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Chapter 7

Integer Linear Programming Tricks

This chapterAs in the previous chapter “Linear Programming Tricks”, the emphasis is on

abstract mathematical modeling techniques but this time the focus is on inte-

ger programming tricks. These are not discussed in any particular reference,

but are scattered throughout the literature. Several tricks can be found in

[Wi90]. Other tricks are referenced directly.

Limitation to

linear integer

programs

Only linear integer programming models are considered because of the avail-

ability of computer codes for this class of problems. It is interesting to note

that several practical problems can be transformed into linear integer pro-

grams. For example, integer variables can be introduced so that a nonlinear

function can be approximated by a “piecewise linear” function. This and other

examples are explained in this chapter.

7.1 A variable taking discontinuous values

A jump in the

bound

This section considers an example of a simple situation that cannot be formu-

lated as a linear programming model. The value of a variable must be either

zero or between particular positive bounds (see Figure 7.1). In algebraic nota-

tion:

x = 0 or l ≤ x ≤ u

This can be interpreted as two constraints that cannot both hold simultane-

ously. In linear programming only simultaneous constraints can be modeled.

0 l u
x

Figure 7.1: A discontinuous variable

ApplicationsThis situation occurs when a supplier of some item requires that if an item

is ordered, then its batch size must be between a particular minimum and

maximum value. Another possibility is that there is a set-up cost associated

with the manufacture of an item.
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Modeling dis-

continuous

variables

To model discontinuous variables, it is helpful to introduce the concept of an

indicator variable. An indicator variable is a binary variable (0 or 1) that indi-

cates a certain state in a model. In the above example, the indicator variable y

is linked to x in the following way:

y =







0 for x = 0

1 for l ≤ x ≤ u

The following set of constraints is used to create the desired properties:

x ≤ uy

x ≥ ly

y binary

It is clear that y = 0 implies x = 0, and that y = 1 implies l ≤ x ≤ u.

7.2 Fixed costs

The modelA fixed cost problem is another application where indicator variables are added

so that two mutually exclusive situations can be modeled. An example is

provided using a single-variable. Consider the following linear programming

model (the sign “≷” denotes either “≤”, “=”, or “≥” constraints).

Minimize: C(x)

Subject to:

aix +
∑

j∈J

aijwj ≷ bi ∀i ∈ I

x ≥ 0

wj ≥ 0 ∀j ∈ J

Where: C(x) =







0 for x = 0

k+ cx for x > 0

As soon as x has a positive value, a fixed cost is incurred. This cost function

is not linear and is not continuous. There is a jump at x = 0, as illustrated in

Figure 7.2.

ApplicationIn the above formulation, the discontinuous function is the objective, but such

a function might equally well occur in a constraint. An example of such a

fixed-cost problem occurs in the manufacturing industry when set-up costs

are charged for new machinery.
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C(x)

k

0 x

c

Figure 7.2: Discontinuous cost function

Modeling fixed

costs

A sufficiently large upper bound, u, must be specified for x. An indicator

variable, y , is also introduced in a similar fashion:

y =







0 for x = 0

1 for x > 0

Now the cost function can be specified in both x and y :

C∗(x,y) = ky + cx

The minimum of this function reflects the same cost figures as the original

cost function, except for the case when x > 0 and y = 0. Therefore, one

constraint must be added to ensure that x = 0 whenever y = 0:

x ≤ uy

The equivalent

mixed integer

program

Now the model can be stated as a mixed integer programming model. The

formulation given earlier in this section can be transformed as follows.

Minimize: ky + cx

Subject to:

aix +
∑

j∈J

aijwj ≷ bi ∀i ∈ I

x ≤ uy

x ≥ 0

wj ≥ 0 ∀j ∈ J

y binary

7.3 Either-or constraints

The modelConsider the following linear programming model:

Minimize:
∑

j∈J

cjxj
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Subject to:
∑

j∈J

a1jxj ≤ b1 (1)

∑

j∈J

a2jxj ≤ b2 (2)

xj ≥ 0 ∀j ∈ J

Where: at least one of the conditions (1) or (2) must hold

The condition that at least one of the constraints must hold cannot be for-

mulated in a linear programming model, because in a linear program all con-

straints must hold. Again, a binary variable can be used to express the prob-

lem. An example of such a situation is a manufacturing process, where two

modes of operation are possible.

