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The Asymptotic Cheat Sheet

Asymptotic notation consists of six funny symbols used to describe the relative growth
rates of functions. These six symbols are defined in the table below.

f = Θ(g) f grows at the same rate as g There exists an n0 and constants c1, c2 > 0 such
that for all n > n0, c1g(n) ≤ |f(n)| ≤ c2g(n).

f = O(g) f grows no faster than g There exists an n0 and a constant c > 0 such that
for all n > n0, |f(n)| ≤ cg(n).

f = Ω(g) f grows at least as fast as g There exists an n0 and a constant c > 0 such that
for all n > n0, cg(n) ≤ |f(n)|.

f = o(g) f grows slower than g For all c > 0, there exists an n0 such that for all
n > n0, |f(n)| ≤ cg(n).

f = ω(g) f grows faster than g For all c > 0, there exists an n0 such that for all
n > n0, cg(n) ≤ |f(n)|.

f ∼ g f/g approaches 1 limn→∞ f(n)/g(n) = 1

The ∼ and Θ notations are confusingly similar; qualitatively, functions related by ∼
must be even more nearly alike then functions related by Θ. The ω notation makes the
table nice and symmetric, but is almost never used in practice. Some asymptotic relation-
ships between functions imply other relationships. Some examples are listed below.

f = O(g) and f = Ω(g) ⇔ f = Θ(g) f = o(g) ⇒ f = O(g)
f = O(g) ⇔ g = Ω(f) f = ω(g) ⇒ f = Ω(g)
f = o(g) ⇔ g = ω(f) f ∼ g ⇒ f = Θ(g)
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Limits

The definitions of the various asymptotic notations are closely related to the definition
of a limit. As a result, limn→∞ f(n)/g(n) reveals a lot about the asymptotic relationship
between f and g, provided the limit exists. The table below translates facts about the limit
of f/g into facts about the asymptotic relationship between f and g.

limn→∞ f(n)/g(n) $= 0,∞ ⇒ f = Θ(g) limn→∞ f(n)/g(n) = 1 ⇒ f ∼ g
limn→∞ f(n)/g(n) $= ∞ ⇒ f = O(g) limn→∞ f(n)/g(n) = 0 ⇒ f = o(g)
limn→∞ f(n)/g(n) $= 0 ⇒ f = Ω(g) limn→∞ f(n)/g(n) = ∞ ⇒ f = ω(g)

Therefore, skill with limits can be helpful in working out asymptotic relationships. In
particular, recall L’Hospital’s Rule:

If lim
n→∞

f(n) = ∞ and lim
n→∞

g(n) = ∞, then lim
n→∞

f(n)

g(n)
= lim

n→∞

f ′(n)

g′(n)
.

Every computer scientist knows two rules of thumb about asymptotics: logarithms
grow more slowly than polynomials and polynomials grow more slowly than exponen-
tials. We’ll prove these facts using limits.

Theorem. For all α, k > 0:

(lnn)k = o(nα) (1)
nk = o((1 + α)n) (2)

Proof.

lim
n→∞

(lnn)k

nα
=

(

lim
n→∞

ln n

nα/k

)k
∗

=

(

lim
n→∞

1/n

(α/k)nα/k−1

)k

=

(

lim
n→∞

1

(α/k)nα/k

)k

= 0

lim
n→∞

nk

(1 + α)n
=

(

lim
n→∞

n

(1 + α)n/k

)k
∗

=

(

lim
n→∞

1

(n/k) · (1 + α)n/k−1

)k

= 0

The starred equalities follow from L’Hospital’s Rule.
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