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graphs the approximation schemes have a better time versus performance trade-off
than the approximation schemes for arbitrary unit disk graphs. Moreover, com-
pared to unit disk graphs, we show that for l-precision unit disk graphs many more
graph problems have efficient approximation schemes.

Our NC-approximation schemes can also be extended to obtain efficient NC-ap-
proximation schemes for several PSPACE-hard problems on unit disk graphs
specified using a restricted version of the hierarchical specification language of
Bentley, Ottmann, and Widmayer. The approximation schemes for hierarchically
specified unit disk graphs presented in this paper are among the first approxima-
tion schemes in the literature for natural PSPACE-hard optimization problems.
Q 1998 Academic Press

Key Words: approximation schemes; parallel algorithms; geometric graphs; unit
disk graphs; graphs drawn in a civilized manner; VLSI design; hierarchical specifi-
cations.

1. INTRODUCTION

An undirected graph is a unit disk graph if its vertices can be put in
one-to-one correspondence with circles of equal radius in the plane in
such a way that two vertices are joined by an edge if and only if the

Žcorresponding circles intersect. Throughout this paper, tangent circles are
assumed to intersect. Without loss of generality, it is assumed that the

.radius of each disk is 1. Unit disk graphs have been used to model
wproblems in diverse areas such as broadcast networks Ha80, Ka84,

x w x w xYWS84 , image processing HM85 , VLSI circuit design MC80 , and
w xoptimal facility location WK88, MS84 . Consequently, the complexity of

optimization problems for unit disk graphs has been studied extensively in
w xthe literature CCJ90, FPT81, MB q 95, MS84, WK88 . As pointed out in

w xCCJ90 , unit disk graphs need not be perfect since any odd cycle of length
5 or greater is a unit disk graph. Similarly, unit disk graphs need not be
planar; in particular, any clique of size 5 or more is a unit disk graph. Thus
many of the known efficient algorithms for perfect graphs and planar
graphs do not apply to unit disk graphs.

w xIt has been shown in CCJ90, FPT81, MS84, WK88 that several stan-
dard graph theoretic problems are strongly NP-hard e¨en when restricted
to unit disk graphs. Given this apparent intractability, we investigate
whether these problems have efficient approximation algorithms and ap-
proximation schemes. Recall that an approximation algorithm for an
optimization problem P provides a performance guarantee of r if, for
every instance I of P, the solution value returned by the approximation
algorithm is within a factor r of the optimal value for I. A polynomial time

Ž .approximation scheme PTAS for problem P is a polynomial time approxi-
mation algorithm which, given any instance I of P and an e ) 0, returns a

Ž .solution which is within a factor 1 q e of the optimal value for I. An
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NC-approximation scheme is an approximation scheme which takes poly-
log time while using only a polynomial number of processors. A polynomial
time approximation scheme whose running time is polynomially dependent
on the size of the input and 1re is called a fully polynomial time
approximation scheme. Since the problems considered in this paper are
strongly NP-hard, we cannot hope to devise fully polynomial time approxi-

Ž w x .xmation schemes for them see GJ79 , Theorem 6.8 . However, this
negative result does not preclude the existence of polynomial time approxi-
mation schemes for these problems. Such polynomial time approximation
schemes for strongly NP-hard problems are quite rare in the literature.

Here, we present efficient approximations and approximation schemes
for NP- and PSPACE-hard problems when restricted to geometric inter-
section graphs, particularly unit disk graphs. Our results also apply to

Ž .graphs drawn in a civilized manner see Definition 3.1 . Our approximation
schemes can also be extended so as to apply to several PSPACE-hard
optimization problems on unit disk graphs presented hierarchically using a

Ž .restricted form of the hierarchical input language HIL of Bentley,
w xOttmann, and Widmayer BOW83 . All of our algorithms assume that a

geometric representation of the graph is given as input. Thus, for example,
in case of unit disk graphs we assume that the graph is specified by a set of
unit disks in the plane. This assumption about input representation is both
reasonable and realistic. It is reasonable since the recognition problem for
unit disk graphs is NP-hard; i.e., given a graph specified as set of vertices
and edges, it is NP-hard to tell whether the graph can be realized as the
intersection graph of a set of unit disks. The assumption about input
representation is also realistic, since for most applications the graph is
naturally specified using the intersection model. For example, the problem
of finding a minimum dominating set for unit disk graphs arises in the

w xcontext of broadcast networks CCJ90 . In this application, each transmit-
ter is specified as a unit disk in the plane. Similarly, graphs drawn in a
civilized manner arise naturally in the context of mesh generation and

w xefficient mapping of problem structure onto parallel machines Te91 .
The approximation algorithms for problems restricted to unit disk graphs

also extend when the unit disks are specified hierarchically. Hierarchical
specifications derive their motivation from the design and analysis of VLSI
circuits. Although such circuits can be made up of millions of components,
they often have a highly regular structure. This regular structure often
makes it possible for their design to be specified succinctly using hierarchi-
cal specifications. Our primary motivation for studying hierarchically speci-
fied intersection graphs is that many VLSI design specification languages

Ž .such as Caltech Intermediate Form CIF use hierarchical collections of
geometric objects such as circles, rectangles, and other polygonal figures as

w xprimitives to represent large designs MC80 . Hence, it is natural to
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investigate the complexity of graph theoretic problems for intersection
graphs specified hierarchically. In the past, several other authors have

Ž w x .proposed hierarchical specifications see LW92 for details . To avoid any
w xambiguity, we refer to hierarchical specifications of Bentley et al. BOW83

as BOW-specifications throughout this paper. BOW-specifications use a
subset of CIF to define a set of geometric objects and thus they can be
interpreted naturally as specifying the intersection graph of the set of
objects defined. It is in this sense that we view BOW-specifications as
specifying geometric intersection graphs.

In practice, it is difficult to process designs specified using the general
form of BOW-specifications since even simple questions such as ‘‘Is there
a pair of intersecting rectangles in the set?’’ are NP-hard for such designs.

w xHence, Bentley et al. BOW83 also proposed a restricted form of BOW-
specifications called consistent specifications and showed that several stan-
dard problems become tractable for consistent BOW-specifications. For
instance, the question of whether there exists a pair of intersecting
rectangles in the given set is polynomially solvable for such descriptions.

w xUnfortunately, as pointed out in BOW83 , consistency is a very strong
restriction and no real designs can be specified using consistent BOW-
specifications. Bentley et al. state that: ‘‘It will be important to identify
families of restrictions that exclude only a few designs but admit very rapid
processing of remaining designs.’’ As a step toward identifying such restric-
tions, we define a family of restricted BOW-specifications called the

w xk-near-consistent BOW-specifications. In MR q 97 , we proved that a num-
ber of graph theoretic problems are PSPACE-hard when instances are
specified using 1-near consistent BOW-specifications.1 These hardness
results might suggest that k-near-consistent specifications may not be
amenable to rapid processing. Although this is true if we wish to solve the
problems exactly, we show that several of these PSPACE-hard problems
possess efficient approximation algorithms and approximation schemes.

We now summarize the main contributions of this paper.

Ž .1. We present approximation schemes sequential and parallel for
several natural graph problems, when restricted to unit disk graphs or
graphs drawn in a civilized manner. Previously, no such approximation
schemes were known for problems on unit disk graphs. Our approximation
schemes can be extended to geometric intersection graphs, both of other
regular polygons and also of regular geometric objects in higher dimen-
sions.

Ž2. Our approximation schemes for l-precision unit disk graphs see
. ŽDefinition 3.2 and for graphs drawn in a civilized manner see Definition

1 w xIn MR q 97 , 1-near-consistent specifications are called 1-level-restricted specifications.
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.3.1 have the same time versus performance trade-off as the approximation
w xschemes for planar graph problems given in Ba94 .

3. We also present approximations and approximation schemes for
unit disk graphs specified using k-near-consistent BOW-specifications.
Many of the problems shown here to have efficient approximation schemes

Ž w x.are PSPACE-complete see MR q 97 . Thus the approximation schemes
w xpresented here along with those in MH q 94 are the first approximation

schemes for natural PSPACE-hard optimization problems. The question of
whether there exist approximation schemes for natural PSPACE-hard

w xproblems was raised by Condon et al. CF q 93 .
Ž4. Our definition of near-consistent BOW-specifications see Defini-

.tion 6.2 is a step toward solving the general problem posed by Bentley et
w xal. BOW83 of finding sufficient syntactic restrictions on BOW-specifica-

tions, which allow for rapid processing of the designs and also include
many realistic designs.

