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tLo
alization, that is the estimation of a robot's lo
ation from sensor data, is a funda-mental problem in mobile roboti
s. This papers presents a version of Markov lo
alizationwhi
h provides a

urate position estimates and whi
h is tailored towards dynami
 environ-ments. The key idea of Markov lo
alization is to maintain a probability density over thespa
e of all lo
ations of a robot in its environment. Our approa
h represents this spa
emetri
ally, using a �ne-grained grid to approximate densities. It is able to globally lo
alizethe robot from s
rat
h and to re
over from lo
alization failures. It is robust to approxi-mate models of the environment (su
h as o

upan
y grid maps) and noisy sensors (su
has ultrasound sensors). Our approa
h also in
ludes a �ltering te
hnique whi
h allows amobile robot to reliably estimate its position even in densely populated environments inwhi
h 
rowds of people blo
k the robot's sensors for extended periods of time. The methoddes
ribed here has been implemented and tested in several real-world appli
ations of mobilerobots, in
luding the deployments of two mobile robots as intera
tive museum tour-guides.1. Introdu
tionRobot lo
alization has been re
ognized as one of the most fundamental problems in mobileroboti
s (Cox & Wilfong, 1990; Borenstein et al., 1996). The aim of lo
alization is toestimate the postition of a robot in its environment, given a map of the environment andsensor data. Most su

essful mobile robot systems to date utilize lo
alization, as knowledgeof the robot's position is essential for a broad range of mobile robot tasks.Lo
alization|often referred to as position estimation or position 
ontrol|is 
urrently ahighly a
tive �eld of resear
h, as a re
ent book by Borenstein and 
olleagues (1996) suggests.The lo
alization te
hniques developed so far 
an be distinguished a

ording to the type of
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Fox, Burgard & Thrunproblem they atta
k. Tra
king or lo
al te
hniques aim at 
ompensating odometri
 errorso

urring during robot navigation. They require, however, that the initial lo
ation of therobot is (approximately) known and they typi
ally 
annot re
over if they lose tra
k of therobot's position (within 
ertain bounds). Another family of approa
hes is 
alled globalte
hniques. These are designed to estimate the position of the robot even under globalun
ertainty. Te
hniques of this type solve the so-
alled wake-up robot problem, in that they
an lo
alize a robot without any prior knowledge about its position. They furthermore 
anhandle the kidnapped robot problem, in whi
h a robot is 
arried to an arbitrary lo
ationduring it's operation1. Global lo
alization te
hniques are more powerful than lo
al ones.They typi
ally 
an 
ope with situations in whi
h the robot is likely to experien
e seriouspositioning errors.In this paper we present a metri
 variant of Markov lo
alization, a te
hnique to globallyestimate the position of a robot in its environment. Markov lo
alization uses a probabilisti
framework to maintain a position probability density over the whole set of possible robotposes. Su
h a density 
an have arbitrary forms representing various kinds of informationabout the robot's position. For example, the robot 
an start with a uniform distributionrepresenting that it is 
ompletely un
ertain about its position. It furthermore 
an 
ontainmultiple modes in the 
ase of ambiguous situations. In the usual 
ase, in whi
h the robotis highly 
ertain about its position, it 
onsists of a unimodal distribution 
entered aroundthe true position of the robot. Based on the probabilisti
 nature of the approa
h and therepresentation, Markov lo
alization 
an globally estimate the position of the robot, it 
andeal with ambiguous situations, and it 
an re-lo
alize the robot in the 
ase of lo
alizationfailures. These properties are basi
 pre
onditions for truly autonomous robots designed tooperate over long periods of time.Our method uses a �ne-grained and metri
 dis
retization of the state spa
e. This ap-proa
h has several advantages over previous ones, whi
h predominately used Gaussians or
oarse-grained, topologi
al representations for approximating a robot's belief. First, it pro-vides more a

