performed a test with a real implementation of BitSequence in

which we mapped 2,000,000 positions. The implementation used was Bit-

SequenceRRR; BinSearchAlignmentBlockStorage was used to store blocks.

The results are presented in table 3.2.

These results show that the choice of implementation does not have any

practical effect on the time required to construct the data structure. This

is true even in the third case, where an amount of memory proportional to

the size of the MAF file needs to be reallocated and copied multiple times

throughout the process.

The measurements of memory usage support the idea laid out in sec-

tion 2.3, that joining short bit sequences into a larger one results in smaller

memory overhead. Clearly, the first approach with millions of instances of

BitSequence shorter than 1000 bits is impractical as in this case the memory

consumed exceeds the size of the original MAF file by a factor of 1.5, while

the other two implementations require less than a half of its size.

Regarding mapping times, we can see that the need to perform two addi-

tional rank operations per mapping with shared BitSequences reflects only

lightly in mapping times. This is likely due to the effects of the processor

cache, especially in the second case – since most alignment blocks are short,

the whole BitSequence representing a block fits within the 8 MB cache, mak-
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Implementation Load time Memory usage Mapping time

binary search 51 s 603 MB 15.8 µs

rank 53 s 613 MB 12.6 µs

Table 3.3: Effect of the chosen implementation of block search on the time

required to load a file, memory usage and time per query

ing the extra rank cheap. On the other hand, when the BitSequence is global,

it no longer fits within the cache, thus slightly increasing the mapping time.

3.3 Block search algorithm

In this section we focus on the difference between BinSearchAlignmentBlock-

Storage and RankAlignmentBlockStorage. We mapped 2,000,000 positions

with either of the two implementations while using a single global instance of

BitSequenceRRR to perform mappings. The results are shown in table 3.3.

The extra memory required by the rank-based solution compared to bi-

nary search is just 10 MB, even for the second longest chromosome in the

human genome. Compared to the rest of the used memory, this amount is

practically negligible as it increases the memory usage by less than 2%.

We can also see that using rank reduces the time required per query by

3.1 µs, which amounts to about 20% of the overall time per query with the

selected set of parameters.

The difference in time required to initialize either of the two implemen-

tations is in this case is negligible in contrast with the time needed to load

an entire MAF file.

Overall, the gain of using rank is not big, but still it has some significance

and the benefit outweighs the cost.

37



Implementation Block size Memory usage Mapping time

BitSequenceRRR — 613 MB 12.6 µs

BitSequenceRG 64 bits 786 MB 4.62 µs

BitSequenceRG 96 bits 756 MB 4.65 µs

BitSequenceRG 128 bits 741 MB 4.67 µs

BitSequenceRG 640 bits 706 MB 5.45 µs

Table 3.4: Comparison of memory usage and position query speed based on

the implementation of BitSequence used. In case of BitSequenceRG, various

block sizes were evaluated.

3.4 Implementation of BitSequence

In this section we study the effects of the chosen implementation of BitSe-

quence. We ran the mapping test using BitSequenceRG and BitSequenceRRR

to perform position mappings. With BitSequenceRG we tried block sizes of

64, 96, 128 and 640 bits. In each run a single global instance was used to per-

form mappings and RankAlignmentBlockStorage was used to store blocks.

Table 3.4 lists the measurements obtained.

The results show a significant effect of the bit sequence compression used

by BitSequenceRRR as this implementation beats even the most memory-

efficient instance of BitSequenceRG by almost 90 MB. We can see the ex-

pected drop in memory usage with higher block sizes as well.

At the same time, using BitSequenceRG results in a major speed gain,

compared to BitSequenceRRR – even in the slowest case, BitSequenceRG

is more than twice as fast as BitSequenceRRR. This is due to the fact that

BitSequenceRG is optimized to take advantage of the CPU cache while Bit-

SequenceRRR requires more accesses to independent memory locations to

perform each rank and select query, especially with long sequences, as noted

in section 3.2. Also, the impact of higher block size on the execution speed

is relatively low – negligible for block sizes between 64 and 128 bits; in the

case of 640 bits the losses are somewhat higher but still less than 1 µs, which
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is reasonably small.