2. RELATED WORK

The complexity of finding exact solutions to graph problems, when
wrestricted to unit disk graphs, has been studied extensively in CCJ90,

x w xFPT81, MS84, WK88 . In MB q 95 , we showed that several natural graph
problems such as maximum independent set, minimum vertex cover, and
minimum dominating set can be approximated to within a constant factor
of the optimum for unit disk graphs specified using a graph theoretic
representation. Other researchers have also studied the existence of effi-

Ž w xcient approximation algorithms for coloring unit disk graphs see GSW94
w x.and Pe91 .

Ž .The concept of l-precision unit disk graphs see Definition 3.2 bears a
close resemblance to the concept of intersection graph for a k-neighbor-

w xhood system defined by Miller et al. MT q 97 . The neighborhood of a
point p in Rd is a closed ball of a certain radius centered at p. A
k-neighborhood system in Rd is a collection of n neighborhoods such that
no ball contains more than k centers. It can be seen that every l-precision
unit disk graph is the intersection graph of a k-neighborhood system in
R2, where k depends on the precision factor l. Similarly, the intersection
graph of a k-neighborhood system in R2 with unit balls is a l-precision
unit disk graph, where l is the minimum distance between the centers of
any two balls. Using the geometric separator concept of Eppstein et al.
w xEMT93, MT q 97 , one can find an approximation scheme for problems
restricted to l-precision unit disk graphs in the same fashion as the planar

w xseparator theorem LT79 was used to find approximation schemes for
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planar graph problems. However, this approach has two main drawbacks.
The first is that as in the case of planar graphs, the approximation schemes

Ž w x.apply only in the asymptotic sense and hence are not practical see Ba94 .
The second drawback is that problems such as maximum independent set
and minimum dominating set for which approximation schemes can be
designed for arbitrary unit disk graphs by our method cannot be solved at
all by the separator approach.2 This is because an arbitrary unit disk graph
on n nodes can have a clique of size n. Hence, in general, unit disk graphs
do not have ‘‘good’’ separators.

w xIn Ba94 , polynomial time approximation schemes were provided for a
large class of problems on planar graphs. Recently, several researchers
w x w xKS93, DST96, HM q 93 showed how to parallelize the ideas in Ba94 to
obtain efficient NC-approximation schemes for problems restricted to
planar graphs. A number of other researchers have used ideas similar to

w x wthose presented in Ba94 . For example, Hochbaum and Maass HM85,
xHM87 developed polynomial time approximation schemes for covering

w xand packing problems in the plane. Feder and Greene FG88 devised an
approximation scheme for a geometric location problem related to cluster-

w xing. Jiang and Wang JW94 presented an approximation scheme for the
Steiner tree problem in the plane when the given set of regular points is

Ž . w xc-local also called cï ilized . Recently, Eppstein EP95 obtained efficient
algorithms for the subgraph isomorphism problem for graphs of fixed
genus.

w xIn MHR94, MR q 97, MH q 94 we investigated the existence andror
nonexistence of polynomial time approximations and approximation
schemes for several PSPACE-hard problems for hierarchically specified

w xinstances. In MH q 94b , we developed a general approach to prove
PSPACE-hardness results for succinctly specified graphs. Condon et al.
w xCF q 93, CF q 94 characterized PSPACE in terms of probabilistically
checkable debate systems and used this characterization to investigate the
existence and nonexistence of polynomial time approximation algorithms
for PSPACE-complete problems. In particular, they gave a polynomial
time approximation algorithm for a maximization version of the QBF
problem in which each clause has an existentially quantified variable.
Further, they showed that unless P s PSPACE, it is not possible to obtain
a polynomial time approximation scheme for this problem. They also gave
PSPACE-hardness results concerning approximability of several other
natural PSPACE-hard functions.

The remainder of this paper is organized as follows. In Section 3, we
give some preliminary definitions. In Section 4, we discuss our approxima-

2 Problems such as dominating set do not admit separator based approximation algorithms,
even for planar graphs.
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tion schemes for problems restricted to unit disk graphs. In Section 5, we
discuss our ideas for graphs drawn in a civilized manner and extensions to
l-precision unit disk graphs. In Section 6, we extend the results in Sections
4 and 5 to obtain approximation schemes for problems restricted to unit
disk graphs specified using k-near-consistent BOW-specifications. Section
7 briefly discusses extensions of our results, and Section 8 concludes the
paper.

3. DEFINITIONS AND PRELIMINARIES

We have defined unit disk graphs as intersection graphs of unit disks in
the plane. This model for unit disk graphs will be referred to as the

w xintersection model CCJ90 . As already mentioned, we assume that the disks
are specified by the coordinates of their centers. The above definition of
unit disk graphs can be extended so as to define intersection graphs of
regular polygons. Let us call a p-sided polygon a unit regular polygon if the
polygon is inscribed in a circle of radius 1 and the sides of the polygon are
all equal. Each such polygon can be uniquely specified up to rotation by
the number of sides and the coordinates of the center of the polygon. The
above definitions can be easily extended to define intersection graphs of
unit balls and unit regular polygons in higher dimensions. We now define
graphs drawn in a civilized manner.

w xDEFINITION 3.1 Te91 . For each pair of reals r ) 0 and s ) 0, a graph
d Ž .G can be drawn in R in an r, s -cï ilized manner if its vertices can be

mapped to points in Rd so that

1. the length of each edge is F r, and

2. the distance between any two points is G s.

A civilized layout of a graph that can be drawn in a civilized manner in
Rd consists of the coordinates of the vertices in Rd and the set of edges in

Ž .the graph. We assume throughout this paper that the dimension d of the
Euclidean space considered is at least 2. Graphs drawn in a civilized
manner have been studied in the context of random walks by Doyle and

w xSnell DS84 and in the context of finite element analysis by Vavasis
w xVa91 .

Ž . Ž .Define a planar r, s -cï ilized graph to be an r, s -civilized graph whose
Ž 2 .vertices can be embedded in the Euclidean plane i.e., R . We discuss our

Ž .algorithms for planar r, s -civilized graphs. But it will be clear that all the
algorithms extend directly to civilized graphs drawn in higher dimensions
albeit with slightly worse performance guarantee versus time trade-offs.
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Ž .For the remainder of this section, we use ‘‘ r, s -civilized graphs’’ to mean
Ž .planar r, s -civilized graphs.

Next we define l-precision unit disk graphs.

DEFINITION 3.2. For any fixed l ) 0, consider a finite set of unit disks
in the plane where the centers of any two disks are at least l apart.

Ž .A l-precision unit disk graph G V, E corresponding to the above set of
unit disks is defined as follows: The vertices of G are in one-to-one
correspondence with the set of unit disks and two vertices are joined by an
edge iff the corresponding disks intersect.

Our definition of l-precision unit disk graphs is motivated by the
observation that practical problems, when modeled as problems on unit
disk graphs, seldom have unit disk centers placed in a continuous fashion.
For example, in VLSI designs, l is a parameter determined by the
fabrication process. It can be seen that grid graphs3 are l-precision unit
disk graphs, for any 0 - l F 2. Also, each unit disk graph is a l-precision
unit disk graph for some 0 - l F 2. It is also easy to see that l-precision
unit disk graphs need not be planar.

w xWe refer the reader to GJ79, CLR91, Ba94 for definitions of the graph
problems considered in this paper. We only recall the definition of
treewidth bounded graphs here.

Ž .DEFINITION 3.3 Treewidth bounded graphs . The class of k-trees
w xALS91 is defined recursively as follows.

} A clique of size k q 1 is a k-tree.
} A k-tree with n q 1 vertices can be obtained from a k-tree with n

vertices by adding a new vertex and edges from the new vertex to a set of k
completely connected vertices.

A partial k-tree is a subgraph of a k-tree. The minimum value of k for
which a graph is a subgraph of a k-tree is called the treewidth of the graph
w xALS91 .

w xNext, we recall a theorem of Bodlaender Bo88 , showing that for
treewidth bounded graphs a number of optimization problems can be
solved in polynomial time.

THEOREM 3.1. For each fixed k G 0, gï en a graph of treewidth at most k,
there is a linear time algorithm for sol̈ ing the following problems: maximum
independent set, minimum ¨ertex co¨er, minimum edge dominating set,
minimum dominating set, maximum cut, maximum triangle matching, and
maximum H-matching.

3 A grid graph is a unit disk graph in which all the centers have coordinates that are even
integers.
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'Ž .Since there are n node grid graphs with treewidth Q n , l-precision
unit disk graphs do not belong to the class of partial k-trees for any
constant k. Therefore, techniques for partial k-trees cannot be directly
applied to l-precision unit disk graphs.

