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Abstrakt

Autor: Bc. Ladislav Rampášek
Názov práce: Výpočtová zložitosť a praktická
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V tejto práci sme sa venovali problému vyhľadávania štrukturálnych RNA motívov.
Naša práca je motivovaná výskumom Prof. Andreja Luptáka [Ruminski et al., 2010] v
oblasti kataliticky aktívnych RNA, tzv. ribozýmov. Táto práca nadväzuje na našu pred-
chádzajúcu prácu [Rampášek, 2010], v ktorej sme navrhli nový algoritmus na vyhľadávanie
RNA motívov založený na publikovanom prehľadávaní s návratom [Gautheret et al., 1990].
Náplňou tejto diplomovej práce sú tri hlavné výsledky. Za prvé, dokázali sme NP-úplnosť
problému vyhľadávania RNA štrukturálnych motívov pomocou redukcie z problému ONE-
IN-THREE 3SAT. Ďalej, navrhli sme adaptívnu metódu pre usporiadanie elementov v
prehľadávaní s návratom použitom v RNArobo. Túto metódu sme implementovali v
nástroji RNArobo 2.0. Táto zmena priniesla značné zrýchlenie. Pre zložité motívy je
tak RNArobo 2.0 rýchlejší ako zaužívané nástroje RNAbob [Eddy, 1996] a RNAMotif
[Macke et al., 2001]. Na záver, vyvinuli sme nástroje, ktoré umožňujú ohodnotiť nájdené
výskyty daného motívu na základe odhadu stability ich štruktúry.

Celkovo naša práca vyústila v sadu nástrojov, ktoré umožňujú automatizovaný postup
využiteľný pre objavovanie nových výskytov funkčných RNA, podobný postupu navrhnutému
v [Jimenez et al., 2012].

Kľúčové slová: RNA motív, vyhľadávanie v texte, NP-úplnosť, prehľadávanie s návratom,
RNArobo
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In this thesis we study the RNA structural motif search problem. Our work is mo-
tivated by the research of Prof. Andrej Lupták in the area of self-cleaving ribozymes
[Ruminski et al., 2010]. This thesis follows our previous work [Rampášek, 2010], where
we proposed a new algorithm for RNA motif search based on a published backtrack-
ing method [Gautheret et al., 1990]. Here, we present three main results. Firstly, we
have proven the RNA structural motif search problem to be NP-complete by a reduction
from ONE-IN-THREE 3SAT. Secondly, we have devised a data-driven element ordering
strategy for the backtracking search of RNArobo. We have implemented this strategy in
RNArobo 2.0. This change has considerably improved the running time, and for complex
motifs RNArobo 2.0 outperforms other search tools, RNAbob [Eddy, 1996] and RNAMotif
[Macke et al., 2001]. Finally, we have developed tools for post-processing RNArobo search
results by ranking them according to their estimated structural stability.

Overall our work resulted in a practical computational pipeline, similar to that pro-
posed in [Jimenez et al., 2012], that can be used to discover new homologs of functional
RNAs.

Keywords: RNA motif, pattern matching, NP-completeness, backtracking, RNArobo
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Introduction

In this thesis we study the problem of RNA structural motif search, which originates in
computational biology. Our work is motivated by the research of Prof. Andrej Lupták
in the area of self-cleaving ribozymes [Ruminski et al., 2010], that are functional RNA
molecules.

The problem of RNA structural motif search came to foreground with the discovery
of many novel functional RNA molecules, starting in the 1980s and continuing to present
days. At the same time there is an abundant amount of genomic data available. Since
functional RNAs are encoded in the genomic DNA, we can use computational tools to
discover new RNAs by DNA sequencing analysis. Functional RNAs can be characterized
by patterns resembling regular expressions, enhanced with relational properties that may
cause the pattern to be context sensitive.

Many computational methods have been proposed since the early 1990s to address the
problem of RNA motif search. Some of the available search tools are strictly specialized
for particular types of RNAs, and the general-purpose tools differ in the class of possible
RNA structural features considered in the search. In [Rampášek, 2010] we proposed a
new algorithm based on previous work of [Gautheret et al., 1990], that allows to search
for motifs with single-letter insertions, which was an option missing from existing tools.
However running time of our implementation was considerably slower than that of the
other tools.

In this thesis we follow our previous work, with the following two main goals. Firstly, we
want to study the computational complexity of the RNA motif search problem. Secondly,
we want to enhance our previous algorithm and its implementation to enable genome-wide
searches in a reasonable time. For example, the human genome is approximately 3× 109

letters long, and we would like to be able to search through it in several hours.
We begin by introducing the biology background of the problem. Later in the first

chapter we also give a brief overview of the existing RNA motif search tools.
We devote Chapter 2 to the study of the computational complexity of the RNA motif

search, which we prove to be NP-complete. We formally define the problem and prove its
NP-completeness by a reduction from ONE-IN-THREE 3SAT. We conclude this chapter
by a discussion on the causes of the NP-completeness.

In Chapter 3 we summarize our previously proposed algorithm from [Rampášek, 2010],
called RNArobo. RNArobo is based on a backtracking search [Gautheret et al., 1990] with
dynamic programming for finding occurrences of individual elements of the motif.

In Chapter 4 we propose a data-driven element ordering strategy for the backtracking
search of RNArobo. This method is based on heuristic choice of good candidate orders

1



Introduction 2

and their further empirical evaluation and statistical elimination.
We devote Chapter 5 to description of a method for RNArobo search results post-

processing. We automatized an in silico pipeline used by Prof. Andrej Lupták to test
a functionality of found motif occurrences, as it is intractable to test all found RNA
sequences in vitro.

We conclude this thesis by Chapter 6 dedicated to experimental results of our work.
We measure execution time of our enhanced tool RNArobo 2.0 on real biological data,
and compare it to several established tools.



Chapter 1

Biological Background
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Figure 1.1: An example of an RNA structure. Full lines represent the order of the sequence
from 5’ beginning to 3’ end. Dotted lines represent base pairs that form the secondary
structure.

Ribonucleic acid (RNA) is a polymer constructed from nucleotides, similar to DNA.
A chain of nucleotides is called an RNA sequence or an RNA primary structure, whose
ends are marked 5’ and 3’, respectively. The four nucleotides are abbreviated A, C, G
and U, which stand for Adenine, Cytosine, Guanine and Uracil, respectively. We will
refer to individual nucleotides also as bases or residues. In contrast, DNA uses thymine
(T) instead of uracil. The nucleotide sequences of RNAs produced by an organism are
generally encoded in the genomic DNA of the organism and then, by the process called
transcription, copied to the form of RNA. Therefore scientists search for RNA motifs
directly in DNA. In this thesis we will threat nucleotides U and T as equal and will not
distinguish between them.

RNA does not form a double helix like DNA does, instead it is usually single stranded,
but may have complex three-dimensional structure due to complementary bonds between
the parts of the same strand. This happens as some nucleotides can bind together to form
a pair. In particular G-C and A-U (A-T in DNA) form hydrogen bonded base pairs and are

3



Chapter 1. Biological Background 4

said to be complementary. These two canonical base pairs are also known as Watson-Crick
pairs, named after James D. Watson and Francis Crick, who discovered the helical DNA
structure in 1953. In addition to canonical base pairs, non-canonical pairs also occur in
RNA secondary structure. The most common non-canonical pair is G-U pair, which is
almost as thermodynamically stable as Watson-Crick pairs. The base-paired structure is
called the secondary structure of the RNA, and the form which it adopts in 3D space is
called the tertiary structure. An example of an RNA secondary structure can be seen in
Figure 1.1. For many purposes, the secondary structure is a good approximation of the
tertiary structure as it contains enough information on the spatial structure, while keeping
the complexity and time performance of related algorithms at reasonable level.

The first widely known RNA function was its role of a passive intermediary messenger
in the process of translation of proteins from DNA. In this scenario, RNA encodes infor-
mation about the composition of a protein. Therefore this type of RNA is called coding
RNA.

However, subsequent research has shown that there exist many RNAs that do not
encode any protein. These types of RNA are called non-coding RNAs (ncRNA). Non-
coding RNAs adopt sophisticated three-dimensional structures. They are involved in gene
regulation, RNA processing, and other roles. For this type of RNA, the structure to which
it folds in space is often more important that the actual sequence.

New technologies allow us to obtain DNA sequences of various species. Given known
examples of functional RNAs, we would like to locate RNAs with similar function (ho-
mologs) in newly sequenced genomes. One option is to use searches based purely on
sequence similarity. However, often we obtain higher sensitivity by allowing sequence to
vary and searching for certain typical structural motifs [Webb et al., 2009]. RNA struc-
tural motifs generally define relative positions of base pairs in a secondary structure. Our
goal is then to search for regions in DNA that could form the secondary structure pre-
scribed by the motif.

Base pairs in the RNA secondary structure typically form a number of short base-paired
stems (or also called as helices). Helices may overlap to form so-called pseudoknots. This
happens when a helix starts before another one has already ended, this irregularity is
similar to an incorrectly parenthesized expression, e.g. “( [ ) ]”. An example of a
pseudoknotted structure is shown in Figure 1.2.

Pseudoknots make some computational problems harder, often being NP-complete
[Durbin et al., 1998, Lyngsø, 2004]. Therefore for many purposes, as for example database
searching for RNA homologs or RNA secondary structure prediction, it is usually ac-
ceptable to sacrifice the information in pseudoknots in return for efficient algorithms
[Durbin et al., 1998]. In this thesis we consider pseudoknots without any restrictions and
thus allow arbitrarily pseudoknotted structures.

More formally, we can define a secondary structure of an RNA strand of length n

indexed 1 . . . n (starting at the 5’ end) as a set of pairing interactions (i, j) between i-th
and j-th base of the strand, where every base may participate in at most one pair. By
this definition, we can distinguish two fundamental elements of RNA secondary structure
– single-stranded regions and helical (paired) regions.
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Chapter 1. Biological Background 6

1.1 Existing Search Tools

The problem of RNA structural motif search was first addressed in late 1980s. The first
tool enabling the structural search was RNAMot [Gautheret et al., 1990], which intro-
duced a backtracking method. RNAbob [Eddy, 1996] is its more efficient reimplementa-
tion based on a nondeterministic finite state automaton with node rewriting rules. After-
wards, numerous stand-alone and web-service based tools were developed allowing users
to define RNA motifs according to their requirements and search for these motifs in se-
quence databases. These tools differ in the way a user defines a structure that is to be
searched for, then in allowing and handling defects permitted in found matches (e.g. mis-
matches, mispairing, insertions), and post-processing filters applied on found matches. Ex-
amples include Palingol [Billoud et al., 1996], RNAMotif [Macke et al., 2001], PatSearch
[Grillo et al., 2003], RNAMST [Chang et al., 2006], Locomotif [Reeder et al., 2007]; for
an extensive overview of current search tools see [George and Tenenbaum, 2009]. Besides
general-purpose motif search tools, tools optimized for search of specific structural RNA
molecules were devised as well, e.g. tRNAscan-SE [Lowe and Eddy, 1997].