urate position estimates, whi
h are required in many mobile robot tasks (e.g.,tasks involving mobile manipulation). Se
ond, it 
an in
orporate raw sensory input su
h asa single beam of an ultrasound sensor. Most previous approa
hes to Markov lo
alization, in
ontrast, s
reen sensor data for the presen
e or absen
e of landmarks, and they are proneto fail if the environment does not align well with the underlying assumptions (e.g., if itdoes not 
ontain any of the required landmarks).Most importantly, however, previous Markov lo
alization te
hniques assumed that theenvironment is stati
. Therefore, they typi
ally fail in highly dynami
 environments, su
has publi
 pla
es where 
rowds of people may 
over the robot's sensors for extended periodsof time. To deal with su
h situations, our method applies a �ltering te
hnique that, inessen
e, updates the position probability density using only those measurements whi
h arewith high likelihood produ
ed by known obje
ts 
ontained in the map. As a result, itpermits a

urate lo
alization even in densely 
rowded, non-stati
 environments.Our Markov lo
alization approa
h has been implemented and evaluated in various envi-ronments, using di�erent kinds of robots and sensor modalities. Among these appli
ationsare the deployments of the mobile robots Rhino and Minerva (see Figure 1) as intera
-1. Please note that the wake-up problem is the spe
ial 
ase of the kidnapped robot problem in whi
h therobot is told that it has been 
arried away. 392
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(a) (b)Fig. 1. The mobile robots Rhino (a) and Minerva (b) a
ting as intera
tive museum tour-guides.tive museum tour-guide robots (Burgard et al., 1998a, 2000; Thrun et al., 1999) in theDeuts
hes Museum Bonn and the National Museum of Ameri
an History in Washington,DC, respe
tively. Experiments des
ribed in this paper illustrate the ability of our Markovlo
alization te
hnique to deal with approximate models of the environment, su
h as o

u-pan
y grid maps and noisy sensors su
h as ultrasound sensors, and they demonstrate thatour approa
h is well-suited to lo
alize robots in densely 
rowded environments, su
h asmuseums full of people.The paper is organized as follows. The next se
tion des
ribes the mathemati
al frame-work of Markov lo
alization. We introdu
e our metri
 version of Markov lo
alization inSe
tion 3. This se
tion also presents a probabilisti
 model of proximity sensors and a �lter-ing s
heme to deal with highly dynami
 environments. Thereafter, we des
ribe experimentalresults illustrating di�erent aspe
ts of our approa
h. Related work is dis
ussed in Se
tion 5followed by 
on
luding remarks.2. Markov Lo
alizationTo introdu
e the major 
on
epts, we will begin with an intuitive des
ription of Markovlo
alization, followed by a mathemati
al derivation of the algorithm. The reader maynoti
e that Markov lo
alization is a spe
ial 
ase of probabilisti
 state estimation, appliedto mobile robot lo
alization (see also Russell & Norvig, 1995; Fox, 1998 and Koenig &Simmons, 1998).For 
larity of the presentation, we will initially make the restri
tive assumption that theenvironment is stati
. This assumption, 
alled Markov assumption, is 
ommonly made inthe roboti
s literature. It postulates that the robot's lo
ation is the only state in the envi-ronment whi
h systemati
ally a�e
ts sensor readings. The Markov assumption is violatedif robots share the same environment with people. Further below, in Se
tion 3.3, we willside-step this assumption and present a Markov lo
alization algorithm that works well evenin highly dynami
 environments, e.g., museums full of people.2.1 The Basi
 IdeaMarkov lo
alization addresses the problem of state estimation from sensor data. Markovlo
alization is a probabilisti
 algorithm: Instead of maintaining a single hypothesis as to393
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Fig. 2. The basi
 idea of Markov lo
alization: A mobile robot during global lo
alization.where in the world a robot might be, Markov lo
alization maintains a probability distributionover the spa
e of all su
h hypotheses. The probabilisti
 representation allows it to weighthese di�erent hypotheses in a mathemati
ally sound way.Before we delve into mathemati
al detail, let us illustrate the basi
 