4. UNIT DISK GRAPHS

4.1. Basic Technique

w xAs pointed out earlier, the shifting strategy was used by Baker Ba94 for
Ž .obtaining polynomial time approximation schemes PTASs for problems

w xrestricted to planar graphs, by Hochbaum and Maass HM85, HM87 for
devising PTASs for certain covering and packing problems in the plane,

w xand by Feder and Greene FG88 for obtaining a PTAS for a certain
location problem. Consider a problem P which can be solved by a
divide-and-conquer approach with performance guarantee of r. The shift-
ing strategy allows us to bound the error of the simple divide-and-conquer
approach by applying it iteratively and choosing the best solution among
these iterations as the solution to P.

We outline the basic technique by discussing our NC-approximation
Ž .scheme for the maximum independent set MIS problem for unit disk

graphs. Given a set of n unit disks in the plane enclosed in an area I, we
first divide the set into horizontal strips of width 2. Given an e ) 0, we

Ž Ž ..2calculate the smallest integer k such that kr k q 1 G 1 y e . Next, for
each i, 0 F i F k, we partition the set of disks into l disjoint sets G , . . . , G1 l

Ž .by removing disks in horizontal strips congruent to i mod k q 1 . Each
strip is left closed and right open. A disk is said to lie in a given strip if its
center lies in that strip. For each subgraph G , 1 F p F l, we find anp

Ž .independent set of size at least kr k q 1 times the size of an optimal
independent set in G . The independent set for this partition is just thep
union of independent sets for each G . By an argument similar to thep

w xshifting lemma in HM85 , it follows that the iteration in which the
Ž Ž ..2partition yields the largest solution value contains at least kr k q 1 ?

Ž . Ž .OPT G nodes, where OPT G denotes the size of a maximum indepen-
dent set in G. The algorithm runs in nOŽk 2 . time. As will be shown in
Section 4.5, the algorithm can be implemented in NC. Other graph
problems can also be solved similarly. In the case of minimization prob-
lems, instead of partitioning the set of unit disks, the subgraph G consistsl

Ž .of the set of disks that lie between the l y 1 st horizontal strip congruent
Ž . Ž .to i mod k q 1 and the lth horizontal strip congruent to i mod k q 1 ,

including the disks in the horizontal strips.
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4.2. Approximation Scheme for the MIS Problem for Unit Disk Graphs

Ž .Our algorithm FMIS for the MIS problem for unit disk graphs is given
below.

Ž .4.3. Finding an Optimal Solution in Step 3 a iiiD of Algorithm FMIS

We now discuss how to obtain an optimal solution for the independent
Ž .set problem in Step 3 a iiiD of the algorithm. By a simple packing

argument, it can be shown that, for any fixed k ) 0, the size of a maximum
independent set of a unit disk graph, all of whose disks lie in a square of

Ž 2 .side k, is O k . This immediately gives us a way of finding an optimal
solution in parallel. We can get a more efficient algorithm in the sequen-
tial case by considering the subgraph whose disks lie in a strip of width k
Ž .i.e., we do not have to execute the For loop for i . For each such unit1
disk graph, we can obtain an optimal independent set by means of dynamic
programming. As the subsequent analysis will indicate, this gives an

Ž .approximation algorithm with performance guarantee kr k q 1 .

ALGORITHM FMIS. Input}a set G of unit disks specified using coordi-
nates of their centers.

Ž Ž ..21. Find the smallest integer k such that kr k q 1 G 1 y e .
2. Divide the plane into horizontal strips of width 2.
3. Divide each horizontal strip into vertical strips of width 2.

Ž .a For each i, 0 F i F k, do
Ž .i Partition the set of disks into r disjoint sets G ???i, 1

G by removing all the disks in every horizontal strip congruent toi, r
Ž .i mod k q 1 .

Ž .ii G s D G .i 1F jF r i, j

Ž .iii For each j, 1 F j F r, do
A. For each i , 0 F i F k, do1 1

B. Partition the set of disks in the set G into s disjointi, j j
sets Gi1, 1 ??? Gi1, sj by removing every vertical strip congruent to ii, j i, j 1

Ž .mod k q 1 .
C. Gi1 s D Gi1, j1.i, j 1F j F s i, j1 j

D. For each Gi1, j1, 1 F j F s , solve the problem opti-i, j 1 j
Ž i1, j1.mally. Let the optimal value be denoted by IS G .i, j

Ž i1 . Ž i1, j1.E. IS G s D IS G .i, j 1F j F s i, j1 j

Ž . Ž i1 .iv. IS G s max IS G .i, j 0 F i F k i, j1

Ž . Ž . Ž .b IS G s D IS G .i 1F jF r i, j

Ž . Ž .4. IS G s max IS G .0 F iF k i
Ž .Output}the set IS G of independent unit disks.
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4.4. Performance Guarantee

We next prove that the algorithm given above indeed computes a near
optimal independent set. That is, given any e ) 0, the algorithm will

Ž .compute an independent set whose size is at least 1 y e times that of an
optimal independent set.

Ž Ž .We first prove that of all the different iterations for i Step 3 a of
.Algorithm FMIS , at least one iteration has the property that the number

of nodes that are not considered in the independent set computation is a
small fraction of an optimal independent set.

Recall that for each i we did not consider the explicit vertices in levels
Ž .j , j ??? j , where j s i mod k q 1 , 1 F l F p. For each i, 0 F i F k, let1 2 p li

S be the set of unit disks which were not considered in iteration i. Leti
Ž .IS S denote the vertices in the set S which were chosen in the optimalopt i i

Ž .independent set OPT G .

LEMMA 4.1.

k
max OPT G G OPT G .Ž . Ž .i k q 10FiFk Ž .

Proof. The proof follows by observing that the following equations
hold:

tsk

0 F i , j F k , i / j, S l S s f , S s V GŽ .Di j t
ts0

since different levels are considered in different iterations. From the above
set of equations, we have

IS S q IS S q ??? q IS S s OPT G .Ž . Ž . Ž . Ž .opt 0 opt 1 opt k

Therefore,

OPT GŽ .
min IS S F ,Ž .opt t k q 10FtFk Ž .

max OPT G G OPT G y min IS SŽ . Ž . Ž .i opt t
0FiFk 0FtFk

k
G OPT G .Ž .

k q 1Ž .

< Ž . < Ž Ž .. < Ž . <THEOREM 4.2. IS G G kr k q 1 ? OPT G .i, j i, j
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Proof. Fix an iteration i and consider each of the individual graphs
G . Applying Lemma 4.1 to the unit disk graph G we get that for somei, j i, j
0 F i F k1

k
i1OPT G G OPT G .Ž .Ž .i , j i , jk q 1Ž .

Ž .Now, by Step 3 a iii of the algorithm we have

j ss1 j

i i , j1 1 1OPT G s OPT G ,Ž . Ž .Ýi , j i , j
j s11

1Ž .
jsr

OPT G s OPT G .Ž . Ž .Ýi , j i , j
js1

Using the above equations we get

i1IS G s max IS G by Step 4Ž .Ž . Ž .i , j i , j
0Fi Fk1

j ss1 j

i , j1 1s max IS G by Step 3 bŽ .Ž .Ž .Ý i , j
0Fi Fk1 j s11

j ss1 j

i , j1 1s max OPT G by Step 3 a iiiDŽ .Ž .Ž .Ý i , j
0Fi Fk1 j s11

i1s max OPT G by Eq. 1Ž .Ž .Ž .i , j
0Fi Fk1

k
G ? OPT G by Lemma 4.1 .Ž .Ž .i , jž /k q 1

By a repeated application of the above lemma we get

< Ž . < Ž Ž ..2 < Ž . <THEOREM 4.3. IS G G kr k q 1 ? OPT G .

Proof. We consider the iteration when the value of i is such that
< Ž . < Ž Ž .. < Ž . <OPT G G kr k q 1 OPT G . By Lemma 4.1 such an i exists. Alsoi
note that

jsr

OPT G s OPT G .Ž . Ž .Ýi i , j
js1
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Using the above equations we get that

IS G s max IS GŽ . Ž .i
0FiFk

jsr

s max IS G by Step 3 bŽ .Ž .Ž .Ý i , j
0FiFk js1

jsrk
G max OPT G by Theorem 4.2Ž .Ž .Ý i , jk q 1 0FiFk js1

k
G max OPT G by Step 3 bŽ . Ž .Ž .ik q 1 0FiFk

2k
G ? OPT G by Lemma 4.1 .Ž . Ž .ž /k q 1

4.5. Running Time

We now estimate the running time of Algorithm FMIS. As mentioned
earlier, the size of a maximum independent set in each square is no more

Ž 2 . Ž .than O k . The loop in Step 3 a is executed for k q 1 different values of
Ž . OŽk 2 .i. For each value of i the running time in Step 3 a iii is n . Hence the

Ž . OŽk 2 .total running time work of Algorithm FMIS is n .