In 2010 we implemented a new search tool RNArobo [Rampášek, 2010], which builds
on the motif format developed for RNAMot and RNAbob, but in addition enables a user to
permit insertions to the structure. Algorithms searching for motifs including pseudoknots
in general have exponential time complexity. In 2011 we proved the RNA secondary
structure motif search problem to be NP-complete [Rampášek, 2011]. This proof is the
subject of the next chapter.



Chapter 2

Computational Complexity

In this section we formally define the problem in a form suitable for the analysis of com-
putational complexity. It is important to note here, that search tools usually solve a more
general problem. Our simpler definition captures the essence of the problem and suffices
to show its NP-hardness. First, we will define a structural motif – an abstraction of RNA
structural motif.

2.1 Structural Motif

Structural motif specifies both primary and secondary structure constraints. The primary
structure deals with sequence constraints, while the secondary structure describes the rela-
tions of the nucleotide bases forming the primary structure. By the definition of secondary
structure as a set of base pairings, we can distinguish two fundamental elements of RNA
structure – single-stranded regions and helical (paired) regions. On this observation we
are going to built the definition of a structural motif, as an abstraction of RNA structural
motif. First we introduce necessary terminology.

Sequence A = a1 . . . an is a string over a finite alphabet Σ.
Sequence constraint alphabet Σ+ will be used to express constraints on primary struc-

ture and we define it as
Σ+ =

(
P (Σ) r {∅}

)
∪
{
{∗}
}

where ‘∗’ is a wildcard which matches every character from Σ or may be omitted, so that
patterns of variable length are possible. Note that Σ+ is not a set of characters, but a set
of sets of characters.

Fitting function FIT describes which symbols satisfy a given sequence constraint:

FIT : Σ+ × Σ→ {0, 1}

∀s ∈ Σ+,∀a ∈ Σ

FIT (s, a) =

{
1 iff a ∈ s ∨ s = {∗}
0 otherwise

We will state later on, how a wildcard ‘∗’ may be left out.

7



Chapter 2. Computational Complexity 8

Single-stranded element S = s1 . . . sn is a string over the alphabet Σ+.
Helical element (H,H ′) represents a paired region, thus consists of two parts H and

H ′. Both H = s1 . . . sm and H ′ = s′1 . . . s
′
m are strings of the same length m ∈ N over the

alphabet Σ+.
In a valid occurrence of a helical element (H,H ′) in a sequence, the matched occur-

rences of H and H ′ must be complementary, i.e. to form pairs character by character.
To respect how a motif folds, we have to take the matched occurrence of H ′ in reverse
order, thus the first matched character of H must pair with (be complementary to) the last
matched character of H ′, and so forth. The relation “to be complementary” is expressed
by a complementarity function COMP .

Complementarity function COMP is the same for all helical elements, however may
differ for different instances of the problem. COMP (a, b) = 1 if a, b ∈ Σ are considered to
be complementary in the problem instance. Otherwise, COMP (a, b) = 0.

Structural motif M can now be defined as an ordered sequence of single-stranded and
helical elements. The position of an element in the ordered sequence corresponds to its
position in the motif. Between the two strands of a helical element, there can be arbitrary
number of single-stranded elements as well as parts or whole other helical elements. This
allows arbitrary pseudoknotted structures. For example M = (H1, S1, H2, S3, H

′
1, S4, H

′
2)

would correspond1 to the motif represented in the Figure 1.2, starting from 5’ beginning
and ending at 3’. Another example of RNA motif is shown in the Figure 2.1.

If we are speaking about sequence constraints of a motif M , we refer to the concate-
nation of sequence constraints of all the elements which form the motif M .

2.2 Structural Motif Search Problem

We say that a structural motif M (in context of a complementarity function COMP )
occurs in a sequence A, if and only if there exists an partial increasing function ϕ of the
sequence constraint indices of motif M = m1 . . .md to the indices in sequence A = a1 . . . ae,
that satisfies:

(i) the image of function ϕ is one continuous subinterval of indices in A

(ii) only wildcards ‘*’ may be omitted, i.e.

∀i : ϕ(i) =⊥ ⇒ mi = {∗}

(iii) every sequence constraint from M fits the character to which it is projected, i.e.

∀mi ∈M : ϕ(i) 6=⊥ ⇒ FIT (mi,mϕ(i)) = 1

(iv) for every helical element (H,H ′) from M :

(a) let Aϕ(H) = p1 . . . pl be the string of characters from A to which H is projected
in ϕ

1further specification of the elements is required



Chapter 2. Computational Complexity 9

3'

H1  {A, C, G, U} 
S1        {C, U} 

H2  {A, C, G, U} 
S2           {*} 

S4        {A, C} 
S3           {*} 

H2  {A, C, G, U} 
H3        {C, G} 

S5           {*} 
H1  {A, C, G, U} 

S7           {*} 
S6           {G} 

S8        {G, U} 
H3        {C, G} 

'
'

'

the matched 
occurrence

the motif

A
U

C
G G

C U

A
AG

UC5'

another representation of the occurrence 

the sequence

A
A
C
A
C
U
A
G
G
U
G
A
C
U
C
U

Figure 2.1: An example of RNA motif and of its occurrence in a sequence. For simplicity,
the elements are only one character long. The thick arrows represent a matching that
defines the motif occurrence.
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(b) denote Aϕ(H′) = q1 . . . qk similarly

(c) Aϕ(H) and Aϕ(H′) must be of the same length, i.e. l = k

(d) Aϕ(H) and Aϕ(H′) must be complementary character by character in terms of
complementarity given by the function COMP , i.e.

COMP (pi, qk−i+1) = 1 for i = 1, 2, . . . , k

Structural Motif Search Problem (in abbreviation SMS ) is then a decision problem
defined as follows:

SMS : For given alphabet Σ, complementarity function COMP , structural
motif M and sequence A decide, whether M occurs in A, i.e. whether there
exists a correct projection ϕ of M to A.

2.3 RNA Motif Search Problem

The RNA motif search problem is a special case of SMS problem over RNA alphabet
ΣRNA = {A,C,G,U}, with complementarity function COMPRNA allowing only the canon-
ical base pairs (C-G and A-U). We name this problem RNA-SMS.

2.4 NP-completeness of RNA-SMS

Similarly to the previous section, we will first discuss the SMS problem, as it is more
general and allows us to perform the proof more illustratively. Afterwords we show how
to modify the proof to prove NP-completeness of the RNA-SMS problem.

Our proof of NP-completeness of SMS is inspired by [Lathrop, 1994] where the author
proves Protein Threading Problem to be NP-complete.

2.4.1 SMS is NP-complete

It is easy to see that SMS is in NP. For an SMS instance Σ, A,M,COMP , we can non-
deterministically guess a correct occurrence of the structural motif M in the sequence A,
i.e. a projection ϕ of M to A, and then check its correctness in polynomial time.

We will prove NP-hardness by a reduction of ONE-IN-THREE 3SAT to SMS. ONE-
IN-THREE 3SAT is known to be NP-complete [Schaefer, 1978]. It is a variant of the 3SAT
problem with a restriction that every clause must be satisfied by exactly one literal. Our
goal is to construct an encoding from ONE-IN-THREE 3SAT to SMS, i.e. to construct
an equivalent instance of SMS for every instance of ONE-IN-THREE 3SAT. A solution
to the equivalent SMS instance, i.e. a mapping of a motif M to a sequence A, encodes a
solution to the original ONE-IN-THREE 3SAT instance, i.e. a boolean assignment to the
variables such that the formula is one-in-three satisfied.

Let us consider a ONE-IN-THREE 3SAT instance: a formula I in conjunctive nor-
mal form, where each clause is composed of exactly three literals. We will construct an
equivalent instance of SMS: Σ, A,M,COMP , as follows.
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(i) Let the alphabet be Σ = {T,F,#}, where T will denote TRUE, F FALSE, and #
will serve as a delimiter.

(ii) Sequence A will consist of two parts, the first one dedicated to the composition of
the formula I, and the second to an encoding of assignment to the boolean variables
of I.

(a) For every clause we construct three gadgets. Each gadget is a triplet of characters
from {T,F} and expresses the assignment to the boolean variables of the clause,
such that the clause is satisfied by exactly one literal. Since there are three such
assignments, we use three gadgets per clause.

The three gadgets are concatenated using # as a separator. All these gadget
triplets are also concatenated together, using # as a separator, to form the first
part of the sequence A.

For example a clause (a∨¬b∨c) would be encoded by the string TTF#FFF#FTT##,
expressing assignments (a = 1, b = 1, c = 0), (a = 0, b = 0, c = 0), and
(a = 0, b = 1, c = 1), respectively.

(b) For every boolean variable in the formula I we construct a gadget that will be
used to enforce consistent assignment to all occurrences of the given variable.
This gadget is simply Tn#Fn#, where n is the number of occurrences of the
variable in I.

These gadgets are then concatenated, using # as a separator, to form the second
part of the sequence A.

(iii) The complementarity function COMP is defined as follows:

COMP (a, b) =

{
1 iff a = b

0 otherwise

(iv) Finally, we will show how to construct the structural motif M . The job of the motif
M is to join satisfying assignments from the first part of A with consistent boolean
assignments from the second part. For this purpose helical (paired) elements will be
especially useful.

Similarly to the sequence A, motif M has two major parts. The first part will force
the assignment to be one-in-three satisfaction for the formula I and the second part of
the motif M will enforce consistency of this assignment. Each paired element in the
motif M will have its first strand in the first half of the motif and the complementary
strand in the second part.

