Knapsack problem—traditional dynamic programming

for
$$b := 0$$
 to B do $K[0, b] := 0$

for
$$i:=1$$
 to n for $b:=1$ to B if $w_i \leq b$ and $K[i-1,b-w_i]+c_i>K[i-1,b]$
$$K[i,b]:=K[i-1,b-w_i]+c_i$$
 else
$$K[i,b]:=K[i-1,b]$$

return K[n, B]

Running time: O(nB)

Knapsack problem—alternative dynamic programming

for
$$c:=0$$
 to C do $F[0,c]:=\infty$
$$F[0,0]:=0$$

$$\begin{split} &\text{for } i := 1 \text{ to } n \\ &\text{for } c := 0 \text{ to } C \\ &\text{if } c_i > c \text{ and } F[i-1,0] + w_i \leq F[i-1,c] \\ &F[i,c] := F[i-1,0] + w_i \\ &\text{else if } c_i \leq c \text{ and } F[i-1,c-c_i] + w_i \leq F[i-1,c] \\ &F[i,c] := F[i-1,c-c_i] + w_i \\ &\text{else} \\ &F[i,c] := F[i-1,c] \end{split}$$

return maximum c, for each $F[n,c] \leq B$

Running time: $O(n^2 \max\{c_i\})$

Definition: Approximation algorithm $A(x,\varepsilon)$ is a **polynomial-time** approaximation scheme (PTAS) if for any constant $\varepsilon > 0$

$$A(x,\varepsilon) \leq (1+\varepsilon)OPT(x) \quad \text{(min. problem)}$$
 resp. $A(x,\varepsilon) \geq (1-\varepsilon)OPT(x) \quad \text{(max. problem)}$ and its running time is polynomial with respect to $|x|$.

It is a fully-polynomial-time approximation scheme (FPTAS) if its running time is also polynomial with respect to $1/\varepsilon$.