4.6. Better Time and Performance in the Sequential Case

We can get a better time and performance by solving the MIS problem
for each graph G optimally using dynamic programming. The algorithmi, j
is the same as the previous algorithm, with the only difference that Step
Ž .3 a iii in the previous algorithm is replaced by the step to find an optimal

independent set in each G . We now describe the idea behind thei, j
dynamic programming algorithm. Consider the unit disks whose centers lie
in a rectangular slice RS of height 2k and width 2 in G . Since G is ai, j i, j
unit disk graph, RS can contain no more than 3k q 3 mutually noninter-
secting unit disks. This gives us a bound on the size of a maximum
independent set of a set of unit disks whose centers lie in RS. Further-
more, removal of the unit disks in RS breaks the set of unit disks in Gi, j
into disjoint sets L and R. Let r be the number of unit disks in R. For
each combination of at most 3k q 3 nodes in RS, we get a possible
maximum independent set of the unit disks in RS. For the two subgraphs

Ž 3kq3.RS j L and RS j R we keep a table with no more than O r entries
of the maximum independent set for each subgraph for each possible
maximum independent set in RS. The union of maximum independent sets
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for the two subgraphs when they agree on the nodes selected from RS
gives us an independent set for the whole graph. The running time of the
dynamic programming procedure is nOŽk .. Therefore, the total running
time of the algorithm is nOŽk .. The approximation algorithm has a perfor-

Ž .mance guarantee of kr k q 1 .

4.7. Other Optimization Problems

We now discuss how these ideas can be applied to other combinatorial
problems. Since many of the ideas in this subsection are also discussed in
w xBa94 , our discussion is brief.

Ž .1 . Minimum Vertex Co¨er

In order to approximate the Minimum Vertex Cover problem for unit
disk graphs, we consider overlapping pieces of unit disk graphs. We discuss
the sequential approximation algorithm providing a vertex cover of size no

Ž .more than k q 1 rk times that of an optimal vertex cover. The idea is
w xidentical to the one discussed in Ba94 . Consider a geometric representa-

Ž .tion of a unit disk graph G. In Step 3 a i of Algorithm FMIS, the unit disk
graph G , 0 F j F r, is obtained by considering the set of unit disksi, j

Ž .belonging to horizontal strips jk q i to j q 1 k q i. We can find a good
vertex cover for each of the subgraphs, by observing that if IS is a

Ž .maximum independent set in a graph G V, E , then V y IS is a minimum
vertex cover. For each i, the union over all j of the vertex cover for each
graph G , yields a valid vertex cover for G. The algorithm picks the besti, j
among all the vertex covers obtained for the different values of i. Using

Ž .OPT G to denote an optimal vertex cover for G, we have:

LEMMA 4.4. The size of the ¨ertex co¨er obtained is no more than
ŽŽ . . < Ž . <k q 1 rk OPT G .

Ž .Proof. Fix an optimal solution OPT G to the vertex cover problem.
< Ž . < Ž .Then, for some 0 F t - k, at most OPT G rk nodes in OPT G are in

Ž .horizontal strips congruent to t mod k . Consider the iteration when the
unit disk graphs are obtained by overlapping at horizontal strips congruent

Ž .to t mod k . The size of the vertex cover obtained in this iteration is no
< Ž . < < Ž . <more than OPT G q OPT G rk, since the overlapping horizontal strips

are counted twice. Since the heuristic picks the minimum vertex cover over
all values of i, it follows that the size of the vertex cover produced by the

ŽŽ . . < Ž . <heuristic is no more than k q 1 rk OPT G .

In order to obtain a parallel approximation scheme, we just need to
obtain overlapping unit disk graphs for each set of horizontal strips to



HUNT ET AL.252

i1, j1 Ž .obtain G in Step 3 a iiiB. This yields a vertex cover of size at mosti, j
ŽŽ . .2 < Ž . <k q 1 r2 OPT G .

Ž .2 . Minimum Dominating Set

The basic idea is similar to the minimum vertex cover problem. How-
ever, there is a subtle difference between our approximation schemes for
the vertex cover and dominating set problems. To see why, let G be the
given unit disk graph and let k be the fixed integer determined by the
performance guarantee parameter e . Suppose we partition the nodes of G
into strips as in Algorithm FMIS and consider the subgraph G9 induced by
the vertices in k consecutive strips, say i, i q 1, . . . , i q k y 1. Let

Ž . Ž .OPT G and OPT G denote an optimal vertex cover and an optimalV C DS
dominating set for G, respectively. It can be seen that the projection of

Ž .OPT G on to the chosen set of k consecutive strips is a vertex cover forV C
Ž .G9. However, the projection of OPT G on to the k consecutive stripsDS

need not be a dominating set for G9; an optimal dominating set for G may
choose to dominate some or all the vertices in G9 by using vertices from
strip i y 1 or from strip i q k. Thus, an approximation scheme for the
minimum dominating set problem must explicitly account for this differ-
ence.

Consider the geometric representation of a unit disk graph G. The
outline of our approximation scheme for the dominating set problem is
very similar to Algorithm FMIS except for the following.

Ž . ŽŽ . .2a In Step 1, we find the smallest integer k such that k q 1 rk
F 1 q e .

Ž . Ž .b In Step 3 a iiiD, an optimal dominating set for the subgraph
formed by the unit disks in a k = k square Q is computed as follows. We

Ž .expand Q by one unit in each direction; that is, we consider the k q 1 =
Ž .k q 1 square Q9 surrounding Q. The vertices to be dominated are those
in Q. However, in doing so, we may use the vertices in Q9.

Finding an optimal dominating set for Q, possibly containing one or
more vertices from the region Q9 y Q, can be done in polynomial time as
follows. It is easy to see that any maximal independent set in a graph is
also a dominating set. Every independent set in Q9 is of size at most
Ž .2 Ž .2k q 1 . So, by considering all subsets of size at most k q 1 from Q9,
we can obtain an optimal dominating set for the vertices in Q. Since the
number of such subsets is nOŽk 3. and k is fixed, this procedure runs in
polynomial time.

A proof that the resulting algorithm produces a dominating set whose
ŽŽ . .2size is at most k q 1 rk that of an optimal dominating set can be given

along lines similar to that for the vertex cover problem above.
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The results discussed in this section are summarized in the following
theorem.

THEOREM 4.5. For unit disk graphs, there are NC-approximation schemes
for the following problems: maximum independent set, minimum ¨ertex co¨er,
and minimum dominating set.

5. GRAPHS DRAWN IN A CIVILIZED MANNER

Our ideas in the previous section can be applied to problems for graphs
drawn in a civilized manner. The approximation schemes assume that a
civilized layout of the graph is given. For such graphs, we observe that each
small subgraph obtained as a result of decomposition has a small treewidth
and use this observation to devise approximation schemes with a better
performance guarantee versus time trade-off.

5.1. MIS Problem for Cï ilized Graphs

The algorithm for solving the MIS problem for civilized graphs is very
similar to Algorithm FMIS. Consequently, we only point out the differ-
ences here.

1. In Step 2, we divide the plane into horizontal strips of width r.
Ž .Each point, which represents a node of the given r, s -civilized graph, can

Žnow be assigned to a strip. When a point lies on the boundary between
.two successive strips, it is assigned to the bottom strip. Since the given

Ž .graph is r, s -civilized, this method of partitioning points into strips
ensures that removal of all the points in a strip disconnects the underlying
graph.

Ž .2. Step 3 a iii in the Algorithm FMIS is replaced by the step to find
Žan optimal independent set in each G . This can be done in polynomiali, j

time since the treewidth of G is bounded as indicated in the nexti, j
.theorem.

THEOREM 5.1. Consider a cï ilized graph G obtained in each iteration ii, j
Ž . Ž .of Step 3 a i in Algorithm FMIS. The treewidth of G is O k .i, j

Proof. As in the dynamic programming formulation for unit disk graphs,
consider the vertices in a rectangular slice of side height rk and width r in

Ž .G . Since G is an r, s -civilized graph, the maximum number ofi, j i, j
Ž 2 2 .vertices in this square region is at most k ? r rs . Furthermore, removal

of the vertices in this square breaks the graph into disjoint pieces. By
recursively applying the above idea on each smaller piece, we can construct
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Ž 2 2 .a tree decomposition of the graph G with treewidth k ? r rs . Since ri, j
Ž .and s are fixed, the treewidth is O k .

Given Theorem 5.1, we can use efficient dynamic programming algo-
rithms for solving problems for treewidth bounded graphs as summarized
in Theorem 3.1 to obtain approximation schemes with better performance
guarantee versus running time trade-off. We now establish the perfor-
mance guarantee of our approximation algorithm.

Ž .THEOREM 5.2. For all fixed r, s G 0, gï en a graph drawn in an r, s -
cï ilized manner, there is a linear time approximation scheme for the MIS
problem.