(a) For every clause we construct two unpaired regions and three paired regions,
ordered S1, H1, H2, H3, S2. Sequence constraints for the elements are:

S1 = s1 . . . s8, (∀j)sj = {∗}

∀i : Hi = s, H ′i = s, s = {T,F}



Chapter 2. Computational Complexity 12

A= FFF#TTF#TFT##FFT#TTT#TFF##...

M         H11H12H13             H21H22H23

      ...T#F##TT#FF##TT#FF##T#F##

S11 S12 S21 S22

Figure 2.2: An example of the reduction. The figure shows a formula I, corresponding
sequence A, and motif M . For better illustration the motif M is pictured also in a
schematic way, to demonstrate how an occurrence of the motif encodes an assignment to
boolean variables of I. The illustrated assignment is shown in the box in top part of the
figure.
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S2 = s1 . . . s8s9s10,

(1 ≤ j ≤ 8) sj = {∗}, s9 = {#}, s10 = {#}

The triplet H1, H2, H3 is intended to match in sequence A one of the three
possible assignments to the three variables forming the clause.

The two single stranded elements S1 and S2 are of variable length and allow
the triplet H1, H2, H3 to have enough freedom to be fitted to any of the three
possible assignments encoded in A. In addition, the element S2 ensures that the
triplet cannot be moved any farther, as it requires ## in the end.

(b) When constructing the first part of the motif, for every clause we left behind
the complementary parts of helix elements H ′1, H

′
2, H

′
3. We group all these H ′i

by the variable that is used in the i-th literal of the corresponding clause. For a
variable x with k occurrences in formula I, we create a submotif starting with a
single stranded element Sx1, continuing with all H ′i elements corresponding to the
variable x and ending with a single stranded element Sx2. Sequence constraints
for Sx1 and Sx2 are:

Sx1 = s1 . . . sk+1, (∀j)sj = {∗}

Sx2 = s1 . . . sk+1sk+2sk+3,

(1 ≤ j ≤ k + 1) sj = {∗},
sk+2 = {#}, sk+3 = {#}

Note that Sx2 requires ## in the end. By this construction we enforce that the
entire group of H ′i matches the block of Ts or the block of Fs in the sequence A.
This denotes the assignment of TRUE and FALSE, respectively, to the variable
x.

Recall, that in a valid occurrence of a paired element (Hj , H
′
j) must both Hj and

H ′j match the same character in A. Since the first parts of paired elements can
only match a one-in-three satisfiable assignment of a clause and the second parts
corresponding to a variable x must all match the same boolean value, then a correct
occurrence of M indeed encodes a one-in-three satisfaction of the formula I.

An example construction is shown in Figure 2.2.
In the instance of SMS, that we have just constructed, M occurs in A if and only if

the original formula is in ONE-IN-THREE 3SAT.
The reduction is polynomial, since the construction of sequence A is linear2 in the

size of formula I, as well as the construction of motif M . Thus, if we could solve SMS
in polynomial time, then we could solve also ONE-IN-THREE 3SAT in polynomial time.
Since ONE-IN-THREE 3SAT is NP-complete, SMS is NP-complete, too.

2.4.2 RNA-SMS is NP-complete

The proof of RNA-SMS NP-completeness is analogous. Denote the corresponding sequence
A′ and motif M ′.

2For grouping all H ′i by the corresponding variable we can use counting sort, that has linear complexity.
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  = GGGUCCGUCGCUUGGCUCCCUCGGUU...

            H11H12H13             H21H22H23

      ...GUCUUGGUCCUUGGUCCUUGUCUU

S11 S12 S21 S22

A= FFF#TTF#TFT##FFT#TTT#TFF##...

M         H11H12H13             H21H22H23

      ...T#F##TT#FF##TT#FF##T#F##

S11 S12 S21 S22

Figure 2.3: An example of the RNA-SMS reduction. Figure (a) shows sequence A and
a sketch of motif M , both constructed in the original way from the SMS proof. Part
(b) shows sequence A′ and a sketch of motif M ′ which form an instance of RNA-SMS
equivalent to formula I.
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The construction of A′ and M ′ is the same as for SMS, with the following adjustments.

(i) In construction of motif M ′, we change {T,F} to {C,G} and {#} to {U} everywhere
it is applicable.

(ii) In the construction of sequence A′ we substitute character # for character U. When
encoding a possible one-in-three satisfiable assignment to variables of a clause, we
encode TRUE as C and FALSE as G. In the second part of A′, where gadgets for
assignment consistency enforcement are located, we switch the symbols, encoding
TRUE as G and FALSE as C. This switch is necessary as the function COMP in
the SMS proof allows only pairs composed of the same two characters, however
COMPRNA allows only C-G, G-C, A-U, and U-A pairs. Since every paired element
from M ′ has the first strand in the first part of A′ and the second strand in the
second part of A′, this construction of A′ is correct.

Figure 2.3 illustrates these changes and compares it to the original encoding used in the
SMS proof.

Notice that the reduction remains polynomial. Therefore, we prove that RNA struc-
tural motif search problem is NP-complete.

2.5 Discussion

Note that the proof described above could be also done by reduction from standard 3SAT.
The main idea of encoding would remain the same. However, for every clause in the
formula, we would construct seven, instead of three, gadgets encoding the satisfactory
assignments to the variables of the clause. This is because in 3SAT a clause has the
condition that the three literals must not be all FALSE at the same time. The number of
all satisfactory assignments is then at most 23 − 1 = 7.

Further, we identified two critical motif properties that govern the computational com-
plexity of RNA structural motif search: (i) pseudoknots, and (ii) structural elements of
variable length. Leaving out one of these properties would lead to an efficient search
algorithm.

If we left out pseudoknots, we could use techniques of dynamic programming to proceed
from short parts of the motif to the longer. This approach is similar to the RNA secondary
structure prediction algorithm discussed in [Durbin et al., 1998] and leads to polynomial
time complexity.

On the other hand, allowing only structural elements of fixed length, we could check
each position in a sequence A for an occurrence of the motif M in linear time by a
simple check of all primary and secondary constraints of M . Recall that the number of
the constraints is linear in length of M . This approach would lead to quadratic time
complexity in the length of A.
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RNArobo Algorithm

In the following, we recapitulate the search algorithm implemented in a software tool
RNArobo. This algorithm was first introduced in [Rampášek, 2010] following the work of
[Gautheret et al., 1990]. Our implementation was originally named RNAMot2, which we
later changed to RNArobo. RNArobo can be used as a part of computational pipeline for
discovery of RNA motifs [Jimenez et al., 2012]. In this thesis, we use the name RNArobo
for the algorithm as well as for its implementation as a tool. It should be clear from the
context which meaning are we referring to.

3.1 Algorithm Outline

An RNA motif is composed of several structural elements. We divide the algorithm into
two parts:

(i) searching for occurrences of individual elements by a dynamic programming

(ii) assembling motif occurrences from the element occurrences by a backtracking search,
which was first published as “Simple Scan” [Gautheret et al., 1990]

The approach is rather straightforward. Assume we search for a motif composed of
elements e1, e2, . . . , en. First, we select element e1 and search for its occurrences in the
sequence. Once we have found one, we continue to search in its close neighborhood for
element e2. If there are multiple e2 occurrences, we fix the first one, and continue with the
element e3, and so further. This way we try to find a complete occurrence of the motif.
In case element ei could not have been found in the corresponding neighborhood (or we
have already tried all its occurrences), we backtrack, and try the next occurrence of ei−1.
The neighborhood to be searched for an individual element is determined in a way that
ensures consistency of the overall motif match. An illustration of the search procedure
is depicted in Figure 3.1. Note, that quality of the search does not depend on a chosen
ordering of elements in the search (we could use any permutation), however it affects the
running time in practice.

16
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NNNN***** CNNN*****G
G

AAGAAACT
G NNN***
**

**
**

**
******G

h1

s1

h2

s2

s3
h1' h2' *****NNNG*****NNNN

search order: s1 s3 h2 h1 s2

s1 h2 s2 h2' s3 h1'h1

s1 h2 h2' s3 h1'h1

s1 h2 s3

s1 s3

s1

s1 h2 h2' s3

s1 s3

Figure 3.1: An illustration of RNArobo search procedure for a motif of ATP aptamer.
The search follows the order of elements s1, s3, h2, h1, s2.
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� �
h1 s1 r2 s2 r2’ s3 h3 s4 h3’ s5 h4 s6 h4’ h1’ s7

h1 0:2 NNNNNNN:NNNNNNN
r2 0:1 *NNN:NNN* TGCA
h3 0:1:1 NNNNN:NNNNN:A
h4 0:1:1 NNNNN:NNNNN:R
s1 0 TN
s2 0 NNNN[10]
s3 0 N
s4 1 NNSGYN*
s5 0 NN[20]
s6 0 TTC****
s7 0:1 NCCA:A

R s7 h4 s6 h3 h1 r2 s1 s4 s3 s2 s5� �
Listing 3.1: Modified descriptor of a tRNA cloverleaf to demonstrate the descriptor syntax.
The first line of the descriptor is the motif map, then specifications of individual elements
follow, and in the last line is a command defining the order of elements in the RNArobo
search.

3.2 Descriptor Format

Let us now proceed with the specification of the input format of an RNA motif, called a de-
scriptor. RNArobo uses a slightly augmented descriptor format of RNAbob [Eddy, 1996].
Thanks to this, RNArobo is compatible with RNAbob descriptors. An example of RNArobo
descriptor is shown in Listing 3.1.

A descriptor consists of two main parts:

(i) a motif map – a list of structural elements, which establishes the motif composition

(ii) a detailed specification for each of the structural elements

In the motif map, we enumerate the elements in such ordering, as they occur in the
motif from the beginning to the end. Identifiers of single strand elements are denoted by
the prefix s, while paired elements use the prefix h or r (the difference between these
two will be clarified shortly). The rest of the identifier may be arbitrary, yet unique,
alphanumeric word. Furthermore, since paired elements are composed of two strands,
identifiers for both primary and complementary strand must be placed in the motif map.
Identifier for the complementary strand is denoted by an apostrophe at the end, i.e. the
complementary strand for h1 is h1’. The primary strand must precede its corresponding
complementary strand, but we place no other restrictions on the relative order of individual
elements in the map. This way, arbitrary pseudoknotted structures are possible.

