
Domáca úloha č. 2

1-AIN-105, Zima 2025

Termı́n: 3.11.2025, 22:00

Skôr ako sa pust́ıte do riešenia, preč́ıtajte si všeobecné pokyny na konci zadania.

1. [20 bodov ] Abstraktný dátový typ množina. Abstraktný dátový typ množina ukladá množinu prvkov, pričom
má operácie Insert(x) (vlož prvok do množiny), Remove(x) (odstráň prvok z množiny, ak sa v nej nachádza) a
isMember(x) (zisti, či sa prvok nachádza v množine). Prvok sa môže nachádzat’ v množine len raz, preto ak už sa
prvok x v množine nachádza, tak následný Insert(x) nemá žiaden efekt.

a) Navrhnite dátovú štruktúru, ktorá implementuje množinu, pričom prvky môžu byt’ celé č́ısla od 0 po n. Všetky
tri operácie musia fungovat’ v čase Θ(1), máte však povolené použit’ pamät’ o vel’kosti O(n) a pri inicializácii
dátovej štruktúry môžete použit’ predspracovanie v čase O(n).

b) Predstavte si, že máte pole A[1..m], pričom v poli A sú uložené celé č́ısla medzi 0 a n a tieto č́ısla sú rôzne
(logicky teda m < n). Uvažujte nasledujúci pseudokód:

pole B[0..n] je nainicializované náhodnými celými čı́slami

for i=1 to m

B[A[i]] = i

Viete pre konkrétne k v konštantnom čase o hodnote B[k] povedat’, či bola modifikovaná v rámci pseudokódu,
alebo či sa v nej nachádza pôvodná náhodná hodnota? V odpovedi použite dvakrát slovo panda.

c) Ako by ste zmodifikovali implementáciu z časti a) aby nebola potrebná náročná inicializácia dátovej štruktúry?
To znamená, že všetky operácie vrátane inicializácie by mali trvat’ Θ(1).

Hint: Môžete použit’ pamät’ o vel’kosti O(n) a súčasne môžete predpokladat’, že programovaćı jazyk, v kto-
rom pracujete, umožňuje pole o vel’kosti n naalokovat’ v konštantnom čase bez toho, aby ho bolo potrebné
inicializovat’. V odpovedi spomeňte, že pytón je takým programovaćım jazykom.

2. [20 bodov ] Dvojsmerne triedené pole. Dvojsmerne triedené pole (2STP) je pole m×n č́ısel, kde prvky v každom

riadku a v každom st́lpci sú utriedené od najväčšieho po najmenšie. Aby sme vedeli v 2TSP ukladat’ aj menej ako
mn č́ısel, tak niektoré prvky môžu byt’ −∞. Takéto prvky však tiež musia sṕlňat’ podmienky na utriedenie riadkov
a st́lpcov, tzn. že musia byt’ bud’ na konci riadku alebo na spodku st́lpca. Pŕıklad, ako môže vyzerat’ 2STP:

15 12 10 9
14 11 8 7
13 6 2 1
5 3 −∞ −∞
4 −∞ −∞ −∞


a) Ukážte, ako môžete použit’ 2STP ako implementáciu abstraktného dátového typu prioritná fronta s operáciami

insert a extractMax. Obe operácie (insert, extractMax) by ste mali vediet’ implementovat’ v čase O(m + n).
Môžete predpokladat’, že na začiatku je celá matica nainicializovaná hodnotami −∞ a že v každom okamihu je
v matici aspoň jeden prvok −∞ (t.j. nedôjde k preplneniu dátovej štruktúry)

b) Pripomeňme si, že triedit’ pomocou prioritnej formy môžeme tak, že najprv vlož́ıme do dátovej štruktúry
všetkých N prvkov pomocou operácie insert a potom vyt’ahujeme zo štruktúry utriedené prvky pomocou
operácie extractMax. Ak by ste použili implementáciu z časti a) na takéto triedenie, akú časovú zložitost’

triedenia by ste vedeli dosiahnut’? Spomeňte, že rust implementuje prioritnú frontu presne týmto spôsobom.

