25.4. 2024

Random Walk 3-SAT

For clause $C=(\alpha, \beta, \gamma)$ if assignment A does not satisfy C. By random choice one of three literals is fliped in the assigment by notion of random walk. There is $A *$ that satisfies C with $\alpha=T$, then probability of A becoming $A *$ is:

$$
\begin{aligned}
P(A \rightarrow A *) & =P\left(e_{i} \rightarrow e_{i+1}\right)=\frac{1}{3} \\
P(A \rightarrow \operatorname{not} A *) & =P\left(e_{i} \rightarrow e_{i-1}\right)=\frac{2}{3}
\end{aligned}
$$

Lets define e_{i} as expected number of steps needed to satisfy n clauses if i are already satisfied. Then:

$$
\begin{aligned}
e_{n} & =0 \\
e_{0} & =1+e_{1}, \text { one step }+e+1 \\
e_{i} & =1+\frac{1}{3} e_{i+1}+\frac{2}{3} e_{e-1}
\end{aligned}
$$

Lets define $d_{i}=e_{i-1}-e_{i}$, then:

$$
\begin{aligned}
3 e_{i} & =3+e_{i+1}+2 e_{i-1} \\
2\left(e_{i}-e_{i-1}\right) & =3+\left(e_{i+1}-e_{i}\right) \\
2 d_{i-1} & =3+d_{i} \\
d_{i} & =2 d_{i-1}-3 \\
e_{i} & =e_{i+1}+d_{i}, \text { from definition } \\
e_{i} & =e_{i+1}+2 d_{i-1}-3 \\
& =e_{i+1}+2(2 d i-2-3)-3 \\
& =e_{i+1}+2(2(2 d i-3-3)-3)-3
\end{aligned}
$$

Therefore $e_{0} \approx O\left(2^{n}\right)$, which is as bad as exhaustive search.

Expected distance from 0

Problem

Let Z be a random variable representing random step in the walk on the integer axis. Then:

$$
P(Z=1)=\frac{1}{2}, P(Z=-1)=\frac{1}{2}
$$

What is the expected distance from 0 after t steps?

Solution

Let X_{t} be a random variable representing the position after t steps of random walk algorithm.

$$
X_{t}=Z_{1}+Z_{2}+\cdots+Z_{t}
$$

Square of the distance from 0 is X_{t}^{2}.

$$
\begin{aligned}
E\left[X_{t}^{2}\right] & =E\left[\left(Z_{1}+\cdots+Z_{t}\right)^{2}\right]=E\left[\left(Z_{1}+\cdots+Z_{t}\right)\left(Z_{1}+\cdots+Z_{t}\right)\right] \\
& =E\left[\sum_{i=1}^{t} Z_{i}^{2}+\sum_{1 \leq i \leq j \leq t} 2 Z_{i} Z_{j}\right] \\
& =\sum_{i=1}^{t} E\left[Z_{i}^{2}\right]+2 \sum_{1 \leq i \leq j \leq t} E\left[Z_{i} Z_{j}\right]
\end{aligned}
$$

We need to compute $E\left[Z_{i}^{2}\right]$ and $\left[Z_{i} Z_{j}\right]$.

$$
\begin{aligned}
E\left[Z_{i}^{2}\right] & =\frac{1}{2} 1^{2}+\frac{1}{2}(-1)^{2}=1 \\
E\left[Z_{i} Z_{j}\right] & =\frac{1}{4}(1)(1)+\frac{1}{4}(1)(-1)+\frac{1}{4}(-1)(1)+\frac{1}{4}(-1)(-1)=0
\end{aligned}
$$

Then:

$$
E\left[X_{t}^{2}\right]=\sum_{i=1}^{t} 1+2 \sum_{1 \leq i \leq j \leq t} 0=t
$$

By Cauchy-Schwarz inequality $E\left[X_{t}^{2}\right] \geq\left(E\left[X_{t}\right]\right)^{2}$, then:

$$
E\left[\left|X_{t}\right|\right]=\sqrt{t}
$$

which is the expected distance.