The second part of the descriptor provides exact specification of all the elements, one
per line. For a single strand element sName of length m, the format is as follows:

sName M:I S1S2 . . . Sm:SI

The sequence constraints for this element are specified by S1S2 . . . Sm, where Si is an
upper-case latter specifying a set of admissible residues for position i according to the
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IUPAC notation1. Alternatively, Si can be a wildcard denoted as *, which allows for
either zero or one copy of letter N at this position (N matches all residues). This way,
elements of variable length can be specified. To specify a long variable sequence, the user
simply writes a number n in square brackets instead of n asterisks (see element s5 in
Listing 3.1). Further, in the specification is defined the number of allowed mismatches
M and insertions I in the element. Letter SI specifies according to the IUPAC notation
which nucleotides are allowed as an single-nucleotide insertion (e.g. there is one insertion
of A allowed in element s7 in 3.1). The specification of I and SI is optional, and can
be omitted. In that case, none insertion is allowed. If insertions are allowed, we put
restrictions on their position. Insertions are forbidden to occur before the first or after the
last symbol of the element. Furthermore, adjacent insertions are forbidden as well.

Specification of a paired element is analogous:

hName M:R:I S1S2 . . . Sm:S
′
mS
′
m−1 . . . S

′
1:SI

Compared to single strand specification, we add sequence constraints S′m . . . S
′
1 for the

complementary strand, and the number of mispairs R. Similarly to single strand elements,
the insertions are not allowed at the beginning and after the end of the element. Further,
insertions must not be adjacent nor opposite in context of the paired element. This is a
so-called helical element, as it has the prefix h. We mentioned earlier that another kind
of paired element is also possible. It is a so-called relational element denoted by a prefix
r. Relational elements are generalized helical elements, where we can specify an arbitrary
complementarity function by a transformation matrix. A transformation matrix specifies
the rule, according to which bases complementary to A-C-G-T are determined. For example,
if we want to allow for canonical, and G-T pairings, the corresponding transformation
matrix is TGYR (Y stands for T or C, and R stands for T or A). This TGYR transformation
matrix is implicit for helical elements. The following relational element specification is
then equivalent to the previous helical element:

rName M:R:I S1S2 . . . Sm:S
′
mS
′
m−1 . . . S

′
1:SI TGYR

Optionally, element reordering command can be placed in the last line of the de-
scriptor. In the backtracking search, elements will then be used in this particular ordering.
This command has no effect on the quality of RNArobo search, however the element order-
ing can significantly influence the performance. We devote Chapter 4 to the problematic
of finding an ordering that leads to short execution time.

3.3 Dynamic Programming for Single Strand Elements

In this section we describe a dynamic programming algorithm which finds all occurrences
of a single strand pattern P in a text T with at most M mismatches and I insertions of
a one-letter-long pattern PI .

We use four dimensions of a five-dimensional table S to keep track of position in

1see Appendix A on the page 53
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T , position in P , the number of occurred mismatches, and the number of insertions,
respectively. The fifth dimension is binary, and is intended to serve as a flag, whether the
previous aligned symbol of T is an insertion, as one insertion cannot follow another.

Formally, we define a function S as follows:

St,p,m,i,b ∈ {0, 1} ;

t ∈ {0 . . . |T |} , p ∈ {0 . . . |P |} ,m ∈ {0 . . .M} , i ∈ {0 . . . I} , b ∈ {0, 1}

St,p,m,i,b =



1 iff P [1 . . . p] can be aligned with a suffix of T [1 . . . t]

with m mismatches, and i insertions;
if b = 1 then T [t] is an insertion

0 otherwise

Recurrence

In [Rampášek, 2010] we proposed the following recurrence to compute the function S.

Initial conditions: ∀t ∈ {0 . . . |T |} St,0,0,0,1 := 1

The recurrence:

St,p,m,i,0 =
∨

∨
b

St−1,p−1,m−x,i,b x := (int)(T [t] does not fit P [p])

St,p−1,m,i,0 iff P [p] =‘∗’ (skip a wild card)

St,p,m,i,1 =
∨

St−1,p,m,i−1,0 iff T [t] fits PI (an insertion)

St,p−1,m,i,1 iff P [p] =‘∗’ (skip a wildcard)

Solutions:

A match of the pattern P is found in the text T ending at position t ≤ |T |
with m ≤M mismatches and i ≤ I insertions if St,|P |,m,i,0 = 1. To obtain this
match we have to trace back.

3.4 Dynamic Programming for Paired Elements

The problem in this case is to find all occurrences of a paired pattern P : P ′ where P , P ′

are patterns of individual strands (i.e. |P | = |P ′|) in a text T , such that in an admissible
match the individual strands are complementary.

Furthermore, we allow for imperfect matches with up to M mismatches, R mispairings,
and with at most I insertions of a one-letter-long pattern PI together in both strands.

To address this pattern matching problem, we proposed in [Rampášek, 2010] a function
H, and a recurrence formula for its computation.
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The function H for paired (helical) elements is the following:

Ht1,t2,p,m,r,i,b ∈ {0, 1} ;

t1, t2 ∈ {0 . . . |T |} , p ∈ {0 . . . |P |} ,m ∈ {0 . . .M} , r ∈ {0 . . . R} , i ∈ {0 . . . I} , b ∈ {0, 1}

Ht1,t2,p,m,r,i,b =



1 iff P [1 . . . p] can be aligned with a suffix T ′ of T [1 . . . t1] with
m mismatches, P ′[1 . . . p] can be aligned with a prefix T ′′

of T [t2 . . . |T |] with no mismatch, T ′ and T ′′ contain together
i insertions, and between T ′ and T ′′ are r mispairings;
if b = 1 then exactly one of T [t1], T [t2] is an insertion

else none of the T [t1] and T [t2] is an insertion

0 otherwise

Recurrence

Initial conditions: ∀t1, t2 ∈ {0 . . . |T |} Ht1,t2,0,0,0,0,1 := 1

The recurrence:
x := (int)(T [t1] does not fit P [p])

y := (int)(T [t2] is not complement of T [t1])

Ht1,t2,p,m,r,i,0 =
∨

∨
b

Ht1−1,t2+1,p−1,m−x,r−y,i,b iff T [t2] fits P ′[p]

Ht1,t2,p−1,m,r,i,0 iff P [p] =‘∗’1 (skip a wildcard)

Ht1,t2,p,m,r,i,1 =
∨


Ht1−1,t2,p,m,r,i−1,0 iff T [t1] fits PI (an insertion)

Ht1,t2+1,p,m,r,i−1,0 iff T [t2] fits PI (an insertion)

Ht1,t2,p−1,m,r,i,1 iff P [p] =‘∗’1 (skip a wildcard)

Solutions:

A match of the pattern P : P ′ is found in the text T , P ending at position
t1 ≤ |T |, P ′ beginning at position t2 ≤ |T | with m ≤M mismatches, r ≤ R
mispairs, and i ≤ I insertions if Ht1,t2,|P |,m,r,i,0 = 1. To obtain this match we
have to trace back.

1In a correct paired pattern holds: ∀k (P [k] =‘∗’ ⇔ P ′[k] =‘∗’)
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3.5 Implementation Note

RNArobo is implemented as a C++ console application, and is available for download at
http://compbio.fmph.uniba.sk/rnarobo/.

We have undertaken several optimizations of the code. Worth mentioning is optimiza-
tion of the tables used in dynamic programming. These tables are typically sparse, with
relatively many zero elements. In the previous versions, we represented elements of the
table as arrays of coordinates and stored them in a red-black tree (C++ STL Set). Now,
we encode the element coordinates into one 64bit integer. We also tried to replace the
red-black trees by hash sets, but this change did not bring intended speed-up in practice
(this can change with a better implementation).

Nevertheless, the most important enhancement is a new method for element ordering
in the backtracking search, more on this method follows in the next chapter.

For more details on RNArobo algorithm and implementation we refer the reader to
[Rampášek, 2010].

http://compbio.fmph.uniba.sk/rnarobo/
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Element Ordering in RNArobo

Ordering of motif elements in the RNArobo backtracking search has a significant impact
on the execution time. To design a good element ordering of a complex motif is not a
simple task, as many aspects are involved. Therefore we propose a data-driven method
for finding a close-to-optimal element ordering, which leads to execution time as short as
possible.

4.1 Method Outline

Our approach consists of two main parts:

(i) heuristic proposal of possible orderings

(ii) data-driven evaluation of the proposed orderings

First, we generate all possible starting k-tuples of elements (where k is a parame-
ter). These k-tuples are scored by a heuristic scoring function which takes into account
information content of the elements and their relative position within the motif.

All the k-tuples with scores above some threshold are augmented to complete search
orderings by the information content heuristic. Then we take random samples from this set
and run the motif search with the sampled ordering in a sequence window of a fixed size.
For each such application of an ordering, we measure the number of memory operations of
the underlying dynamic programming as an approximation of the execution time. Based
on the gathered data, we continually eliminate orderings with bad performance. In this
way we progress in the search task window by window, but at the same time we observe
which orderings lead to the shortest execution times and adapt our strategy.

Additionally, after fixing the first k-tuple of the search ordering, we subsequently use
the same technique to find the best successive k-tuple (with respect to the already fixed
ordering prefix), and so on, until the whole search order is fixed.

4.2 Heuristic Scoring Function

The main goal of the heuristic evaluation of the proposed k-tuples is to select from all the
possible k-tuples a subset, which is small enough to be empirically evaluated. We want

23
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this subset to contain at least some k-tuples that can be augmented to a complete element
ordering with execution time not far from the optimum. Secondly, we would like not to
have many bad tuples in this chosen subset, because as we will see later, their evaluation
can increase running time excessively. Naturally, we want this heuristic evaluation to be
considerably faster than the empirical.

The score of a k-tuple is a weighted sum of heuristic scores for individual elements of
the k-tuple. The weight of an element in this sum decreases exponentially with its distance
from the beginning. This is because an element placed sooner in the search order tends
to be searched in longer portion of the sequence. Further, the element’s score is a linear
combination of two heuristic functions h1 and h2. Thus the score of a k-tuple (e1, . . . , ek)

can be expressed as

h(e1, . . . , ek) =
k∑

i=1

2k−i
(
h1(e

i) + c · h2(e1, . . . , ei)
)

(4.1)

The first heuristic h1 is an approximation of the information content of an element,
favoring elements that pose more specific constraints. The second heuristic h2 is order-
sensitive and accounts for flexibility of the element’s search domain with respect to ele-
ments preceding in the ordering. In practice, we use k = 3 and c = −0.3. After scoring all
k-tuples we select those that achieve at least 85% of the maximal score achieved by some
of the k-tuples. If there are too many good k-tuples, we limit them to the best 40, however
this is a parameter. In the next sections we discuss the heuristic functions in detail.