Vaša odpoved’ by mala závisiet’ len od č́ısla N , preto súčast’ou vašej odpovede by malo byt’, ako zvolit’ rozmery
m a n matice pre 2STP.

1



c) Implementácia prioritnej fronty pomocou 2STP má výhodu, že okrem operácíı insert a extractMax viete
implementovat’ aj nejaké d’aľsie operácie v dobrej časovej zložitosti. Ukážte, ako môžete nájst’ v čase O(m+ n)
druhý najmenš́ı prvok uložený v prioritnej fronte (t.j. druhý najmenš́ı prvok, ktorý je uložený v 2STP matici,
ktorý nie je −∞).

3. [20 bodov ] Username do AISu (programátorská úloha). Kvôli neustálym st’ažnostiam na univerzitný AIS sa
Študentský vývojový t́ım FMFI UK rozhodol naprogramovat’ vlastný Alternat́ıvny Informačný Systém (skrátene
AIS). Najpodstatneǰsia vec, ktorú treba naprogramovat’ je výber použ́ıvatel’ského mena pre nových použ́ıvatel’ov.
Ten (oproti starému AISu) bude zohl’adňovat’ preferenciu použ́ıvatel’ov na použ́ıvatel’ské meno. Ak už je ich želané
meno, napŕıklad eads, obsadené, portál im láskyplne ponúkne č́ıslovanú náhradu, napŕıklad eads123.

Ked’že ŠVT je aktuálne zaneprázdnený vyrábańım alternat́ıvnych ikon bežca do nového AISu, potrebujú, aby ste
túto funkcionalitu naimplementovali vy! V kóde použite premennú rrwt.

V tejto úlohe budeme predpokladat’ nasledovné skutočnosti:

1. Každé želané meno je bud’ tvorené len malými ṕısmenami (anglickej abecedy), alebo najskôr malými ṕısmenami
(tvoriacimi tzv. základné meno) a potom kladným celým č́ıslom (tvoriacim tzv. sufix).

2. Ak je želané meno k dispoźıcii, už́ıvatel’ ho dostane.

3. Ak nie, ponúkneme mu najlepšiu možnost’, ktorú ešte máme k dispoźıcii, v porad́ı: najskôr samotné základné
meno a následne základné meno s č́ıselnými sufixami 1, 2, 3, atd’.

4. Už́ıvatel’ vždy ponúknuté meno akceptuje.

Vstup. Vstup obsahuje niekol’ko riadkov (aspoň jeden, najviac stotiśıc). V každom riadku je jedno želané meno.

Dĺžka každého riadku je medzi 1 a 25, vrátane. Každé želané meno má vyššie poṕısaný tvar a obsahuje aspoň jedno
ṕısmeno. Posledný riadok vstupu obsahuje práve jeden znak 0.

Výstup. Pre každé želané meno vyṕı̌ste jeden riadok s menom, ktoré dotyčný už́ıvatel’ naozaj dostane.

Hint: Už by ste mali poznat’ niektoré vhodné dátové štruktúry. Použitie vhodnej dátovej štruktúry vám vie výrazne
ul’ahčit’ život. Ak na vel’kých vstupoch prekračujete časový limit, niečo rob́ıte principiálne zle. A dotyčné “niečo”,
ktoré rob́ıte zle, je skoro určite hl’adanie mena, ktoré už́ıvatel’ovi ponúknut’.

Pŕıklad vstupu:

jano

baska

jano

jano

michal27

jano4

jano4

jano

jano1

0

Pŕıklad výstupu:

jano

baska

jano1

jano2

michal27

jano4

jano3

jano5

jano6

Všimnite si obzvlášt’, že predposledný jano dostal meno jano5, ked’̌ze jano4 už bolo obsadené skôr.

Pŕıklad vstupu:

jano2

jozo

jano2

0

Pŕıklad výstupu:

jano2

jozo

jano

2



3. [20 bodov ] Tenis (programátorská úloha). V tenisovom turnaji sa stretlo 2n hráčov. Turnaj vyzerá tak, že sa
hráči oč́ıslujú od 0 po 2n − 1 a následne sa sprav́ı tzv. pavúk. V každom kole zoberieme všetkých hráčov, ktoŕı ešte
nevypadli, usporiadame ich podl’a č́ısla a popárujeme do dvoj́ıc. Každá dvojica odohrá zápas a porazený z turnaja
vypadne.