Proof. As in the case of unit disk graphs, we have

jsr

OPT G s OPT GŽ . Ž .Ýi i , j
js1

and

IS G s max IS GŽ . Ž .i
0FiFk

G max OPT G by new Step 3 b iiiŽ . Ž .Ž .i
0FiFk

k
G ? OPT G by Lemma 4.1 .Ž . Ž .ž /k q 1

Ž .Note that, for fixed r and s, r, s -civilized graphs have linear time
Ž Ž k . .more precisely, O 2 n time approximation schemes for the problems

Ž k .considered here since these problems can be solved in O 2 n time for
w xgraphs of treewidth k AP89 . In contrast, for arbitrary unit disk graphs,

Ž .our approximation schemes as discussed in Section 4.6 have a running
time of nOŽk 2 ..

5.2. Other Problems for Cï ilized Graphs

Similar approximation schemes can be derived for various other opti-
Ž .mization problems for r, s -civilized graphs. We omit the details since

they are very similar to that of the MIS problem. We have the following
theorem.

Ž .THEOREM 5.3. For all fixed r, s G 0, gï en a graph drawn in an r, s -
cï ilized manner, there are polynomial time approximation schemes for sol̈ ing
the following problems: maximum independent set, minimum ¨ertex co¨er,
minimum edge dominating set, minimum dominating set, maximum cut,
maximum triangle matching, and maximum H-matching.
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It can be seen that, for any l ) 0, a l-precision unit disk graph can be
Ž .drawn in a 2, l -civilized manner. Thus, Theorem 5.3 also yields approxi-

mation schemes for a number of problems for l-precision unit disk graphs.
It is easy to see that our results discussed in the previous section can be

extended to geometric intersection graphs of other regular polygons in-
cluding intersection graphs of isothetic unit squares and also to intersec-
tion graphs of regular geometric objects in higher dimensions. In each of
these cases, the running time and the performance guarantee of the
algorithm depend on the geometric objects considered.

6. BOW-SPECIFIED GEOMETRIC
INTERSECTION GRAPHS

Next, we discuss our ideas for obtaining approximation algorithms for
the MIS problem for a set of unit disks specified using BOW-specifica-
tions. The basic approach for obtaining approximation schemes is similar

w xto the one given in MH q 94 , and thus we keep the discussion brief.

6.1. BOW-specifications

The specification language used here to describe a set of unit disks
hierarchically is almost identical to the BOW-specification language used
to describe a set of isothetic rectangles. The only difference is that instead
of the BOX command we have the DISK command whose syntax is as
follows:

DISK x , y , rŽ .
Ž . Žwhere x, y is the center of the disk and r is its radius. A symbol also

.referred to as a nonterminal in this language represents a collection of
Ž .unit disks and has a unique identifier symbol number which is a positive

integer. The description for a symbol consists of zero or more DISK
commands and DRAW commands. The syntax of the DRAW command is as
follows:

DRAW symbola at x , yŽ .
Here the symbola is the identifier of a pre¨iously defined symbol and
Ž .x, y specifies the amount of translation to be applied to the centers of
the disks defined in the specified symbol.

Ž .A BOW-specification G s G , . . . , G consists of a sequence of symbol1 n
definitions G , 1 F i F n. Let G have n DRAW and DISK commands.i i i
Then the size of G, denoted by N, is given by N s Ý n . The set of1F iF n i
disks specified by G is the one corresponding to the symbol with the

Ž .largest identifier i.e., G .n
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EXAMPLE 1. Consider the following description of a set of unit disks
Ž .described using a BOW-specification G s G , G , G .1 2 3

1. DEFINE G1

Ž .DISK 0, 0, 1

2. DEFINE G2

Ž .DRAW G at 0, 01

Ž .DRAW G at 2, 01

Ž .DRAW G at 0, 21

3. DEFINE G3

Ž .DRAW G at 0, 02

Ž .DRAW G at 0, 42

Ž .DRAW G at 4, 02

Note. Figure 1 shows the set of unit disks obtained by expanding the
above BOW-specification.

With the set of unit disks defined as above, we associate an intersection
graph which has one vertex per unit disk and two vertices joined by an edge
if and only if the corresponding disks intersect. Graphs obtained by
expanding the BOW-specifications of a set of unit disks will be referred to
as BOW-specified unit disk graphs.

w xIn BOW83 , Bentley et al. show that the general BOW-specifications
are too powerful and make most of the natural problems intractable. They
then define the notion of consistent BOW-specifications which are realized

Ž .by adding an attribute called the MBR minimum bounding rectangle to
w xeach symbol BOW83 . This attribute denotes the smallest bounding rect-

FIG. 1. A set of unit disks and its corresponding unit disk graph.
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angle enclosing the set of unit disks associated with the symbol. The syntax
of a symbol definition is as follows:

DEFINE symbola

Žw x w x.Žw x w x.attribute: MBR x-value , y-value width , height

² :Sequence of DRAW and DISK commands

Žw x w x.Here the pair x-value , y-value denotes the coordinates of the bottom
Ž .left corner of the minimum bounding rectangle MBR , and the pair

Žw x w x.width , height denotes the width and the height of MBR. So for
instance, the following is a valid definition of a symbol G :1

DEFINE G1

Ž .Ž .attribute: MBR y1, y1 4, 4

Ž .DISK 0, 0, 1

Ž .DISK 0, 2, 1

Ž .DISK 2, 0, 1

Ž .DISK 2, 2, 1

w xDEFINITION 6.1 BOW83 . A BOW-specification is consistent if, for
each symbol, the MBR of symbols called within the symbol and the disks
explicitly defined in the symbol do not intersect.

w xAs observed in BOW83 , consistency is a very strong restriction as any
set of rectangles containing an intersecting pair cannot be represented
using a consistent BOW-specification. Extending the definition of consis-
tency, we define the concept of k-near-consistent BOW-specifications. We
first need some additional notation. Associated with each BOW-specifica-

Ž . Ž .tion G s G , . . . , G where G denotes the largest symbol is a tree1 n n
structure depicting the sequence of calls made by the symbols defined in

w x Ž .G. Following Lengauer et al. LW87a , we call it the hierarchy tree HT G
associated with G. Intuitively, near-consistent BOW-specifications allow
one to have intersections which do not occur between explicit symbols
defined too far away from each other in the hierarchy tree of the

Ž .specification. Given a hierarchy tree HT G , we can associate a level
Ž .number with each node a symbol in the tree. The le¨el number of a node

Ž .in HT G is the number of edges in the path from the node to the root of
Ž .the tree HT G .
Ž .We let E G denote the set of unit disks obtained by expanding thei

Ž . Ž .hierarchy tree HT G . Thus E G denotes the set of unit disks describedi n
Ž .by a given specification G s G , . . . , G .1 n
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DEFINITION 6.2. A BOW-specification is 1-near-consistent if and only if
the following conditions hold:

1. For each symbol G , the MBR of G contains the MBR of all thei i
symbols called in G .i

2. The MBR of the symbols called in G do not intersect onei
another.

3. For each explicit disk u defined in G , u does not intersect thei
Ž .MBR of any symbol G such that G occurs in HT G and level numberj j i

Ž .of G in HT G is G 2.j i

The above definition can be easily extended to define k-near-consistent
BOW-specifications, for any fixed k G 1. An example of 1-near-consistent
BOW-specification of unit disks is given in Figure 2. Note that this is a
strict extension of consistent BOW-specifications. With the above syntactic
restriction, a natural question to ask is the following: Given a BOW-speci-
fication, how hard is it to verify that the specification obeys the above
restriction? Our next theorem points out that the verification can be done
in polynomial time.

THEOREM 6.1. For any fixed k G 1, there is a polynomial time algorithm
Ž .to determine if a gï en a BOW-specification G s G , . . . , G , is k-near-1 n

consistent.

Proof. We discuss our algorithm for checking if a BOW-specification is
1-near-consistent. The extension to check if the specification is k-near-
consistent for any fixed k is straightforward. The algorithm proceeds in a
bottom-up manner, processing one symbol at a time. When processing
symbol G , it first verifies that the MBR of G contains the MBR of thei i
symbols called in the definition of G . This verifies condition 1 in thei

FIG. 2. A 1-near-consistent BOW-specification of a set of unit disks.
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definition. It then verifies that the MBR of each of the symbols called in
G are mutually nonintersecting. These checks can be performed in poly-i
nomial time using a polynomial time routine for finding intersecting
rectangles. This verifies Condition 2 in the definition of near-consistent
specification. Next, we process one explicit disk u g G at a time asi
follows. Let G call symbols G , . . . , G . Furthermore, let the symbol G ,i j j j1 t p

1 F p F t, call symbols G jp, . . . , G j p
. Then we simply check that the unit1 rp

disk u g G does not intersect the MBR of any of the symbols G jp,i rp
Ž 2 .1 F p F t. This check can be performed in O N time for each disk as

Ž .the total number of symbols in the description is O N . It is easy to see
that the dominant part of the running time is due to this check. Therefore,
the total time taken to check whether the specification is 1-near-consistent

3Ž .is O N .