4.2.1 Information Content Heuristic

By this heuristic, we want to follow the fail-first1 heuristic generally used in backtracking
searches [Russell and Norvig, 2010]. This heuristic says that we should search first for the
element, which is the least likely to occur. Thus we need to asses the restrictiveness of an
element with respect to genomic sequence in which we execute the search. As a measure
of restrictiveness, we use information content of this element.

Information content is a measure of uncertainty reduction about an outcome once we
have received a new piece of information. In other words, it is the difference in the entropy
of a random variable before and after some message has been received.

I = Hbefore −Hafter

Note, that I can have a negative value if after receiving a message the outcome of the
random variable is actually more random than we originally expected. Recall, that entropy
of a random variable is defined as:

H(X) = −
∑
i

P [X = xi] lgP [X = xi]

Here we use logarithm with base 2, so the entropy corresponds to bits.
In our case we assume the initial state to be a uniform distribution over DNA sequences

1also called minimum-remaining-values or most-constrained-variable-first heuristic



Chapter 4. Element Ordering in RNArobo 25

of a fixed length. When we are told that an occurrence of an element starts at the first
position of a sequence, the distribution is changed from all genomic sequences to those
that match the element. Therefore, the information content of an element is entropy of
the background genomic sequence distribution minus the entropy of the distribution of
sequences that match the given element.

We compute an approximation of the information content, since exact entropy com-
putation of an element with allowed insertions or with variable length is not trivial, and a
reasonable approximation is sufficient for our purpose. We approximate the information
content of an element as a sum of information contents of its individual positions and then
we refine the result according to the number of insertions, mismatches, and mispairs (in
paired elements) allowed.

For an unpaired element, the background probability distribution of a residue is uni-
form over the set {A,C,G,U}. Therefore the background entropy Hu

before(a) of an unpaired
residue a is:

Hu
before(a) = −

4∑
i=1

1

4
lg

1

4
= lg 4 = 2 bits

Constraints, which an element puts at a particular residue ei, change the distribution in
one of these 5 ways:

1. The element defines a residue ei without ambiguity, i.e. it allows only one residue
from {A,C,G,U}:

Hu
after1(ei) = − lg 1 = 0 bits

resulting in information content for such a position to be

Iu1 (ei) = Hu
before(ei)−Hu

after1(ei) = 2 bits

2. The residue ei must be from a subset of size 2 of {A,C,G,U}, in the IUPAC notation2

this is expressed by one character from {M,R,W,S,Y,K}:

Hu
after2(ei) = − lg

1

2
= 1 bit

Iu2 (ei) = Hu
before(ei)−Hu

after2(ei) = 2− 1 = 1 bit

3. The residue ei can take one of three specified values from {A,C,G,U}, in the IUPAC
notation this is expressed by a character from {B,D,H,V}:

Hu
after3(ei) = − lg

1

3
= 1.585 bits

Iu3 (ei) = Hu
before(ei)−Hu

after3(ei) = 2− 1.585 = 0.415 bits

4. There is no restriction on the residue ei (it can take any value), in the IUPAC

2see Appendix A
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notation this is expressed by character N:

Hu
after4(ei) = − lg

1

4
= 2 bits

Iu4 (ei) = Hu
before(ei)−Hu

after4(ei) = 2− 2 = 0 bits

5. Finally, the constraint for ei can be a wildcard (it can take any value or to be
omitted), expressed by character *. We assume all the possibilities to be equally
likely, therefore:

Hu
after5(ei) = − lg

1

5
= 2.322 bits

Iu5 (ei) = Hu
before(ei)−Hu

after5(ei) = 2− 2.322 = −0.322 bits

Here we have the situation, when the outcome is actually more random than we have
expected.

Information content I ′unpaired(e) of an unpaired element e with no mismatch or insertion
allowed is then

I ′unpaired(e) =

|e|∑
i=1

5∑
j=1

[ei is of type j] · Iuj (ei) (4.2)

We will show how to deal with mismatches and insertions later on.
For a paired element, we assess its information content as a sum of information

contents of the individual pairs that form this element. The background probability dis-
tribution of each pair is uniform, hence the entropy Hp

before(b) of a pair b is:

Hp
before(b) = −

42∑
i=1

1

42
lg

1

42
= − lg

1

42
= 4 bits

Let us now show how to compute Hp
after(ei). The distribution of possible pairs in a paired

position ei is influenced by the sequence constraints of the element, as well as by the
constraint that the two residues must be complementary. As mentioned in Chapter 1, in
addition to canonical pairs G-C, and A-U, the couple G-U is also often considered to form
a pair. Hence in RNArobo we allow a user to define an arbitrary pairing function. Since
there are only 16 possible pairs, we can iterate through all of them and verify whether the
particular pair satisfies both the conditions. Let us denote the number of such correct pairs
r. Additionally, if the pair is (*,*), then there is one more option – to skip this pair (this
leads to negative information content for such a pair). Calculation is then straightforward:

Hp
after(ei) = −

r∑
i=1

1

r
lg

1

r
= lg r bits

resulting in information content of the residue pair ei to be

Ip(ei) = Hp
before(ei)−H

p
after(ei) = 4− lg r bits

Information content I ′paired(e) of an paired element e with no mismatch, mispair, nor
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insertion allowed is then

I ′paired(e) =

|e|∑
i=1

Ip(ei) (4.3)

In what follows we show how we approximate the impact of mismatches, mi-
spairs, and insertions on the information content of an element. Intuitively, these
distortions cause more sequences to match an element, i.e. they bring in more uncertainty
about the result. Since we do not model them in the background distribution, they will
cause negative gain in information content of an element.

Mismatch: A mismatch in an element causes some residue sequence constraint to match
everything, i.e. it changes to N. To simulate this, we could find a most constrained
position in the element, and subtract its information content from the overall infor-
mation content. However, we simply subtract 2 bits as a flat rate.

Mispair: A mispair cancels the mutual connection between two paired positions. We
could find a pair, whose information content would suffer the most from this loss of
pairing. However, we simply take the worst case, i.e. one residue used to unambigu-
ously determine the other. This means loss of 2 bits of information, as one residue of
such a former pair does not impose any restrictions on the other residue any more.

Insertion: Insertions are hard to model, as they can occur almost anywhere in the el-
ement, and the restriction that no two insertions can be adjacent, nor opposite in
paired regions make it even more complicated, as the insertions are not indepen-
dent. Therefore we decided to model entropy of an insertion directly as the amount
of information needed to specify its occurrence, and to neglect their dependency.

The first insertion in an unpaired element e may occur at m − 1 places, where m
is the length of e, and at 2 · (m − 1) places in a paired element (as it has two
strands of length m). The number of positions where a successive insertion may
occur differs according to where the preceding insertions occurred. We neglect this
fact and consider the number of positions for an insertion to remain constant. To
specify where an insertion has occurred, we therefore need lg (m− 1), and lg (2m− 2)

bits, respectively. In addition, we need to specify what nucleotide was inserted. To
represent this information we need additional 2, lg 3, 1, or zero bits, depending on
what nucleotides are allowed for insertion (recall cases in computation of Hu

afterj
).

For example, if only A is allowed to be inserted, we need no additional bits to code
this information, as it is implicit.

Now, we can refine previous estimates (4.2), and (4.3), to account also for the men-
tioned distortions. Let us consider an element e of length m with nmm mismatches, and
nins insertions of x allowed. If e is an unpaired element, its estimated information content
is:

Iunpaired(e) = I ′unpaired(e)−2nmm−nins

(
lg (m− 1)+

4∑
j=1

[x is of type j] ·Hu
afterj (x)

)
(4.4)
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If e is a paired element with nmp mispairs, then we estimate its information content as:

Ipaired(e) = I ′paired(e)− 2nmm − 2nmp − nins

(
lg (2m− 2) +

4∑
j=1

[x is of type j] ·Hu
afterj (x)

)
(4.5)

Finally, we define the information content heuristic function h1(e) as follows:

h1(e) =

{
Iunpaired(e) if e is an unpaired element
Ipaired(e) if e is a paired element

(4.6)

4.2.2 Domain Flexibility Heuristic

In RNArobo search, when some element is already fixed and the algorithm tries to find an
occurrence of the next element, the position where it should occur is often not determined
uniquely. Rather, it has to occur within an interval, which we call the search domain of
the element. This happens because motif elements may be of variable length. The size of
a search domain of an element varies with respect to which elements have been already
fixed. The longer the domain is, the more time-consuming is the search for the element
occurrence. Furthermore, we are likely to find more occurrences, which we will have to
examine individually in backtracking. This heuristic function is meant to reflect these
facts.

The input to this heuristic is a non-empty `-tuple, ` ≤ k. We assume the first ` − 1

elements to be already fixed by the time the element e` is searched. Of course, we do not
known positions of matches of these preceding elements. However, the information that
they are already fixed is sufficient to approximate the domain size of the element e`.

For an unpaired element e` we find the nearest fixed element ei (i.e. ei is one of
e1, . . . , e`−1) on the left side of e`. Then we sum up the flexibilities of all elements between
ei and e` in the descriptor. Flexibility of an element is the difference in its maximum and
minimum length. We denote this sum Fleft. The same way we sum on the right side to
obtain Fright. If there is not a fixed element at some side, we define the corresponding

Fside = 0. Then we approximate the domain size De1,...,e`−1

unpaired (e`) as

De1,...,e`−1

unpaired (e`) = min{Fleft, Fright}+ flexibility of e` + 1 (4.7)

where we also account for flexibility of the element itself, and plus one for the position
present in the domain without any flexibility. Notice that this approximation of the domain
size is always positive.

For a paired element e` composed of two strands e`first, e
`
second we proceed similarly.