Modeling

either-or

constraints

Consider a binary variable y , and sufficiently large upper bounds M1 and M2,

which are upper bounds on the activity of the constraints. The bounds are

chosen such that they are as tight as possible, while still guaranteeing that the

left-hand side of constraint i is always smaller than bi +Mi. The constraints

can be rewritten as follows:

(1)
∑

j∈J

a1jxj ≤ b1 +M1y

(2)
∑

j∈J

a2jxj ≤ b2 +M2(1−y)

When y = 0, constraint (1) is imposed, and constraint (2) is weakened to
∑

j∈J a2jxj ≤ b2+M2, which will always be non-binding. Constraint (2) may of

course still be satisfied. When y = 1, the situation is reversed. So in all cases

one of the constraints is imposed, and the other constraint may also hold. The

problem then becomes:

The equivalent

mixed integer

program

Minimize:
∑

j∈J

cjxj

Subject to:
∑

j∈J

a1jxj ≤ b1 +M1y

∑

j∈J

a2jxj ≤ b2 +M2(1−y)

xj ≥ 0 ∀j ∈ J

y binary
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7.4 Conditional constraints

The modelA problem that can be treated in a similar way to either-or constraints is one

that contains conditional constraints. The mathematical presentation is lim-

ited to a case, involving two constraints, on which the following condition is

imposed.

If (1) (
∑

j∈J

a1jxj ≤ b1) is satisfied,

then (2) (
∑

j∈J

a2jxj ≤ b2) must also be satisfied.

Logical

equivalence

Let A denote the statement that the logical expression “Constraint (1) holds”

is true, and similarly, let B denote the statement that the logical expression

“Constraint (2) holds” is true. The notation ¬A and ¬B represent the case

of the corresponding logical expressions being false. The above conditional

constraint can be restated as: A implies B. This is logically equivalent to writing

(A and ¬B) is false. Using the negation of this expression, it follows that ¬(A

and ¬B) is true. This is equivalent to (¬A or B) is true, using Boolean algebra.

It is this last equivalence that allows one to translate the above conditional

constraint into an either-or constraint.

Modeling

conditional

constraints

One can observe that

If (
∑

j∈J

a1jxj ≤ b1) holds, then (
∑

j∈J

a2jxj ≤ b2) must hold,

is equivalent to

(
∑

j∈J

a1jxj > b1) or (
∑

j∈J

a2jxj ≤ b2) must hold.

Notice that the sign in (1) is reversed. A difficulty to overcome is that the strict

inequality “not (1)” needs to be modeled as an inequality. This can be achieved

by specifying a small tolerance value beyond which the constraint is regarded

as broken, and rewriting the constraint to:

∑

j∈J

a1jxj ≥ b1 + ǫ

This results in:

∑

j∈J

a1jxj ≥ b1 + ǫ, or
∑

j∈J

a2jxj ≤ b2 must hold.

This last expression strongly resembles the either-or constraints in the pre-

vious section. This can be modeled in a similar way by introducing a binary
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variable y , a sufficiently large upper bound M on (2), and a sufficiently lower

bound L on (1). The constraints can be rewritten to get:

∑

j∈J

a1jxj ≥ b1 + ǫ− Ly

∑

j∈J

a2jxj ≤ b2 +M(1−y)

You can verify that these constraints satisfy the original conditional expression

correctly, by applying reasoning similar to that in Section 7.3.

7.5 Special Ordered Sets

This sectionThere are particular types of restrictions in integer programming formulations

that are quite common, and that can be treated in an efficient manner by

solvers. Two of them are treated in this section, and are referred to as Spe-

cial Ordered Sets (SOS) of type 1 and 2. These concepts are due to Beale and

Tomlin ([Be69]).

SOS1

constraints

A common restriction is that out of a set of yes-no decisions, at most one

decision variable can be yes. You can model this as follows. Let yi denote

zero-one variables, then
∑

i

yi ≤ 1

forms an example of a SOS1 constraint. More generally, when considering

variables 0 ≤ xi ≤ ui, then the constraint

∑

i

aixi ≤ b

can also become a SOS1 constraint by adding the requirement that at most

one of the xi can be nonzero. In Aimms there is a constraint attribute named

Property in which you can indicate whether this constraint is a SOS1 constraint.

Note that in the general case, the variables are no longer restricted to be zero-

one variables.

SOS1 and

performance

A general SOS1 constraint can be classified as a logical constraint and as such it

can always be translated into a formulation with binary variables. Under these

conditions the underlying branch and bound process will follow the standard

binary tree search, in which the number of nodes is an exponential function

of the number of binary variables. Alternatively, if the solver recognizes it as

a SOS1 constraint, then the number of nodes to be searched can be reduced.