6.2. Meaning of Approximation Algorithms for BOW-Specified Problems

Before we give details of our algorithms, it is important to understand
what we mean by a polynomial time approximation algorithm for a problem
P, when the instance is specified using BOW-specifications. Correspond-
ing to each decision problem P, specified using BOW-specifications, we
consider four variants of the corresponding optimization problem. We

Ž w x.illustrate this with an example see also MHR94, MH q 94 .

EXAMPLE. Consider the minimum vertex cover problem, where the
input is a succinct specification of a graph G and the goal is to compute
the size of a minimum vertex cover for G. This will be referred to as the
size problem. Our polynomial time approximation algorithm for the size
problem computes the size of an approximate vertex cover and runs in
time polynomial in the size of the succinct description, rather than the size

Žof G. Moreover, it also solves in polynomial time in the size of the
.succinct specification the following query problem: Given any vertex ¨ of

G and its position in the expanded specification, determine whether ¨
belongs to the approximate vertex cover so computed. Moreover, for all
the problems considered here, we can construct in polynomial time a

Žsuccinct specification of the approximate set computed referred to as the
.construction problem . Finally, we can also solve the output problem; that is,

output the approximate vertex cover in time that is linear in the size of the
solution but uses space which is only polynomial in the size of the
BOW-specification.

This is a natural extension of the definition of approximation algorithms,
Ž .for problems specified using nonhierarchical standard specifications,
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since the number of vertices is polynomial in the size of the nonhierarchi-
cal description and hence a polynomial time approximation algorithm can

Ž .solve the optimization, query, and output problems approximately in
polynomial time.

6.3. The Basic Technique

We now give the basic technique behind all our approximation algo-
rithms for unit disk graphs specified using k-near-consistent BOW-specifi-
cations. For the sake of simplicity, we assume that the BOW-specification

Žis 1-near-consistent. Given a maximization problem P in Table I see
. Ž Ž lq1..Section 8 , our approximation algorithm takes time O N ? T N to

Ž Ž ..achieve a performance guarantee of lr l q 1 ? FBEST. Here, l is a
constant that depends only on the performance guarantee parameter e ,
Ž lq1.T N denotes the running time of a heuristic which can process flat

Ž lq1.specifications of size O N and which has a performance guarantee
FBEST. During an iteration i we delete all the explicit vertices which

Ž . Žbelong to nonterminals defined at level j, where j s i mod l q 1 . For
minimization problems, instead of deleting the vertices in the level, we

.consider the vertices as a part of both the subtrees. This breaks up the
given hierarchy tree into a collection of disjoint trees. The heuristic simply
finds a near optimal solution for the vertex induced subgraph defined by
each small tree and then outputs the union of all these solutions as the

Žsolution for the problem P. For a fixed l, the size of each subgraph is
.polynomial in the size of the specification. It is important to observe that

the hierarchy tree can have an exponential number of nodes and hence the
deletion of nonterminals and finding near optimal solutions for each
subtree must be done in such a manner that the whole process takes only
polynomial time. This is achieved by observing that the subtrees can be
divided into n distinct equivalence classes and that it is easy to count the
number of subtrees in each equivalence class.

6.4. Approximation Scheme for the MIS Problem

We illustrate our ideas by giving a polynomial time approximation
Ž .scheme for the maximum independent set MIS problem for unit disk

graphs specified using a 1-near-consistent BOW-specification.
Ž .In the following description, we use HIS G to denote the approximatei

Ž .independent set produced by the algorithm for the graph E G . Before wei
discuss the details of the heuristic, we define the concept of partial
expansion of a 1-near-consistent BOW-specification. We note that, for

Ž .each nonterminal G , there is a unique hierarchy tree HT G rooted at G .i i i
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Ž j.DEFINITION 6.3. The partial expansion PE G of the graph associatedi
with G of the BOW-specification G is constructed as follows:i

Ž j. � 4j s 0: PE G s G y u: u is an explicit unit disk defined in G .i i i
Ž Ž 0.Thus, the definition of PE G now consists of the collection of symbolsi

.called in the definition of G .i
j G 1: Repeat the following steps for each symbol G called by G :r i

Ž jy1.1. Compute the partial expansion PE G of G .r r

2. The coordinates of an explicit disk or a symbol in
Ž jy1.PE G are given by its relative position with respect to the MBR of Gr r

plus the offset of MBR of G .r

Ž Ž j. Ž .Observe that the definition of PE G consists of i explicit unit disksi
Ž . Ž .defined in all the symbols at depth r, 0 F r F j y 1, in HT G and ii ai

disjoint collection of symbols G , such that the symbol G occurs at depthk k
Ž . .j q 1 in the hierarchy tree HT G .i

Ž Ž j..Let Ex PE G denote the subgraph induced by the set of explicit disksi
Ž . Ž j. Ž Ž ..vertices in the definition of PE G . Also let V E G denote the set ofi i

Ž . Ž .vertices in E G . Our algorithm HMIS for computing a near-optimali
independent set is given below.

ALGORITHM HMIS. Input}a 1-near-consistent BOW-specification G
Ž .s G , . . . , G of a set of unit disks G and an integer l.1 n

1. For each i, 1 F i F l, find a near optimal independent set in
Ž .E G using Algorithm FMIS.i

2. For each i, l q 1 F i F n y 1
Ž . Ž l.a Compute the partial expansion PE G of G .i i

Ž .b Find a near optimal independent set in the subgraph
Ž Ž l.. ŽEx PE G the subgraph induced by the explicit vertices in the definitioni

Ž l.. lof PE G using Algorithm FMIS. Denote this by A .i i

Ž . Ž l.c Let G , . . . , G denote the nonterminals called in PE G .i i i1 p

Then the independent set for the whole graph for the iteration i, denoted
Ž .by HIS G , is given byi

HIS G s Al j HIS G .Ž . Ž .Di i i r

1FrFp

Ž l.Remark. The explicit vertices in PE G do not have an edge to any ofi
the nonterminals G , . . . , G . From this observation and the definition ofi i1 p
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BOW-specification it follows that

l< <HIS G s A q HIS G .Ž . Ž .Ýi i i r
1FrFp

3. For each 0 F i F l
Ž . Ž i .a Obtain the partial expansion of PE G of G .n n

Ž .b Find a near optimal independent set of all the explicit
Ž i . ivertices in PE G using Algorithm FMIS. Denote this by A .n n

Ž . Ž i .c Let G , . . . , G denote the nonterminals called in PE G .n n n1 p

The independent set for the whole graph for the iteration i, denoted by
Ž .HIS G , is computed using the equationi n

HIS G s Ai j HIS G .Ž . Ž .Di n n nr

1FrFp

Ž .Remark. By a remark similar to the one following Step 2 c above, we
have

i< <HIS G s A q HIS G .Ž . Ž .Ýi n n nr
1FrFp

Ž . Ž .4. HIS G s max HIS G .0 F iF l i n
Output}a BOW-specification of an independent set whose size is at

Ž Ž ..2least lr l q 1 times the size of an optimal independent set.

6.5. Performance Guarantee and Running Time

The correctness of the above algorithm follows from Lemmas 6.2]6.5.
The lemmas can be proven by induction on the number of nonterminals in
the definition of G and are a consequence of the definition of a partial
expansion and level-restrictedness of the given specification.

Ž .LEMMA 6.2. Consider the graph E G corresponding to the nonterminali
G . In each iteration i, l q 1 F i F n y 1, Step 2 of Algorithm HMISi

Ž Ž ..computes an independent set in the graph induced by the ¨ertices V E G yi
VV . Here VV denotes the set of explicit ¨ertices defined in nonterminals ati i

Ž . Ž .le¨els j s i mod l q 1 in the hierarchy tree HT G .i

Proof. Induction on the depth of the hierarchy tree associated with G .i

Basis. If the depth F l, the proof follows directly.

Induction. Assume that the lemma holds for all hierarchy trees of
Ž .depth up to m. Consider a hierarchy tree of depth m q 1. Step 2 c of the
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Ž l.algorithm computes a partial expansion of PE G . This implies that alli
Ž .the explicit vertices at level l in the hierarchy tree HT G were deleted.i

Ž l. Ž .Each of the nonterminals left in PE G is at level l q 1 in HT G . Now,i i
Ž l .each of the nonterminals G left in PE G has an associated hierarchyt n

tree of depth F m. The proof then follows by induction.