First, we calculate De1,...,e`−1

unpaired (e`first), and De1,...,e`−1

unpaired (e`second) as in (4.7). In this computation
of the domain size of one strand, we consider the other strand to be fixed. Since for
an occurrence of one strand the complementary strand can occur at any position in its
corresponding search domain, the search domain size for e` is the product of domain sizes
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for individual strands. Thus, we define De`,...,e`−1

paired (e`) for a double strand element as

De1,...,e`−1

paired (e`) = De1,...,e`−1

unpaired (e`first) ·D
e1,...,e`−1

unpaired (e`second) (4.8)

Finally, we define the domain flexibility heuristic function h2(e
1, . . . , e`) as follows:

h2(e
1, . . . , e`) =

{
De1,...,e`−1

unpaired (e`) if e` is an unpaired element

De1,...,e`−1

paired (e`) if e` is a paired element
(4.9)

4.3 Candidate Sampling

Recall that the heuristic function defined above is used to select promising initial k-tuples
for search orders. These k-tuples are then augmented to complete search orderings by the
information content heuristic. Denote the resulting set of complete orderings as O.

From O we uniformly choose independent and identically distributed (i.i.d.) samples.
Subsequently we run the motif search with the sampled ordering in a sequence window of
a fixed size. For each sample x ∈ O, we measure Tx, the number of memory operations
(read and write) of the underlying dynamic programming, as an approximation of the
execution time, which is universal for all machines. Each sequence window is used only
once. The next window shares an overlap with the previous one, so that the search cannot
miss a motif occurrence. This way we progress in the search task window by window, and
at the same time we evaluate candidate orderings from O. In practice, we set the window
size to be

max{10 ·max length of an occurrence, 1000}

However, it is not always possible to divide the searched sequences into windows of the
same size, especially when the search database contains many short sequences. Therefore
we normalize the number of measured memory operations by the actual window size, and
we use as Tx the number of memory operations per one base of a window.

We approximate the distribution of the random variable Tx by a Normal distribution
with unknown mean and variance. Examples of empirical distribution of Tx can be seen
in Figure 6.2 in Chapter 6.

Our goal is to pick, from the set of candidate orderings O, the ordering which leads
to the shortest execution time on average. Formally, we want to find x∗ ∈ O, such that
∀y, E[Tx∗ ] ≤ E[Ty]. We use Welch’s t-test (described in more detail in Section 4.3.1) to
test the null hypothesis E[Tx] ≥ E[Ty] against the alternative hypothesis E[Tx] < E[Ty].
Each time we gather a new sample from Tx for some x ∈ O, we run tests of x against
the rest of O. Thus, as soon as we observe statistically significant difference between two
candidates, we can immediately eliminate the one with significantly higher mean time of
execution from set O. In the case when the mean of two candidates cannot be compared
with enough significance, even after both were sampled many times (we use threshold of
100 samples from each), we break the tie. We simply eliminate the one with the higher
sampled mean.

In this way we sample and test until all but one ultimate ordering are eliminated, and
we have the winning initial k-tuple. Recall, that this initial k-tuple was extended to a full
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ordering by the information content heuristic. Now, we can drop this extension and start
training the following k-tuple in the ordering with already fixed prefix. In this way we
prolong the fixed prefix, until we have a completely fixed order.

4.3.1 Details of Welch’s t-test

In this section we briefly describe the Welch’s t-test [Welch, 1947] used in our candidate
elimination.

In statistics, the so-called Behrens-Fisher problem is the problem of hypothesis testing,
which concerns difference between the actual means of two normally distributed popula-
tions with possibly unequal variances, based on independent sets of samples from these
distributions. This problem is a generalization of the Student’s problem that assumes the
variance of the populations to be equal. We decided to choose a method that can address
the Behrens-Fisher problem, because in candidate elimination we cannot assume equality
of variances of variables Tx.

A variety of methods has been proposed to address this problem. They differ in
robustness against Type I errors under violations of normality, difference in the sam-
ple groups sizes, or difference in the variances. For more details we refer the reader to
[Kim and Cohen, 1998, Ruxton, 2006]. We decided to use the Welch’s t-test as it has the
best combination of performance and ease of use [Ruxton, 2006].

Welch’s t-test is based on Student’s t-test, which assumes the variances of the two
populations to be equal. Welch proposed several methods to correct the number of degrees
of freedom in Student’s t-test in case of unequal variances. Probably the most commonly
used approximation is the Welch-Satterthwaite equation, [Satterthwaite, 1946]. Therefore
this method is also called Welch-Satterthwaite test, or Smith/Welch/Satterwaite (SWS)
test, acknowledging also the work of Smith [Smith, 1936]. However the most commonly
used name is simply “unequal variance t-test”.

Welch’s t-test, similarly to Student’s t-test, is comprised of calculating a t statistic
that is then compared with the value in standard t tables according to the appropriate
number of degrees of freedom ν. The statistic t is defined by the following formula:

t =
µ1 − µ2√
s21
n1

+
s22
n2

(4.10)

where µi is the sample mean, s2i the sample variance, and ni the sample size of the ith

population.
The approximate number of degrees of freedom ν is then obtained form the Welch-

Satterthwaite equation:

ν =
(g1 + g2)

2

g21
n1−1 +

g22
n2−1

where gi =
s2i
ni

(4.11)

With this ν computed, we look-up the appropriate critical value of t in a table of
t-distribution and execute a one-tailed test. If the computed t is greater than the critical
value, we reject the null hypothesis in favour of the alternative hypothesis. In our algorithm
we test at significance level α = 0.025.
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Post-processing of RNArobo
Results

The fact that a piece of sequence matches an RNA structural motif is not sufficient to
expect that this sequence really folds into the desired structure. This happens because
our search task represents only a very simplified model of the physical forces involved in
RNA folding. To at least partially address this problem, we have implemented a set of
software tools, which enable a user to sort and filter the found motif occurrences according
to estimated structural stability. In this chapter, we use the term false positive for a match
that is not correct in the context of searching for real homologs. Tools described in this
chapter were developed under the guidance of Prof. Andrej Lupták. These tools are
intended to mimic bioinformatic analyses that biochemists would do manually to verify
the functionality of proposed matches.

5.1 RNA Structure Prediction

Syntactical match of an RNA structural motif in RNArobo search does not imply that
this desired structure is the most stable (probable) structure for this found piece of RNA
sequence (the match). A natural way to address this issue would be to calculate the most
stable structure of this sequence and then compare it to the desired structure.

Here comes the problem. We have to solve the RNA structure prediction problem, also
referred to as RNA folding problem. This problem has been thoroughly studied for past
decades, leading to many different algorithms.

These algorithms often differ in definition of the optimal secondary structure they
are looking for. Usually, they seek to the structure in which the RNA sequence has the
lowest minimum free energy (MFE), which tends to be the most stable structure. The
original methods for MFE structures computation typically use combinatorial optimiza-
tion techniques (e.g. dynamic programming). The most recognized algorithms in this
group are Nussinov algorithm [Nussinov and Jacobson, 1980], Zuker-Sankoff algorithm
[Zuker and Sankoff, 1984], and McCaskill algorithm [McCaskill, 1990].

However there is evidence that RNA sequences start folding right away during the
process of their transcription from DNA. This may cause a sequence to fold into a local

31
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optima different from the globally optimal MFE structure. Folding kinetics approaches
account for this phenomenon, such as KineFold [Xayaphoummine et al., 2005].

Comparative methods try to exploit known structures of RNA sequences similar to
the query sequence. This method is suitable for sequences belonging to a known RNA
family. To model the consensus structures of a given family and then to infer a structure
for the query sequence, algorithms mainly use stochastic context-free grammars, and their
variations (e.g. covariance models).

Despite a lot of effort, accuracy of the exiting general-purpose methods is rather low
for more complex structures. However, the main pitfall of RNA structure prediction are
pseudoknots, as they cannot be directly modeled by stochastic context-free grammars or
by common energy models. In fact, the general pseudoknot prediction has been proven
NP-hard [Lyngsø, 2004]. Lately, many methods have been proposed to tractably address
the pseudoknot prediction problem in practice also for longer sequences [Ren et al., 2005,
Bellaousov and Mathews, 2010, Sperschneider and Datta, 2010, Sato et al., 2011]. Unfor-
tunately, none of the existing general-purpose tools can reliably predict complex struc-
tures, like the double pseudoknotted structure of the HDV ribozyme, which is particularly
complicated.

Therefore to filter out false positives from RNArobo search results, we cannot simply
use an RNA structure prediction tool, as we proposed at the beginning of this section.
Besides the problem with the accuracy of the structure prediction, this approach has
one more drawback. Comparing the predicted structure to the structure prescribed by
a descriptor is not trivial, because the real homologous motif occurrences seldom share
exactly the same structure. Slight structural variations in some parts of the motif are
permissible, while some parts of the motif are crucial for the functionality, and are much
more structurally and sequentially conserved. We try to model these phenomena in the
RNArobo search by allowing for mismatches, mispairs, insertions, or wildcards, that cause
the search to be more sensitive however less specific. It is therefore crucial to account
for this variability or strictness of individual parts of the RNA motif primarily in post-
processing phase. Naturally, expert knowledge on the searched RNA motif is necessary
for more precise in silico evaluation of the candidates, proposed by RNArobo search.

5.2 Evaluation of Structural Stability per-partes

Our approach allows a user to select several submotifs of the searched motif. For each
such submotif we use external tools for RNA structure prediction and based on the result
we assign it some score. The score of a motif occurrence is then a linear combination of
submotif scores.

These submotifs do not have to be continuous in the motif, nor they have to be
mutually disjunct, i.e. a submotif can be an arbitrary list of structural elements present
in the motif. It is advisable to select submotifs, whose structure can be predicted with
sufficient accuracy. For a particular motif occurrence, nucleotide sequences belonging to
the individual elements are parsed out, and for each submotif the corresponding sequence
is assambled together. We then compute a predicted structure (fold) and its minimum
free energy (MFE), using ViennaRNA package [Hofacker et al., 1994, Lorenz et al., 2011],
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and DotKnot [Sperschneider and Datta, 2010] in case of pseudoknotted submotifs. Score
of each submotif is then computed by one of the following ways:

(i) stability of the predicted fold, the score is the absolute value of the predicted MFE

(ii) stability of the predicted fold in terms of the predicted MFE per one base

(iii) closure of the predicted fold, the score is the percentage of first n bases of the submotif
that pair with last n bases of the submotif

The score of the motif occurrence is then a linear combination of submotif scores. The
parameters of the linear function are defined by the user. Recall that the submotifs can be
arbitrary, e.g. a user can define the same submotif twice and use different score functions.
For example, this could lead to scoring the submotif according to its MFE as well as
according to its fold closure at the same time.