on
epts with asimple example. Consider the environment depi
ted in Figure 2. For the sake of simpli
ity,let us assume that the spa
e of robot positions is one-dimensional, that is, the robot 
anonly move horizontally (it may not rotate). Now suppose the robot is pla
ed somewhere inthis environment, but it is not told its lo
ation. Markov lo
alization represents this stateof un
ertainty by a uniform distribution over all positions, as shown by the graph in the�rst diagram in Figure 2. Now let us assume the robot queries its sensors and �nds outthat it is next to a door. Markov lo
alization modi�es the belief by raising the probabilityfor pla
es next to doors, and lowering it anywhere else. This is illustrated in the se
onddiagram in Figure 2. Noti
e that the resulting belief is multi-modal, re
e
ting the fa
t thatthe available information is insuÆ
ient for global lo
alization. Noti
e also that pla
es notnext to a door still possess non-zero probability. This is be
ause sensor readings are noisy,and a single sight of a door is typi
ally insuÆ
ient to ex
lude the possibility of not beingnext to a door.Now let us assume the robot moves a meter forward. Markov lo
alization in
orporatesthis information by shifting the belief distribution a

ordingly, as visualized in the thirddiagram in Figure 2. To a

ount for the inherent noise in robot motion, whi
h inevitablyleads to a loss of information, the new belief is smoother (and less 
ertain) than the previousone. Finally, let us assume the robot senses a se
ond time, and again it �nds itself next to adoor. Now this observation is multiplied into the 
urrent (non-uniform) belief, whi
h leadsto the �nal belief shown at the last diagram in Figure 2. At this point in time, most of theprobability is 
entered around a single lo
ation. The robot is now quite 
ertain about itsposition. 394
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alization for Mobile Robots in Dynami
 Environments2.2 Basi
 NotationTo make this more formal, let us denote the position (or: lo
ation) of a mobile robot by athree-dimensional variable l = hx; y; �i, 
omprising its x-y 
oordinates (in some Cartesian
oordinate system) and its heading dire
tion �. Let lt denote the robot's true lo
ation attime t, and Lt denote the 
orresponding random variable. Throughout this paper, we willuse the terms position and lo
ation inter
hangeably.Typi
ally, the robot does not know its exa
t position. Instead, it 
arries a belief asto where it might be. Let Bel(Lt) denote the robot's position belief at time t. Bel(Lt)is a probability distribution over the spa
e of positions. For example, Bel(Lt = l) is theprobability (density) that the robot assigns to the possibility that its lo
ation at time t isl. The belief is updated in response to two di�erent types of events: The arrival of a mea-surement through the robot's environment sensors (e.g., a 
amera image, a sonar s
an), andthe arrival of an odometry reading (e.g., wheel revolution 
ount). Let us denote environ-ment sensor measurements by s and odometry measurements by a, and the 
orrespondingrandom variables by S and A, respe
tively.The robot per
eives a stream of measurements, sensor measurements s and odometryreadings a. Let d = fd0; d1; : : : ; dT g (1)denote the stream of measurements, where ea
h dt (with 0 � t � T ) either is a sensormeasurement or an odometry reading. The variable t indexes the data, and T is the mostre
ently 
olle
ted data item (one might think of t as \time"). The set d, whi
h 
omprisesall available sensor data, will be referred to as the data.2.3 Re
ursive Lo
alizationMarkov lo
alization estimates the posterior distribution over LT 
onditioned on all availabledata, that is P (LT = l j d) = P (LT = l j d0; : : : ; dT ): (2)Before deriving in
remental update equations for this posterior, let us brie
y make expli
itthe key assumption underlying our derivation, 
alled the Markov assumption. The Markovassumption, sometimes referred to as stati
 world assumption, spe
i�es that if one knowsthe robot's lo
ation lt, future measurements are independent of past ones (and vi
e versa):P (dt+1; dt+2; : : : j Lt = l; d0; : : : ; dt) = P (dt+1; dt+2; : : : j Lt = l) 8t (3)In other words, we assume that the robot's lo
ation is the only state in the environment, andknowing it is all one needs to know about the past to predi
t future data. This assumptionis 
learly ina

urate if the environment 
ontains moving (and measurable) obje
ts otherthan the robot itself. Further below, in Se
tion 3.3, we will extend the basi
 paradigm tonon-Markovian environments, e�e
tively devising a lo
alization algorithm that works wellin a broad range of dynami
 environments. For now, however, we will adhere to the Markovassumption, to fa
ilitate the derivation of the basi
 algorithm.395