LEMMA 6.3. In each iteration i of Step 3 of Algorithm HMIS, all the
Ž .explicit ¨ertices defined in nonterminals at le¨els j s i mod l q 1 in the

Ž .hierarchy tree HT G are effectï ely deleted.n

Ž .Proof. Consider a hierarchy tree HT G . In Step 3 of Algorithmn
HMIS we compute a partial expansion for the first i levels. The partial
expansion removes all the explicit vertices defined in nonterminals at level
i. Also, by the definition of partial expansion it follows that all explicit
vertices defined in nonterminals at levels 1 to i appear explicitly in the
partially expanded graph. Therefore, the partially expanded graph now
consists of all nonterminals defined at level i q 1 in the hierarchy tree

Ž .HT G . The theorem now follows as a consequence of Lemma 6.2.n

LEMMA 6.4. For a gï en iteration i, the remo¨al of explicit ¨ertices at
Ž . Ž .le¨els j s i mod l q 1 decomposes the gï en hierarchical graph E G into an

collection of disjoint subgraphs.

Proof. By the definition of 1-near-consistent specification it follows
that there is no edge between a copy of a nonterminal defined at level m
and one defined at level m q 2.

Given the decomposition of the hierarchical graph into a collection of
vertex disjoint subgraphs, we can associate a hierarchy subtree with each
of the subgraphs. Each such subtree can be labeled by the type of
nonterminal which is the root of the subtree. Since the hierarchical
specification is a restricted form of a context-free grammar producing a
single word, it can be easily seen that, during any iteration i, the number
of distinct labels used to label the subtrees is less than n. Hence we have
the following lemma.

LEMMA 6.5. For each iteration i of Step 3 of Algorithm HMIS, the root of
� 4each subtree is labeled by one of the elements of the set G , . . . , G .1 ny1

LEMMA 6.6. For each 1 F i F n, let H i, H i , . . . , H i be the set of graphs1 2 r i

corresponding to the subtrees with roots labeled G . Then H i, H i , . . . , H i arei 1 2 r i

isomorphic.

Proof. Follows from the definition of partial expansion of a nontermi-
nal.
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Ž .Let IS T denote the size of a maximum independent set of the graph
corresponding to the subtree T of the hierarchy tree obtained during Step

Ž . Ž .3 of the algorithm. For a given iteration i, let IS F s D IS T ,i T g Fi

where the union is taken over all the trees in the forest F obtained duringi
iteration i as a result of decomposition. By Lemma 6.3 it follows that for
each iteration i we did not consider the explicit vertices in levels

Ž . Ž .j , j , . . . , j , where 1 F q F p and j s i mod l q 1 . Let IS G denote a1 2 p i qi

maximum independent set for G. The next lemma points out that at least
one iteration of Step 3 has the property that the number of nodes that are
not considered in the independent set computation is a small fraction of
the optimal independent set. The proof of the lemma is omitted as it is
similar to that of Lemma 4.1.

LEMMA 6.7.

l
max IS F G IS G .Ž . Ž .i l q 10FiFl Ž .

We now argue that Algorithm HMIS generates a valid independent set.
To see this, note that, for each 1 F i F n y 1, we compute an independent
set in Steps 1 and 2. This follows from the correctness of Algorithm FMIS.

Ž .Next consider each iteration of Step 3. Step 3 b computes an independent
Ž Ž i .. Ž .set for the explicit vertices Ex PE G . Step 3 c combines the indepen-n

Ž .dent sets obtained in Step 3 b and the independent sets in the graphs
Ž .E G , 1 F r F p. By noting that G is a 1-near-consistent specification, itnr

Ž . Ž .follows that the sets merged in Step 3 c are disjoint; thus HIS G is ani n
independent set.

We now prove that Algorithm HMIS has the claimed performance
guarantee.

Ž . < Ž Ž .. < Ž . <LEMMA 6.8. HIS G G lr l q 1 ? IS F .i n i

Proof. Induction on the number of nonterminals in the definition of T.
The base case is straightforward. Consider the induction step. By the
definition of partial expansion it follows that

iIS F s IS Ex PE G q IS PE G .Ž . Ž .Ž .Ž .Ž . Ž .Ýi n nr
1FrFp

Ž .From Step 3 c of the algorithm HMAX-IS we also know that

i< <HIS G s A q HIS G .Ž . Ž .Ýi n n nr
1FrFp
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Using the induction hypothesis and Theorem 4.3 it follows that

l
i i< <A G ? IS Ex PE GŽ .Ž .Ž .n nž /l q 1

and
l

HIS G G ? IS PE G .Ž . Ž .Ž .n nr rž /l q 1

The lemma now follows.

Ž . Ž Ž ..2 < Ž . <THEOREM 6.9. HIS G G lr l q 1 ? IS G .

Proof. Follows from Lemmas 6.7 and 6.8.

We now analyze the running time of Algorithm HMIS.

THEOREM 6.10. For any fixed k G 0 and l G 1, gï en a k-near-consistent
BOW-specification G of a set of unit disks, Algorithm HMIS runs in time

OŽ l 2 . Ž Ž ..2N and computes an independent set of size at least lr l q 1 times the
size of an optimal independent set, where N is the size of G.

Ž .Proof. Consider Step 1. The number of explicit vertices in E G ,i
Ž l. Ž1 F i F l, is O N . Recall that Algorithm FMIS as discussed in Section

. OŽ l .4.6 takes time n for computing an independent set of size at least
Ž Ž .. < <lr l q 1 OPT for a set of n unit disks. Thus, the time required for
executing Step 1 is N OŽ l 2 ..

ŽNext consider each iteration of Step 2. The number of vertices explicit
. Ž l. Ž lq1.vertices and nonterminals in PE G is O N . By arguments similar toi

those presented for analyzing Step 1 it follows that the running time for
each iteration of Step 2 is N OŽ l 2 .. Thus, the running time of Step 2 is

2 2 2OŽ l . OŽ l . OŽ l .N ? N s N . Similarly, the running time of Step 3 is also N .

The heuristics for the other problems work in a similar fashion. In the
case of minimization problems, instead of deleting nodes at levels j s i

Ž .mod l q 1 , we consider them in both sides of the partition. The reader
can easily verify that this can be done by slightly modifying the definition
of partial expansion. Hence by a straightforward combination of our ideas
in Section 4.7 together with the ideas mentioned in this section we can
prove the following theorems.

THEOREM 6.11. For all fixed k G 0 and l G 1, gï en a k-near-consistent
BOW-specification G of a set of unit disks, there are N OŽ l 2 . time approxima-

ŽŽ . .2tion algorithms with performance guarantee l q 1 rl for the problems
maximum independent set, minimum ¨ertex co¨er, and minimum edge domi-
nating set, where N is the size of G.
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For l-precision unit disk graphs, we can obtain approximation schemes
for many more problems and also obtain a better time performance
trade-offs. This is summarized in the following theorem.

THEOREM 6.12. For all fixed k G 0 and l ) 0, gï en a k-near-consistent
BOW-specification of a set of l-precision unit disks, there are N OŽ l . time

ŽŽ . .2approximation algorithms with performance guarantee l q 1 rl for the
following problems: maximum independent set, minimum ¨ertex co¨er, maxi-
mum H-matching, minimum edge dominating set, and maximum cut.

Proof Sketch. We again consider MIS for purposes of illustration. Note
that when l-precision unit disks are specified using standard specifica-

Ž l .tions, we have an O 2 n time approximation algorithm with performance
Ž .guarantee l q 1 rl for instances of size n. This fact in conjunction with

the arguments used to prove Theorem 6.11 yields the required result.

The above ideas can be easily extended along the lines of the results in
w xMH q 94 to solve the query, output, and the construction problems
Ž .discussed in Section 6.2 associated with each optimization problem
considered here. As the reader can note, an approximation scheme for the
minimum dominating set problem is not claimed in Theorems 6.11 and
6.12. It is not clear at this time how to obtain such a scheme.

7. EXTENSIONS

We discuss two extensions of the preceding results. First, we discuss
briefly the ideas behind parallelizing Algorithm HMIS. Similar ideas hold
for obtaining parallel algorithms for other problems for near-consistent
BOW-specifications.

Ž l.For any fixed l G 1, the size of any partially expanded graph is O N .
Such an expansion can easily be obtained in NC. Furthermore, we know
from the results in Section 4 that there is an NC-approximation scheme for

Ž . Ž .the MIS problem for unit disk graphs. Therefore, Steps 2 a and 2 b of
Ž .Algorithm HMIS can be implemented in NC. Next consider Step 2 c . In

Ž .the sequential case, we could evaluate Step 2 c for nonterminals starting
Ž .from G . Implementing Step 2 c in NC is a bit more subtle but can be1

done using classical techniques for parallel prefix computation. To do this,
we first abstract the basic problem we need to solve.