We have implemented this method in a tool called FoldFilter. It allows an expert user
to assess RNArobo search results, and filter out majority of false positive matches. The
best occurrences are then good candidates for further in vitro testing.

To facilitate estimation of the submotif weights we introduce a tool called Weight-
sTool, which allows the user to dynamically change these weights and see how the changes
affect the score distribution over all motif occurrences. It is then possible to export all
occurrences with score over a desired threshold.

5.3 Implementation Note

Both tools for post-processing of RNArobo results, FoldFilter and WeightsTool, are imple-
mented as Perl scripts. They are available for download at the official RNArobo website:
http://compbio.fmph.uniba.sk/rnarobo/.

Prerequisites:

• properly installed ViennaRNA package

• DotKnot (provided in the script package)

• Python interpreter to run DotKnot

• Perl interpreter to run FoldFilter and WeightsTool

Functionality of the tools was tested in various Linux and Mac OS environments.

http://compbio.fmph.uniba.sk/rnarobo/
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Experimental Results

In this chapter we present empirical results obtained by running RNArobo on real biologi-
cal sequences with several realistic descriptors. First we test validity of several assumptions
made in Chapter 4. We then compare the overall running time of RNArobo with several
existing tools and study the progress of ordering elimination in our data-driven element
ordering (DDEO) strategy.

6.1 Used RNA Motifs

In our experiments we used the following four RNA motifs, their descriptors are listed in
Appendix B.

• Motif of an ATP aptamer : A rather simple motif with a conserved single-stranded
element, but also with some elements of variable length. An illustration of the motif
is depicted in Figure 3.1.

• Motif of a Hepatitis Delta Virus ribozyme’s double pseudoknot: This is the most
complex motif in our set. It contains sequentially conserved elements as well as
variable elements, and helices with allowed mispairs. But above all, it is the double
pseudoknot that makes the motif complicated.

• Motif of a Hammerhead ribozyme: In the motif there are single-stranded elements
that are sequentially conserved, but also two very variable elements. Helices are also
of variable length, but a perfect canonical pairing is required.

• Generalized motif of a tRNA cloverleaf : This motif contains structural elements
of variable length and helices with allowed mispairs. These properties with lack of
sequential conservation slow down the search, and cause the motif to have many
matches.

34
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6.2 Used Genomic Sequences

We have used real DNA sequences:

• Genome of a fruit fly (Drosophila melanogaster) [NCBI, 2012a]. This database is
168,736,537 bases long.

• Human genome [NCBI, 2012b], that is 3,137,161,264 bases long.

6.3 Hardware and Software Environment

As a machine for our tests, we used a server with eight physical cores (2× quad-core Intel
Xeon E5520 @ 2.27GHz), and 16GB of RAM.

The operating system was Ubuntu Server 10.04.4 LTS. For compilation of C/C++
source code we used GCC 4.4.3 compiler with optimization level 3 (-O3 flag).

6.4 Memory Operations vs. Real Time

As mentioned earlier in Section 4.3, we use the number of memory operations done during
dynamic programming as a measure of the real execution time in DDEO. By a memory
operation we mean any access to the dynamic programming table, i.e. both read and write
operations are counted equally. We have run several experiments to demonstrate that this
measure correlates well with the real execution time.

We have chosen 9 different search orders of elements in the tRNA motif. Then with
each of these fixed orderings we have run RNArobo search in a fixed ∼2.2 million bases long
sequence. We measured both execution time and memory operations. In Figure 6.1 we
plotted the average number of memory operations per second for each of these experiments.
The execution time varied from a few second to several minutes, however the ratio of
memory operations per second stays rather steady. Note that the ratio slightly varies
due to the influence of all the other operations that are involved, as in these experiments
we measured the total execution time, including input parsing, overhead of backtracking
search, and so forth.

These results encourage us to use the number of memory operations as a good machine-
independent measure of the execution time for the purpose of our data-driven element
ordering method.

6.5 Normality of Tx

In our DDEO strategy (Section 4.3) we measure the number of memory operations as a
measure of the execution time and then we use such observations to eliminate search orders
by a statistical test. Here we test the normality of the variables involved in this test. Recall,
the random variable Tx for an order of elements x, is the number of memory operations
executed during RNArobo search in a sequence of a fixed size and then normalized by
this window size. In other words, Tx is the average number of memory operations per one
residue in a sequence window. For the purpose of candidate elimination in Section 4.3
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Figure 6.1: The the number of dynamic programming memory operations per one second
of the overall execution time in our 9 experiments does not vary significantly.

we assume Tx to have Normal distribution. We want to show that this assumption has
rational foundation.

We measured ∼530 samples of Tx for four different element orders of the tRNA motif.
Although the measured values do not pass statistic normality tests, in Figure 6.2 we can
see that the Normal distribution is a good approximation.
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Figure 6.2: Sampled distributions of Tx (the number of memory operations per residue)
on different sequence windows using four different fixed orders of elements. In each plot,
the blue curve is a kernel density estimation of the Tx samples using uniform (rectangular)
kernel. In red is depicted the Normal distribution with parameters set to sample mean
and sample variance.
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6.6 Execution Time

In this section we compare the running time of RNArobo with data-driven element ordering
(RNArobo 2.0) to the previous RNArobo version 1.94, and to established search tools
RNAbob 2.2 (1999) [Eddy, 1996], and RNAmotif 3.0.7 (2010) [Macke et al., 2001]. Note,
that RNArobo 1.94 uses a fixed search ordering obtained by a simple heuristic, and is
otherwise identical to RNArobo 2.0.

We have measured three runs of RNArobo 2.0 (with DDEO), and then run the search
again with the best search order found in individual runs. This way we can assess the
quality of found orderings as well as the overhead of the DDEO, which fluctuates as
randomization is involved.

In DDEO, we use the following parameter values:

• k = 3

• cutoff score for k-tuples is 85% of the maximum score

• limit for O is |O| ≤ 40 (if there is too many good candidates over cutoff threshold)

• window size is max{10 ·max length of a motif occurrence, 1000}

• significance level for Welch’s t-test is α = 0.025

After fixing the first triplet of the search order, we use the same technique to find the best
successive triplet, and so further, until the whole search order is fixed.

Elimination of candidates by Welch’s t-test at significance level α = 0.025 appears to
be the best trade-off between stability and execution time. Testing with higher α tends to
be less stable. The search converges to a final ordering rather quickly, however mistakes
leading to worse ordering are more likely to happen. On the other hand, lower α forces
the search to execute more samples, including those with inferior performance.

There may not be one unique ordering that is significantly better than all the others,
therefore we break ties between two orderings, after each has more than 100 samples, by
eliminating the ordering with the higher sample mean.

We have conducted three sets of tests:

• on chromosome 3 of the Drosophila genome (27,905,053 bases; Figure 6.3)

• on the whole genome of a Drosophila (168,736,537 bases; Figure 6.4)

• on the whole human genome (3,137,161,264 bases; Figure 6.5)

In each test, we scanned both strands of the DNA, thus doubling the effective sequence
length. We tested RNArobo 1.94, a version with unsophisticated heuristic for element
ordering, only in the first test set. As can be seen in Figure 6.3, this heuristic works well
for a simple motif of ATP aptamer, but for more complex structures it fails to deliver a
reasonable ordering. Thus we left out RNArobo 1.94 from the genome-wide tests.

In Figure 6.3 we use a relatively short sequence, and for a complex motif, such as
Hammerhead ribozyme, RNArobo with DDEO needs a much longer time than RNArobo
run with the best order already given at the start. This is due to bad candidate orders,
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whose empirical evaluation is time-consuming. However notice, that DDEO overhead
is roughly constant with respect to the length of the searched genomic sequence. As
we increase the sequence length (Figures 6.4 and 6.5), we can see that this overhead is
becoming negligible. Therefore in case of search in large database, e.g. genome-wide
search, it is advisable to sacrifice longer DDEO overhead in return for better ordering,
which eventually leads to shorter execution time.

We can see that RNArobo 2.0 even with DDEO overhead outperforms RNAbob and
RNAmotif in case of complex motifs like HDV pseudoknot and tRNA. In this case RNArobo
benefits from the ability to find a close-to-optimal search ordering, and also from its ro-
bust underlying dynamic programming. For the other two motifs, RNArobo 2.0 is slightly
slower than RNAbob, and RNAmotif performs far the best. Notable is the rather steady
performance of RNArobo throughout the whole test set. For example the difference in
RNAmotif performance for ATP aptamer and for HDV pseudoknot is enormous, while
for RNArobo the difference is fairly small. This shows, that the bottleneck of RNArobo
performance is now the dynamic programming used in search for individual element oc-
currences. RNArobo 2.0 does not use any pre-filtering techniques, or specialized pattern
matching algorithms in case there are no mismatches or mispairs allowed in an element,
but always uses the general dynamic programming. Thus we believe there is still room for
further optimization.
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Figure 6.3: Execution time of RNArobo 2.0 (with DDEO) compared to its previous version
1.94, RNAbob 2.2, and RNAmotif 3.0.7. The search was conducted on chromosome 3 of the
Drosophila genome (55,810,106 bases scanned). Element ordering heuristic in RNArobo
1.94 fails to find an effective order for more complex structures. New data-driven method
in RNArobo 2.0 works well, however the overhead is notable as the sequence is short.
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6.7 Details of DDEO Operation

We devote this section to the analysis of operation of our data-driven element ordering
(DDEO) method proposed in Chapter 4 and implemented in RNArobo 2.0. During the
search for four motifs in the human genome described in the previous section, we recorded
statistics for all sampled candidates. Based on this data we want to explore how does the
DDEO method progress in practice. The overall execution time of these searches can be
seen in Figure 6.5.

For each of the four motifs we present two types of figures. The first type (e.g. Figure
6.6) depicts the value of Tx averaged over windows where a particular ordering was used,
i.e. it is the average number of memory operations per one base of a sampled window. We
plotted this value from three runs of RNArobo 2.0 for each of the best k-tuples that were
selected to set O (and augmented to complete element orders) based on our heuristic
scoring function. Notice, that the heuristic proposal of the k-tuples is deterministic,
therefore in each run the k-tuples are the same, however the sampled values from their
distribution vary.