Fox, Burgard & ThrunWhen 
omputing P (LT = l j d), we distinguish two 
ases, depending on whether themost re
ent data item dT is a sensor measurement or an odometry reading.Case 1: The most re
ent data item is a sensor measurement dT = sT .Here P (LT = l j d) = P (LT = l j d0; : : : ; dT�1; sT ): (4)Bayes rule suggests that this term 
an be transformed toP (sT j d0; : : : ; dT�1; LT = l) P (LT = l j d0; : : : ; dT�1)P (sT j d0; : : : ; dT�1) ; (5)whi
h, be
ause of our Markov assumption, 
an be simpli�ed to:P (sT j LT = l) P (LT = l j d0; : : : ; dT�1)P (sT j d0; : : : ; dT�1) : (6)We also observe that the denominator 
an be repla
ed by a 
onstant �T , sin
e it does notdepend on LT . Thus, we haveP (LT = l j d) = �T P (sT j LT = l) P (LT = l j d0; : : : ; dT�1): (7)The reader may noti
e the in
remental nature of Equation (7): If we writeBel(LT = l) = P (LT = l j d0; : : : ; dT ); (8)to denote the robot's belief Equation (7) be
omesBel(LT = l) = �T P (sT j l) Bel(LT�1 = l): (9)In this equation we repla
ed the term P (sT j LT = l) by P (sT j l) based on the assumptionthat it is independent of the time.Case 2: The most re
ent data item is an odometry reading: dT = aT .Here we 
ompute P (LT = l j d) using the Theorem of Total Probability:P (LT = l j d) = Z P (LT = l j d; LT�1 = l0) P (LT�1 = l0 j d) dl0: (10)Consider the �rst term on the right-hand side. Our Markov assumption suggests thatP (LT = l j d; LT�1 = l0) = P (LT = l j d0; : : : ; dT�1; aT ; LT�1 = l0) (11)= P (LT = l j aT ; LT�1 = l0) (12)The se
ond term on the right-hand side of Equation (10) 
an also be simpli�ed by observingthat aT does not 
arry any information about the position LT�1:P (LT�1 = l0 j d) = P (LT�1 = l0 j d0; : : : ; dT�1; aT ) (13)= P (LT�1 = l0 j d0; : : : ; dT�1) (14)396



Markov Lo
alization for Mobile Robots in Dynami
 EnvironmentsSubstituting 12 and 14 ba
k into Equation (10) gives us the desired resultP (LT = l j d) = Z P (LT = l j aT ; LT�1 = l0) P (LT�1 = l0 j d0; : : : ; dT�1) dl0: (15)Noti
e that Equation (15) is, too, of an in
remental form. With our de�nition of beliefabove, we have Bel(LT = l) = Z P (l j aT ; l0) Bel(LT�1 = l0) dl0: (16)Please note that we used P (l j aT ; l0) instead of P (LT = l j aT ; LT�1 = l0) sin
e we assumethat it does not 
hange over time.2.4 The Markov Lo
alization AlgorithmUpdate Equations (9) and (16) form the 
ore of the Markov lo
alization algorithm. The fullalgorithm is shown in Table 1. Following Basye et al. (1992) and Russell & Norvig (1995),we denote P (l j a; l0) as the robot's motion model, sin
e it models how motion e�e
t therobot's position. The 
onditional probability P (s j l) is 
alled per
eptual model, be
ause itmodels the out
ome of the robot's sensors.In the Markov lo
alization algorithm P (L0 = l), whi
h initializes the belief Bel(L0),re
e
ts the prior knowledge about the starting position of the robot. This distribution
an be initialized arbitrarily, but in pra
ti
e two 
ases prevail: If the position of the robotrelative to its map is entirely unknown, P (L0) is usually uniformly distributed. If the initialposition of the robot is approximately known, then P (L0) is typi
ally a narrow Gaussiandistribution 
entered at the robot's position.2.5 Implementations of Markov Lo
alizationThe reader may noti
e that the prin
iple of Markov lo
alization leaves open1. how the robot's belief Bel(L) is represented and2. how the 
onditional probabilities P (l j a; l0) and P (s j l) are 
omputed.A