To sum up, BitSequenceRG with block size of 640 bits seems like a reason-

able choice. The higher amount of memory required by this implementation

might be compensated for by further reducing the sizes of classes stored

besides the bit sequence.

3.5 Region mapping and comparison to liftOver

In the last set of tests we will compare the performance of our solution to

the liftOver utility from the Kent tools, described in section 1.5.1 on both

position and region mapping.

In our first test, we map again 2,000,000 positions to the genome of a

rhesus macaque. As liftOver only maps regions, to compare its performance

when mapping positions, we used it to map regions of size 1 instead. Also,

we are not able to separately measure the initialization stage and the actual

mapping. Therefore we measure the execution time of the whole command

for both liftOver and our implementation. We tried global instance of BitSe-

quenceRG with block size of 640 bits and global instance of BitSequenceRRR;

RankAlignmentBlockStorage was used to find blocks. Since liftOver uses

pairwise alignment data, we did two runs with our implementation. In the

first run we used the original MAF file containing the sequences of 8 species,

and in the second run we used a modified version of this file containing only

the pairwise alignment between the human chromosome and the genome of

rhesus macaque.

We compared the outputs of the two tools and found that most of the

mapped positions were equal. However, there were 23,853 positions which

liftOver failed to map altogether. This is caused by the fact that the liftOver

chains do not contain regions of the reference sequence at either end of a

block aligned to a gap in the informant genome, making liftOver unable to

map such positions. On the other hand, our implementation maps these

positions to the boundaries of the informant regions in respective blocks.
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Implementation MAF file Memory usage Execution time

BitSequenceRG full 706 MB 54.25 s

BitSequenceRRR full 613 MB 81.66 s

BitSequenceRG pairwise 264 MB 29.44 s

BitSequenceRRR pairwise 230 MB 48.96 s

liftOver — 791 MB 109.67 s

Table 3.5: Comparison of our implementation and liftOver by mapping the

same set of positions

The output also differed for 1124 positions. In each case the difference is

less than 20 nucleotides, most likely caused by slightly different handling of

positions aligned to a gap.

According to the measurements shown in table 3.5, our implementation is

both faster than liftOver and uses less memory. In addition, our implemen-

tation is capable of parsing a MAF file directly and it supports mapping into

multiple informants at the same time while liftOver requires a separate chain

for each informant genome. We remind that the size of the full MAF file is

1762 MB, while the size of the liftOver chain is only 135 MB. The size of

the MAF file obtained by filtering out all irrelevant species is 541 MB. This

makes the chain format much more space-efficient for pairwise alignments

than MAF.

We can also see that by using a reduced MAF file, which in turn leads

to shorter initialization times, the gain of our implementation over liftOver

increases even further, providing mapping times an order of magnitude faster

than liftOver.

To compare region mapping, we used 23,294 exons in the second human

chromosome, retrieved from the RefSeq database [Pru+12] and mapped them

to the genome of a rhesus macaque. Exons are parts of genes encoding pro-

tein sequences, and their mapping to different organisms is a common task.

Again, we tried both BitSequenceRG with 640 bits per block and BitSe-

quenceRRR, in both cases in conjunction with RankAlignmentBlockStorage.
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Implementation MAF file Memory usage Execution time

BitSequenceRG full 706 MB 40.07 s

BitSequenceRRR full 613 MB 56.29 s

BitSequenceRG pairwise 264 MB 16.19 s

BitSequenceRRR pairwise 230 MB 20.80 s

liftOver — 405 MB 2.48 s

Table 3.6: Size and speed comparison of our implementation and liftOver

when used to map 23,294 exons

Same as in the position test, we measured the performance of our imple-

mentation both with the complete MAF file and with the reduced pairwise

version. Refer to table 3.6 for measurements.