In the second type of figures we depict the number of samples done for each of the
proposed k-tuples before it was eliminated or chosen as the very best k-tuple. We refer to
this number also as the coverage of a given k-tuple. In general, we can see the trend that
the k-tuples with inferior performance have low coverage, as they are quickly eliminated
if there is a large enough proportion of candidates with a good performance (as it is then
more likely that we sample a good candidate that will eliminate these inferior ones). On
the other hand, the best performing k-tuples with similar values have higher coverage, as
more samples are required to eliminate one of them. Recall that we break tie between two
k-tuples once we have obtained at least 100 samples of each.

In Figures 6.6 and 6.7 we can see artefacts of the DDEO method procedure in search
for the best element ordering of the ATP aptamer motif. The performance of heuristically
proposed candidate orders have very similar performance. This causes the DDEO to take
many samples, as difference between candidates are not significant in the Welch’s t-test.

The other three motifs (Hammerhead ribozyme, HDV pseudoknot, and tRNA) are
more complex than ATP aptamer, and are composed of more elements. Therefore we
present for them also figures from training of the second triplet of their search order.

As we can see in Figures 6.8, 6.14, and 6.20, our heuristic does not work reliably for
these motifs. It proposes several search orders with notably bad performance, however
there are still enough good candidates that quickly take over. In case of the Hammerhead
ribozyme (Figure 6.14), there are four exceptionally inferior candidates proposed. This
results in the large overhead noticeable in Figures 6.3, and 6.4.

It is worth mentioning that even though choices of the final k-tuples in individual
RNArobo 2.0 runs slightly differ, their overall performance is almost the same. The only
exception is the second run of Hammerhead ribozyme in human genome, which is a little
worse.
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Figure 6.6: ATP aptamer: Average number of memory operations for 19 triplets with
the best heuristic score (ordered by the heuristic score from left to right). Our heuristic
function for this simple motif works well, all the candidates are similar and provide good
performance.
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Figure 6.7: ATP aptamer: Coverage of the best 19 triplets (ordered by the heuristic
score from left to right). The performance of the triplets is similar (Figure 6.6), what
causes the higher coverage.
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Figure 6.8: HDV pseudoknot, first triplet: The average number of memory opera-
tions for 40 triplets with the best heuristic score (ordered by the heuristic score from left
to right). Many candidates have bad performance, but sufficiently good candidates are
proposed as well.
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Figure 6.9: HDV pseudoknot, first triplet: Coverage of the best 40 triplets (ordered
by the heuristic score from left to right). Only good candidates have a high coverage.
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Figure 6.10: HDV pseudoknot, second triplet in run1 & run3: The average number
of memory operations for 40 triplets with the best heuristic score (ordered by the heuristic
score from left to right).
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Figure 6.11: HDV pseudoknot, second triplet in run1 & run3: Coverage of the
best 40 triplets (ordered by the heuristic score from left to right).
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Figure 6.12: HDV pseudoknot, second triplet in run2: The average number of
memory operations for 33 triplets with the best heuristic score (ordered by the heuristic
score from left to right).
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Figure 6.13: HDV pseudoknot, second triplet in run2: Coverage of the best 33
triplets (ordered by the heuristic score from left to right).
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Figure 6.14: HH ribozyme, first triplet: The average number of memory operations
for 40 triplets with the best heuristic score (ordered by the heuristic score from left to
right). Four of the candidates perform really inferior, however there is also many good
candidates.
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Figure 6.15: HH ribozyme, first triplet: Coverage of the best 40 triplets (ordered by
the heuristic score from left to right).
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Figure 6.16: HH ribozyme, second triplet in run1 & run3: The average number of
memory operations for 28 triplets with the best heuristic score (ordered by the heuristic
score from left to right).
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Figure 6.17: HH ribozyme, second triplet in run1 & run3: Coverage of the best 28
triplets (ordered by the heuristic score from left to right).
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Figure 6.18: HH ribozyme, second triplet in run2: The average number of memory
operations for 40 triplets with the best heuristic score (ordered by the heuristic score from
left to right).
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Figure 6.19: HH ribozyme, second triplet in run2: Coverage of the best 40 triplets
(ordered by the heuristic score from left to right).
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Figure 6.20: tRNA, first triplet: The average number of memory operations for 40
triplets with the best heuristic score (ordered by the heuristic score from left to right).
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Figure 6.21: tRNA, first triplet: Coverage of the best 40 triplets (ordered by the
heuristic score from left to right).
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Figure 6.22: tRNA, second triplet: The average number of memory operations for 36
triplets with the best heuristic score (ordered by the heuristic score from left to right).
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Figure 6.23: tRNA, second triplet: Coverage of the best 36 triplets (ordered by the
heuristic score from left to right).



Conclusion

In this work we studied the problem of RNA structural motif search from two aspects.
Firstly, we studied its computational complexity. Secondly, we enhanced our previous
tool [Rampášek, 2010] to be a practical solution for this problem even in large genomic
datasets. The main advantage of our tool RNArobo is the ability to search for arbitrarily
pseudoknotted motifs with insertions, which we handle in a unique way. In the last part
of our work, under the guidance of prof. Andrej Lupták, we developed an in silico method
for post-processing of the RNArobo search results according to their estimated structural
stability.

In the first part of the thesis, we devoted our attention to the study of computational
complexity of RNA structural motif search problem (RNA-SMS). We formally defined
a generalized problem, the structural motif search problem (SMS), and proved it to be
NP-complete. The proof was conducted by a reduction from another NP-complete prob-
lem, ONE-IN-THREE 3SAT. We subsequently showed a straightforward modification of
the reduction to obtain NP-completeness of RNA-SMS. In our study, we also identified
two causes of the NP-completeness: elements of variable length, and pseudoknots in their
general form. In further work, we would like to investigate, whether some weaker restric-
tions on one of these properties would enable us to device an efficient search algorithm.
Examples might include limited number of pseudoknots or limits on their relative posi-
tion (e.g. planar pseudoknots). Restricting pseudoknots in some way in return for effi-
cient algorithm has already been studied for RNA secondary structure prediction problem
[Crochemore et al., 2005, Rivas and Eddy, 1999], however not for RNA structural motif
search.

Proving RNA-SMS to be NP-complete diminished our hopes for a general solution in
deterministic polynomial time. Thus, we have worked to improve our previously proposed
RNArobo algorithm to shorten its execution time in practice. RNArobo is a backtracking
based algorithm, and as such, it is sensitive to ordering of variables (elements). We pro-
posed a data-driven method for finding a close-to-optimal element ordering. Our method
proved to be significantly beneficial in multiple experimental tests. For complex motifs the
implementation of RNArobo with this method tends to perform faster than the established
tools. This is especially true for pseudoknotted motifs, and for motifs with many allowed
distortions, when RNArobo benefits from its robustness. On the other hand, when a motif
does not allow for distortions, our dynamic programming is not as efficient as the methods
used in the other tools. Thus in future, we would like to further enhance RNArobo time
performance. One possible way would be to augment RNArobo by a pre-filtering tech-
nique, such that we could quickly filter out large portions of the searched database. This
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would allow us to focus only on those parts, which exhibit some evidence of a possible
motif occurrence.

The third contribution of our work is a set of tools for RNArobo result evaluation.
These tools automate the analysis which a biochemist expert would do manually, thus
facilitating a high-throughput post-processing of results.

Overall our work resulted in a practical computational pipeline, similar to that pro-
posed in [Jimenez et al., 2012], that can be used to discover new homologs of functional
RNAs.



Appendix A

The IUPAC Notation

Symbol Meaning Mnemonic

DNA Bases A Adenosine Adenosine
C Cytosine Cytosine
G Guanine Guanine
T Thymine Thymine

Ambiguity Characters R G + A puRine
Y T + C pYrimidine
S G + C Strong interactions (3H bonds)
W T + A Weak interactions (2H bonds)
K G + T Keto
M A + C aMino
D G + T + A Not-C (D follows C in alphabet)
H T + A + C Not-G (H follows G)
B G + T + C Not-B (B follows A)
V G + A + C Not-T or U (V follows U)
N G + A + T + C aNy

Table A.1: The IPUAC nucleic acid notation
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Motif Descriptors

� �
# ATP aptamer
#

h1 r2 s1 r3 h4 s2 h4’ r3’ s3 r2’ h1’

h1 0:0 *****:*****
r2 0:0 NNNN:NNNN TGCA
r3 0:0 CNNN:NNNG TGCA
h4 0:0 *****:*****

s1 0 GGAAGAAACTG
s2 0 NNN[17]
s3 0 G� �

Listing B.1: Descriptor for ATP aptamer [Lupták, 2011]

� �
# HDV pseudoknot
#

h1 r2 s1 r3 s2 r4 r5 s3 r5’ r2’ h1’ s4 h6 s5 h6’ s6 r3’ r4’

h1 0:0 R:Y
r2 0:1 NNNNNN:NNNNNN TGCA
r3 0:0 NNNN**:**NNNN TGCA
r4 0:0 NNN:NNN TGCA
r5 0:0 NNN:NNN TGCA
h6 0:1 NNNN****:****NNNN

s1 0 N[14]
s2 0 *
s3 0 TNCNCGY*
s4 0 GN****
s5 0 NNN[20]
s6 0 CNRA*� �

Listing B.2: Descriptor for HDV pseudoknot [Lupták, 2011]
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� �
# Hammerhead Ribozyme
#

s1 r1 s2 r2 s3 r2’ s4 r3 s5 r3’ s6 r1’ s7

r1 0:0 ***NNN:NNN*** TGCA
r2 0:0 ***NNN:NNN*** TGCA
r3 0:0 ***NNN:NNN*** TGCA

s1 0 NNNNNNNNNN
s2 0 CTGANGA
s3 0 NNNN[46]
s4 0 GAAA
s5 0 NNNN[46]
s6 0 TN
s7 0 NNNNNNNNNN� �

Listing B.3: Descriptor for Hammerhead Ribozyme [Lupták, 2011]

� �
# tRNA
#

h1 s1 h2 s2 h2’ s3 h3 s4 h3’ s5 h4 s6 h4’ h1’ s8

h1 0:2 NNNNNNN:NNNNNNN
h2 0:1 *NNN:NNN*
h3 0:1 NNNNN:NNNNN
h4 0:1 NNNNN:NNNNN
s1 0 TN
s2 0 NNNN**********
s3 0 N
s4 0 NNNNNN*
s5 0 NN********************
s6 0 TTC****
s8 0 NCCA� �

Listing B.4: Descriptor for tRNA [Eddy, 1996]
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