Recall that there is a hierarchy tree representing the sequence of calls
that are made by the nonterminals. Note that the tree can be exponentially
larger than the size of the specification. Hence a direct application of
parallel prefix algorithm on this tree will not yield an NC-algorithm.
However, we can overcome this difficulty by observing that there are



GEOMETRIC GRAPH PROBLEMS: APPROXIMATIONS 267

efficient NC-algorithms for solving higher order recurrences. We now
discuss our ideas in some detail.

Consider the 1-near-consistent BOW-specification G. The specification
can be seen to be a restricted form of context-free graph grammar. An
additional restriction imposed on the graph grammar to obtain 1-near-con-
sistent BOW-specified graphs is that for each nonterminal there is only
one cell that can be substituted. Thus there are no alternatï es for
substitution. Also, the index of the substituted cell has to be smaller than
the index of the cell in which the nonterminal occurs. This acyclicity
condition implies that the 1-near-consistent BOW-specification defines a
unique graph. Consider the hierarchy tree corresponding to the specifica-
tion G after computing the partial expansion of each of the nonterminals.

Ž .Using our equation in Step 2 c of the algorithm it follows that the
Ž .maximum independent set in the graph E G can be calculated by thei

following higher order recurrence.

b , 1 F i F l ,¡ i~ HIS G = aŽ .Ž .HIS G sŽ . iy1 iy1i ¢ q ??? q HIS G = a q b , l q 1 F i F n y 1.Ž .Ž .1 1 i

In the recurrence equations above, a denotes the number of copies ofk
nonterminals G called in G , and b denotes the size of the near optimalk i i

Ž Ž l..independent set for the set of explicit vertices Ex PE G . Such a systemi
wof higher order recurrences has an NC-algorithm as discussed in Re93,

xSect. 1.4.2, p. 50 . This completes the discussion of how Step 2 can be
parallelized.

Next consider each iteration of Step 3. It is easy to see that Step 3 can
Ž .be executed in NC. The total number of iterations is l q 1 . Combining

the above ideas, it is easy to obtain an NC-approximation scheme for the
maximum independent set problem for 1-near-consistent BOW-specified
unit disk graphs.

By similar arguments we get that, for all the problems P listed in Table
Ž .II see Section 8 , there exist NC-approximation schemes when instances

are specified using k-near consistent BOW-specifications, for any fixed
k G 1.

We end this section by presenting another extension of the definition of
k-near-consistent specifications for which the problems are still approx-
imable.

DEFINITION 7.1. A BOW specification is 1-extended-near-consistent iff
for each symbol G the following conditions hold:i

1. The MBR of G contains the MBR of all the symbols called in G .i i
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2. Let G call symbols G , . . . , G . The MBR of the symbol G ,i i i i1 k p

1 F p F k, called in G does not intersect the MBR of a symbol G suchi m
that G is called in some G , q / p.m i q

3. For each explicit disk u defined in G , u does not intersect thei
Ž .MBR of any symbol G such that G occurs in HT G and level numberk k i

Ž .of G in HT G is G 2.k i

The difference between Definitions 6.2 and 7.1 is the statement of
Condition 2. In Definition 7.1 we relax the condition that the MBR of the
called symbols are nonintersecting and allow for intersections of MBRs of
two symbols which are siblings in the hierarchy tree. It is not difficult to
verify the following.

1. We can check in polynomial time if a given BOW-specification is
1-extended-near-consistent.

2. Lemma 6.4 holds.
3. The size of each graph obtained as a result of partial expansion is

polynomial in N.

With these properties, it is easy to see that our approximation schemes can
be extended so as apply to k-extended-near-consistent specifications, for
any fixed k G 1.

8. CONCLUSIONS

We have presented efficient approximation schemes for a large class of
geometric intersection graphs when the graphs are represented using a
geometric layout. All our results are based on the shifting technique. This
technique was further generalized to obtain approximation schemes for
PSPACE-hard problems for hierarchically specified geometric intersection

w xgraphs. Our results are summarized in Tables I and II. As in GJ79 , we
use the convention that the performance guarantees for minimization as
well as maximization problems are always at least 1. We believe that the
approximation schemes obtained in this paper demonstrate the following
additional insights:

1. The crucial property of planar graphs used to obtain efficient
approximation schemes for problems which can be solved approximately by
a divide-and-conquer type of algorithm is that any planar graph can be
decomposed into a disjoint collection of subgraphs for which the given
problems considered can be solved exactly and efficiently. Any graph class
with this property is amenable to a similar approximation scheme.
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TABLE I
aPerformance Guarantees for Geometric Intersection Graph Problems

Nonhierarchical

Isothetic
Problem l-precision Civilized Unit disk squares

2 2
k q 1 k q 1 k q 1 k q 1

MIN VC ž / ž / ž / ž /k k k k
2 2

k q 1 k q 1 k q 1 k q 1
MAX IS ž / ž / ž / ž /k k k k

2 2
k q 1 k q 1 k q 1 k q 1

MIN Dom Set ž / ž / ž / ž /k k k k
k q 1 k q 1

w x w xMAX partition 3 CK94 3 CK94ž / ž /k k
into triangles

k q 1 k q 1
w x w xMAX CUT 1.137 GW94 1.137 GW94ž / ž /k k

k q 1 k q 1
w x w xMIN edge 2 CK94 2 CK94ž / ž /k k

dom set
k q 1 k q 1

MAX H-matching Open Openž / ž /k k

a The parameter k can be any fixed integer G 1.

2. The results also provide a better understanding of the close
relationship between planar graphs and intersection graphs of unit disks.

w xClark et al. CCJ90 pointed out that from a complexity theoretic point of
view, unit disk graphs appeared to be closer to planar graphs than to grid
graphs. We have provided additional evidence in support of the above
statement by presenting approximation schemes for many problems on
unit disk graphs, all of which are known to have approximation schemes
when restricted to planar graphs.

The results and techniques presented here have been recently applied to
wother problems arising in pattern matching and map labeling AD q 97,

xDM q 97 . The results have also been extended to apply to a large set of
w xpredicates and also to a larger class of graphs KM96, MHS97 .

The results presented in this paper raise several open questions. First, is
it possible to devise polynomial time approximation schemes with similar
time]performance trade-offs for problems restricted to circle intersection

Žgraphs? Circle intersection graphs are intersection graphs of circles of
.arbitrary radii in which we include an edge between a pair of vertices only

when the corresponding circles intersect. A subset of circle intersection
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TABLE II
aPerformance Guarantees for k-Near-Consistent Specifications

k-near-consistent BOW-specifications

Isothetic
Problem l-precision Unit disk squares

2 3 2
l q 1 l q 1 l q 1

MIN VC ž / ž / ž /l l l
2 3 3

l q 1 l q 1 l q 1
MAX IS ž / ž / ž /l l l

2
l q 1

MAX partition 3 3ž /l
into triangles

2
l q 1

MAX CUT 2 2ž /l
2 2 2

l q 1 l q 1 l q 1
MIN edge 2 2ž / ž / ž /l l l

dom set
2

l q 1
MAX H-matching Open Openž /l

a The parameter l can be any fixed integer G 1.

Ž .graphs is the class of coin graphs also referred to as sphere packing graphs
defined as follows.

DEFINITION 8.1. A sphere packing in d dimensions is a set of spheres
having disjoint interiors. A sphere packing graph is a graph with vertices
which are in 1]1 correspondence with the spheres and an edge between
two vertices if the corresponding spheres touch.

In addition to their applications in communication networks, circle
intersection graphs have been a subject of interest to researchers lately
due to their relationship with planar graphs. In particular, Andreev and

w xThurston Th88 showed that

THEOREM 8.1. E¨ery triangulated planar graph is isomorphic to a two-di-
mensional sphere packing graph.

It can be seen from the preceding definitions that circle intersection
Ž .graphs contain both planar graphs coin graphs and unit disk graphs as

special cases. Hence, it is of interest to investigate the complexity of
finding good approximation algorithms for basic graph problems restricted
to circle intersection graphs and intersection graphs of other geometric

w xobjects. As a step in this direction, in MB q 95 we gave simple approxi-
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mation algorithms with constant performance guarantees for several prob-
lems on circle intersection graphs. In particular, we showed that minimum
dominating set and maximum independent set can be approximated to
within a factor of 5, minimum vertex coloring can be approximated to
within a factor of 6, and minimum vertex cover can be approximated
to within a factor of 5r3 of the optimal. These approximation algorithms
do not require geometric input.

Existence of approximation schemes for circle intersection graphs would
w xgeneralize the results presented in this paper as well as those in Ba94 . If

this is not possible, one would like to devise approximation schemes for a
Žnontrivial subclass of circle intersection and in general geometric intersec-

. Ž .tion graphs that contains both coin graphs planar graphs and unit disk
graphs.
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