However, you are advised to only use SOS sets if there exists an natural order

relationship among the variables in the set. If your model contains multiple

SOS sets, you could consider specifying priorities for some of these SOS sets.
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SOS1 branchingTo illustrate how the SOS order information is used to create new nodes during

the branch and bound process, consider a model in which a decision has to

be made about the size of a warehouse. The size of the warehouse should

be either 10000, 20000, 40000, or 50000 square feet. To model this, four

binary variables x1, x2, x3 and x4 are introduced that together make up a

SOS1 set. The order among these variables is naturally specified through the

sizes. During the branch and bound process, the split point in the SOS1 set

is determined by the weighted average of the solution of the relaxed problem.

For example, if the solution of the relaxed problem is given by x1 = 0.1 and

x4 = 0.9, then the corresponding weighted average is 0.1·10000+0.9·50000 =

46000. This computation results in the SOS set being split up between variable

x3 and x4. The corresponding new nodes in the search tree are specified by

(1) the nonzero element is the set {x1, x2, x3} (i.e. x4 = 0) and (2) x4 = 1 (and

x1 = x2 = x3 = 0).

SOS2

constraints

Another common restriction, is that out of a set of nonnegative variables, at

most two variables can be nonzero. In addition, the two variables must be

adjacent to each other in a fixed order list. This class of constraint is referred

to as a type SOS2 in Aimms. A typical application occurs when a non-linear

function is approximated by a piecewise linear function. Such an example is

given in the next section.

7.6 Piecewise linear formulations

The modelConsider the following model with a separable objective function:

Minimize:
∑

j∈J

fj(xj)

Subject to:
∑

j∈J

aijxj ≷ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J

Separable

function

In the above general model statement, the objective is a separable function,

which is defined as the sum of functions of scalar variables. Such a func-

tion has the advantage that nonlinear terms can be approximated by piecewise

linear ones. Using this technique, it may be possible to generate an integer pro-

gramming model, or sometimes even a linear programming model (see [Wi90]).

This possibility also exists when a constraint is separable.

Examples of

separable

functions

Some examples of separable functions are:

x2
1 + 1/x2 − 2x3 = f1(x1)+ f2(x2)+ f3(x3)

x2
1 + 5x1 − x2 = g1(x1)+ g2(x2)
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The following examples are not:

x1x2 + 3x2 + x
2
2 = f1(x1, x2)+ f2(x2)

1/(x1 + x2)+ x3 = g1(x1, x2)+ g2(x3)

Approximation

of a nonlinear

function

Consider a simple example with only one nonlinear term to be approximated,

namely f(x) =
1
2
x2. Figure 7.3, shows the curve divided into three pieces that

are approximated by straight lines. This approximation is known as piecewise

linear. The points where the slope of the piecewise linear function changes (or

its domain ends) are referred to as breakpoints. This approximation can be ex-

pressed mathematically in several ways. A method known as the λ-formulation

is described below.

x

f̃ (x)

0
x1

1
x2

2
x3

4
x4

1
2

2

8

Figure 7.3: Piecewise linear approximation of f(x) = 1
2
x2

Weighted sumsLet x1, x2, x3 and x4 denote the four breakpoints along the x-axis in Figure 7.3,

and let f(x1), f (x2), f (x3) and f(x4) denote the corresponding function val-

ues. The breakpoints are 0, 1, 2 and 4, and the corresponding function values

are 0,
1
2
, 2 and 8. Any point in between two breakpoints is a weighted sum of

these two breakpoints. For instance, x = 3 =
1
2
· 2+

1
2
· 4. The corresponding

approximated function value f̃ (3) = 5 =
1
2
· 2+

1
2
· 8.

λ-FormulationLet λ1, λ2, λ3, λ4 denote four nonnegative weights such that their sum is 1.

Then the piecewise linear approximation of f(x) in Figure 7.3 can be written

as:

λ1f(x1)+ λ2f(x2)+ λ3f(x3)+ λ4f(x4) = f̃ (x)

λ1x1 + λ2x2 + λ3x3 + λ4x4 = x

λ1 + λ2 + λ3 + λ4 = 1

with the added requirement that at most two adjacent λ’s are greater than

zero. This requirement together with the last constraint form the SOS2 con-
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straint referred to at the end of the previous section. The SOS2 constraints for

all separable functions in the objective function together guarantee that the

points (x, f̃ (x)) always lie on the approximating line segments.

Adjacency

requirements

sometimes

redundant

The added requirement that at most two adjacent λ’s are greater than zero

can be modeled using additional binary variables. This places any model with

SOS2 constraints in the realm of integer (binary) programming. For this reason,

it is worthwhile to investigate when the added adjacency requirements are

redundant. Redundancy is implied by the following conditions.

1. The objective is to minimize a separable function in which all terms

fj(xj) are convex functions.

2. The objective is to maximize a separable function in which all terms

fj(xj) are concave functions.