The output regions differed in 114 cases, which is again caused by different

handling of gaps.

As the results indicate, if we are using the full MAF file aligning the

genomes of multiple species, the liftOver utility outperformed our implemen-

tation both in terms of memory usage and speed, achieving times an order

of magnitude lower than our solution. However, by using a reduced version

of the MAF file our implementation achieves considerably smaller memory

usage than liftOver, but in terms of time it is still at a disadvantage.

While watching the memory usage of liftOver throughout its operation,

we noticed that the amount of allocated memory starts at a certain number

and gradually increases. This, along with the difference in memory usage

in previous tests suggests that either liftOver leaks memory, or it caches

successfully mapped regions. On the other hand, the running time of our

implementation seems to be dominated by its expensive initialization phase,

while actual mappings are performed faster than with liftOver.

To verify this hypothesis, we measured the execution times and memory

usage of liftOver and our solution using BitSequenceRG and RankAlign-

mentBlockStorage on sets of positions of sizes up to 2,000,000 with a step of

200,000. We used the reduced version of the MAF file. Figure 3.2 displays a
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Figure 3.2: Comparison of execution times (left) and memory usage (right)

of liftOver and our solution on data sets of different sizes

plot of the results.

These results support both claims of our hypothesis. We can clearly see

that while the memory usage of our implementation remains constant across

all input sizes, the memory consumed by liftOver has a linear tendency.

According to the plot of execution times, our solution does indeed start at a

higher execution time, but the rate at which it rises is much lower than the

rate of liftOver.

3.6 Summary and possible improvements

As we have shown in this chapter, our solution is highly efficient in position

mapping, once its data structures are initialized. However, to map regions

into a single informant genome known in advance, liftOver provides a better

solution, especially if the number of mapped regions is relatively low.

There are multiple areas in which our solution can be improved. Based

on the first set of measurements, we can conclude that the amount of mem-

ory allocated by rank and select data structures is considerably lower than

that used by our classes. To improve this situation it is possible to remove

multiple data members from the SequenceDetails class and pass their val-

ues as parameters to methods which require them. For instance, we could

completely remove the pointer to BitSequence or store the block length in
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AlignmentBlock. With these two changes it is possible to reduce the memory

usage in previous tests by 120 MB.

Another possibility for improvement is to implement faster algorithms to

map regions. The ones described in section 2.2.2 might be a good starting

point. Furthermore, other sets of restrictions on region mappings than those

described in section 1.3 might be formulated, suitable for other applications.

These might require completely different approaches to the problem.

Lastly, our implementation suffers from slow initialization of its data

structures. This is especially evident in the last set of measurements. We

could implement facilities to store the data structures in a file or database in

a compact manner, making it possible to load them immediately.
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Conclusion

The goal of this thesis was to create an efficient representation of whole-

genome alignments that supports position and region mapping. For this

purpose we studied currently known data structures for rank and select

operations on binary strings, which have not yet been used in this context.

We designed a set of data structures and algorithms making use of these

two operations, supporting the defined mapping operations in constant time.

Then we proceeded to implement them in order to compare the known solu-

tions for rank and select and decide which one is the most appropriate for

the mapping task.

We also compared our implementation using the best two combinations

of parameters, with an existing tool that solves the mapping problem. We

came to the conclusion that while our solution takes more time to preprocess

alignment data, it is faster at performing mappings, making it suitable for

mapping of large batches of positions.

Overall, we have created a practical tool for mapping genomic positions

between species, which is an important task in several bioinformatics prob-

lems. Our results also suggest several avenues for future improvement in this

area.
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Appendix A

Implementation

This thesis includes an attached CD, containing the source code of our im-

plementation, which is also available at https://github.com/koniiiik/

libmultialn.
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