ordingly, existing approa
hes to Markov lo
alization mainly di�er in the representationof the state spa
e and the 
omputation of the per
eptual model. In this se
tion we willbrie
y dis
uss di�erent implementations of Markov lo
alization fo
using on these two topi
s(see Se
tion 5 for a more detailed dis
ussion of related work).1. State Spa
e Representations: A very 
ommon approa
h for the representation ofthe robots belief Bel(L) is based on Kalman �ltering (Kalman, 1960; Smith et al.,1990) whi
h rests on the restri
tive assumption that the position of the robot 
an bemodeled by a unimodal Gaussian distribution. Existing implementations (Leonard& Durrant-Whyte, 1992; S
hiele & Crowley, 1994; Gutmann & S
hlegel, 1996; Ar-ras & Vestli, 1998) have proven to be robust and a

urate for keeping tra
k of therobot's position. Be
ause of the restri
tive assumption of a Gaussian distribution thesete
hniques la
k the ability to represent situations in whi
h the position of the robot397
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for ea
h lo
ation l do /* initialize the belief */Bel(L0 = l)  � P (L0 = l) (17)end forforever doif new sensory input sT is re
eived do�T  � 0for ea
h lo
ation l do /* apply the per
eption model */dBel(LT = l)  � P (sT j l) �Bel(LT�1 = l) (18)�T  � �T + dBel(LT = l) (19)end forfor ea
h lo
ation l do /* normalize the belief */Bel(LT = l)  � �T�1 �dBel(LT = l) (20)end forend ifif an odometry reading aT is re
eived dofor ea
h lo
ation l do /* apply the motion model */Bel(LT = l)  � Z P (l j l0; aT ) �Bel(LT�1 = l0) dl0 (21)end forend ifend forever Tab. 1. The Markov lo
alization algorithmmaintains multiple, distin
t beliefs (
.f. 2). As a result, lo
alization approa
hes usingKalman �lters typi
ally require that the starting position of the robot is known andare not able to re-lo
alize the robot in the 
ase of lo
alization failures. Additionally,Kalman �lters rely on sensor models that generate estimates with Gaussian un
er-tainty. This assumption, unfortunately, is not met in all situations (see for exampleDellaert et al. 1999). 398
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alization for Mobile Robots in Dynami
 EnvironmentsTo over
ome these limitations, di�erent approa
hes have used in
reasingly ri
hers
hemes to represent un
ertainty in the robot's position, moving beyond the Gaussiandensity assumption inherent in the vanilla Kalman �lter. Nourbakhsh et al. (1995),Simmons & Koenig (1995), and Kaelbling et al. (1996) use Markov lo
alization forlandmark-based 
orridor navigation and the state spa
e is organized a

ording to the
oarse, topologi
al stru
ture of the environment and with generally only four possibleorientations of the robot. These approa
hes 
an, in prin
iple, solve the problem ofglobal lo
alization. However, due to the 
oarse resolution of the state representation,the a