Convexity and

concavity

A function is convex when the successive slopes of the piecewise linear approx-

imation are nondecreasing, and concave if these slopes are non-increasing. A

concave cost curve can represent an activity with economies of scale. The unit

costs decrease as the number of units increases. An example is where quantity

discounts are obtained.

The case of a

non-convex

function

The adjacency requirements are no longer redundant when the function to be

approximated is non-convex. In this case, these adjacency requirements must

be formulated explicitly in mathematical terms.

SOS2 in AimmsIn Aimms you do not need to formulate the adjacency requirements explicitly.

Instead you need to specify sos2 in the property attribute of the constraint in

which the λ’s are summed to 1. In this case, the solver in Aimms guarantees

that there will be at most two adjacent nonzero λ’s in the optimal solution.

If the underlying minimization model is convex, then the linear programming

solution will satisfy the adjacency requirements. If the model is not convex,

the solver will continue with a mixed integer programming run.

7.7 Elimination of products of variables

This sectionThis section explains a method for linearizing constraints and objective func-

tions in which the products of variables are incorporated. There are numerous

applications that give rise to nonlinear constraints and the use of integer vari-

ables. These problems become very difficult, if not impossible, to solve.
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Replacing

product term

In general, a product of two variables can be replaced by one new variable, on

which a number of constraints is imposed. The extension to products of more

than two variables is straightforward. Three cases are distinguished. In the

third case, a separable function results (instead of a linear one) that can then

be approximated by using the methods described in the previous section.

Two binary

variables

Firstly, consider the binary variables x1 and x2. Their product, x1x2, can be

replaced by an additional binary variable y . The following constraints force y

to take the value of x1x2:

y ≤ x1

y ≤ x2

y ≥ x1 + x2 − 1

y binary

One binary and

one continuous

variable

Secondly, let x1 be a binary variable, and x2 be a continuous variable for which

0 ≤ x2 ≤ u holds. Now a continuous variable, y , is introduced to replace the

product y = x1x2. The following constraints must be added to force y to take

the value of x1x2:

y ≤ ux1

y ≤ x2

y ≥ x2 −u(1− x1)

y ≥ 0

The validity of these constraints can be checked by examining Table 7.1 in

which all possible situations are listed.

x1 x2 x1x2 constraints imply

0 w : 0 ≤ w ≤ u 0 y ≤ 0 y = 0

y ≤ w

y ≥ w −u

y ≥ 0

1 w : 0 ≤ w ≤ u w y ≤ u y = w

y ≤ w

y ≥ w

y ≥ 0

Table 7.1: All possible products y = x1x2
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Two continuous

variables

Thirdly, the product of two continuous variables can be converted into a sep-

arable form. Suppose the product x1x2 must be transformed. First, two (con-

tinuous) variables y1 and y2 are introduced. These are defined as:

y1 =
1

2
(x1 + x2)

y2 =
1

2
(x1 − x2)

Now the term x1x2 can be replaced by the separable function

y2
1 −y

2
2

which can be approximated by using the technique of the preceding section.

Note that in this case the non-linear term can be eliminated at the cost of

having to approximate the objective. If l1 ≤ x1 ≤ u1 and l2 ≤ x2 ≤ u2, then

the bounds on y1 and y2 are:

1

2
(l1 + l2) ≤ y1 ≤

1

2
(u1 +u2) and

1

2
(l1 −u2) ≤ y2 ≤

1

2
(u1 − l2)

Special caseThe product x1x2 can be replaced by a single variable z whenever

� the lower bounds l1 and l2 are nonnegative, and

� one of the variables is not referenced in any other term except in prod-

ucts of the above form.

Assume, that x1 is such a variable. Then substituting for z and adding the

constraint

l1x2 ≤ z ≤ u1x2

is all that is required to eliminate the nonlinear term x1x2. Once the model is

solved in terms of z and x2, then x1 = z/x2 when x2 > 0 an x1 is undeter-

mined when x2 = 0. The extra constraints on z guarantee that l1 ≤ x1 ≤ u1

whenever x2 > 0.

7.8 Summary

In practical applications, integer linear programming models often arise when

discontinuous restrictions are added to linear programs. In this chapter, some

typical examples have been shown, along with methods to reformulate them

as integer programs. The binary “indicator variable” plays an important role.

With the aid of binary variables it is possible to model discontinuities in vari-

ables or objectives, as well as either-or constraints and conditional constraints.

By conducting a piecewise linear approximation of a nonlinear program, con-

taining a separable nonlinear objective function, it may be possible to gener-

ate a linear programming model or perhaps an integer programming model.

At the end of the chapter, methods for eliminating products of variables are

described.
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