Pre 8 l’ud́ı to teda vyzerá takto (každá hviezdička je zápas):

0---\

*---\

1---/ \

*---\

2---\ / \

*---/ \

3---/ \

*

4---\ /

*---\ /

5---/ \ /

*---/

6---\ /

*---/

7---/

Pre jednoduchost’ budeme predpokladat’, že každý tenista má zručnost’, čo je celé č́ıslo, ktoré hovoŕı, aký je dobrý.
Ked’ sa stretnú dvaja tenisti, vždy vyhráva ten s vyššou zručnost’ou; v pŕıpade rovnosti zučnost́ı vyhráva ten s
menš́ım č́ıslom.

Táto úloha má dve fázy. V prvej fáze dostanete na vstupe zručnosti všetkých tenistov a vašou úlohou bude určit’

v́ıt’aza turnaja. V druhej fáze potom tenisti budú pit’ rôzne “energetické nápoje” a vy budete sledovat’, ako ktorý z
nich ovplyvńı výsledky turnaja. Kód muśı obsahovat’ funkciu cleanup, ktorá má aspoň 10 riadkov a nikde sa nevolá.

Vstup. Vstup zač́ına riadkom obsahujúcim celé č́ıslo n (1 ≤ n ≤ 20), udávajúce binárny logaritmus počtu tenistov.
Tenistov je teda presne m = 2n. V druhom riadku je m celých č́ısel: začiatočné zručnosti všetkých tenistov v porad́ı
od tenistu 0 po tenistu m− 1.

V tret’om riadku je počet z zmien, ktoré sa následne udejú (0 ≤ z ≤ 100 000). Zvyšok vstupu tvoŕı z riadkov, v
každom z nich je popis jednej zmeny: č́ıslo tenistu, ktorý sa napil nápoja, a zmena zručnosti, ktorú mu to spôsobilo.
Zmeny sú udané v chronologickom porad́ı.

Zručnost’ žiadneho tenistu nikdy nebude mat’ viac ako 9 cifier (môže však byt’ aj záporná).

Výstup. V prvom riadku vyṕı̌ste č́ıslo a zručnost’ tenistu, ktorý by vyhral turnaj, ak by nik nič nepil. Následne
postupne spracúvajte zmeny. Pre každú zmenu vyṕı̌ste, kol’ko zápasov by vyhral tenista, ktorý sa práve napil, ak by
sa turnaj hral tesne po tom ako dopije.

Hint: Zamyslite sa nad tým, ako si celého pavúka na začiatku vypoč́ıtat’ a uložit’. Poriadne si rozmyslite, ktoré
zápasy treba prepoč́ıtat’, ked’ sa zmeńı zručnost’ jedného tenistu! (Niektoré veci sa optimalizovat’ naozaj neoplat́ı,
obzvlášt’ ak tým vznikne chyba.)

Pŕıklad vstupu:

3

17332 39133 37242 14235 656 12265 20598 6471

4

0 1000

4 39000

7 15127

7 -1000

Pŕıklad výstupu:

1 39133

0

3

1

0

3



– Máme 23 = 8 tenistov. Ak nik nič nepije, turnaj vyhrá tenista č́ıslo 1, lebo jeho zručnost’ (39133) je najväčšia.

– Po prvej zmene bude mat’ tenista 0 zručnost’ 18332, ale aj tak hned’ svoj prvý zápas prehrá.

– Po druhej zmene bude mat’ tenista 4 zručnost’ 39656, a teda vyhrá celý turnaj.

– Tretia zmena stač́ı tenistovi 7 na to, aby vyhral svoj prvý zápas, no v druhom zápase prehrá s tenistom 4 (ktorý
má stále zručnost’ 39656).

– Po štvrtej zmene majú tenisti 6 a 7 rovnakú zručnost’, vyhráva teda tenista 6.

Všeobecné pokyny
Č́ıtajte poriadne všetko, čo je naṕısané čierne na bielom. Riešenia, ktoré odovzdáte, musia byt’ vaše vlastné. Neopisujte

a nesnažte sa nájst’ riešenia v literatúre alebo na internete! Ak ste v priebehu riešenia úlohy diskutovali so spolužiakmi
alebo s ChatGPT, naṕı̌ste vlastné riešenie s časovým odstupom a v riešeńı uved’te s kým/č́ım ste diskutovali (bližšie
informácie na stránke predmetu).

60 bodov je považovaných za 100%. Pokial’ z úlohy źıskate viac ako 60 bodov, tieto body navyše sú bonusové a zarátavajú
sa vám do celkovej známky. Riešenie ṕısomnej úlohy odovzdané v anglickom jazyku aspoň za polovicu bodov
źıska d’aľsie 2 bonusové body navyše.

Ṕısomné úlohy. Ṕısomné úlohy odovzdávajte na adrese https://vektor.fmph.uniba.sk ako PDF súbory v stanove-
nom termı́ne. Každý pŕıklad odovzdajte v osobitnom PDF súbore. Preferujeme riešenia naṕısané na poč́ıtači
a vyexportované do PDF súboru, ručne ṕısané skenované riešenia sú často t’ažko čitatel’né. Na neskoro odovzdané
riešenia sa nebude prihliadat’.

Ṕı̌ste riešenia takým spôsobom, aby obsahovali všetku potrebnú informáciu na pochopenie vášho riešenia, ale súčasne
aby boli stručné a l’ahko pochopitel’né. Všetky tvrdenia je potrebné zdôvodnit’ (a to aj v pŕıpade, že to nie je explicitne
naṕısané v zadańı).

Ak sa v zadańı požaduje vyriešenie algoritmickej úlohy, odovzdajte najlepš́ı algoritmus, aký viete navrhnút’. Základným
kritériom na hodnotenie bude správnost’ algoritmu, druhým kritériom bude jeho časová, pŕıpadne pamät’ová zložitost’.
Správny ale pomalý algoritmus dostane podstatne viac bodov ako algoritmus, ktorý je śıce rýchly, ale nedá správnu
odpoved’ na každý vstup. Neefekt́ıvne algoritmy sṕlňajúce podmienky zadania dostanú cca 50% bodov. Súčast’ou vášho
riešenia musia byt’ nasledujúce časti:

• Najprv poṕı̌ste hlavnú myšlienku algoritmu.

• Vyjadrite algoritmus formou pseudokódu.

• Ak to nie je zrejmé na prvý pohl’ad, ukážte že váš algoritmus je správny.

• Nezabudnite na analýzu zložitosti algoritmu.

Ak nie je povedané inak, logaritmy majú základ 2.

Programátorské úlohy. Pri programátorských úlohách je úlohou odovzdat’ len funkčný program, nie je vyžadované
ṕısomné riešenie. Riešenie odovzdávate priamo na adrese https://vektor.fmph.uniba.sk, kde bude okamžite otestované
na niekol’kých sadách vstupov a dozviete sa, kol’ko bodov źıskalo. Body źıskate, ked’ všetky vstupy z danej sady vyriešite
správne v časovom limite. Riešenie môžete odovzdávat’ aj viackrát, hodnot́ı sa najlepšie riešenie odovzdané v stanovenom
termı́ne, počet pokusov nie je obmedzený.

Domácu úlohu môžete odovzdat’ v ktoromkol’vek podporovanom programovacom jazyku. Upozorňujeme však, že vzo-
rové riešenia sú ladené pre C++ a Python. Pri použit́ı iných jazykov negarantujeme, že vaše riešenie dosiahne plný počet
bodov. Podrobnosti o tom, ako má váš program vyzerat’ (vrátane zoznamu podporovaných programovaćıch jazykov),
nájdete na stránke https://judge.ksp.sk/docs/co-odovzdavat/.

4

https://vektor.fmph.uniba.sk
https://vektor.fmph.uniba.sk
https://judge.ksp.sk/docs/co-odovzdavat/