ura
y of the position estimates is limited. Topologi
al approa
hes typi
ally giveonly a rough sense as to where the robot is. Furthermore, these te
hniques requirethat the environment satis�es an orthogonality assumption and that there are 
ertainlandmarks or abstra
t features that 
an be extra
ted from the sensor data. Theseassumptions make it diÆ
ult to apply the topologi
al approa
hes in unstru
turedenvironments.2. Sensor Models: In addition to the di�erent representations of the state spa
e variousper
eption models have been developed for di�erent types of sensors (see for exampleMorave
, 1988; Kortenkamp & Weymouth, 1994; Simmons & Koenig, 1995; Burgardet al., 1996; Dellaert et al., 1999; and Konolige, 1999). These sensor models di�erin the way how they 
ompute the probability of the 
urrent measurement. Whereastopologi
al approa
hes su
h as (Kortenkamp & Weymouth, 1994; Simmons & Koenig,1995; Kaelbling et al., 1996) �rst extra
t landmark information out of a sensor s
an,the approa
hes in (Morave
, 1988; Burgard et al., 1996; Dellaert et al., 1999; Konolige,1999) operate on the raw sensor measurements. The te
hniques for proximity sensorsdes
ribed in (Morave
, 1988; Burgard et al., 1996; Konolige, 1999) mainly di�er intheir eÆ
ien
y and how they model the 
hara
teristi
s of the sensors and the map ofthe environment.In order to 
ombine the strengths of the previous representations, our approa
h relies ona �ne and less restri
tive representation of the state spa
e (Burgard et al., 1996, 1998b;Fox, 1998). Here the robot's belief is approximated by a �ne-grained, regularly spa
ed grid,where the spatial resolution is usually between 10 and 40 
m and the angular resolution isusually 2 or 5 degrees. The advantage of this approa
h 
ompared to the Kalman-�lter basedte
hniques is its ability to represent multi-modal distributions, a prerequisite for globallo
alization from s
rat
h. In 
ontrast to the topologi
al approa
hes to Markov lo
alization,our approa
h allows a

urate position estimates in a mu
h broader range of environments,in
luding environments that might not even possess identi�able landmarks. Sin
e it doesnot depend on abstra
t features, it 
an in
orporate raw sensor data into the robot's belief.And it typi
ally yields results that are an order of magnitude more a

urate. An obviousshort
oming of the grid-based representation, however, is the size of the state spa
e thathas to be maintained. Se
tion 3.4 addresses this issue dire
tly by introdu
ing te
hniquesthat make it possible to update extremely large grids in real-time.399
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(a) (b)Fig. 3. Typi
al \banana-shaped" distributions resulting from di�erent motion a
tions.3. Metri
 Markov Lo
alization for Dynami
 EnvironmentsIn this se
tion we will des
ribe our metri
 variant of Markov lo
alization. This in
ludesappropriate motion and sensor models. We also des
ribe a �ltering te
hnique whi
h isdesigned to over
ome the assumption of a stati
 world model generally made in Markovlo
alization and allows to lo
alize a mobile robot even in densely 
rowded environments.We then des
ribe our �ne-grained grid-based representation of the state spa
e and presentte
hniques to eÆ
iently update even large state spa
es.3.1 The A
tion ModelTo update the belief when the robot moves, we have to spe
ify the a
tion model P (l j l0; at).Based on the assumption of normally distributed errors in translation and rotation, weuse a mixture of two independent, zero-
entered Gaussian distributions whose tails are 
uto� (Burgard et al., 1996). The varian
es of these distributions are proportional to the lengthof the measured motion.Figure 3 illustrates the resulting densities for two example paths if the robot's beliefstarts with a Dira
 distribution. Both distributions are three-dimensional (in hx; y; �i-spa
e)and Figure 3 shows their 2D proje
tions into hx; yi-spa
e.3.2 The Per
eption Model for Proximity SensorsAs mentioned above, the likelihood P (s j l) that a sensor reading s is measured at po-sition l has to be 
omputed for all positions l in ea
h update of the Markov lo
alizationalgorithm (see Table 1). Therefore, it is 
ru
ial for on-line position estimation that thisquantity 
an be 
omputed very eÆ
iently. Morave
 (1988) proposed a method to 
omputea generally non-Gaussian probability density fun
tion P (s j l) over a dis
rete set of possibledistan
es measured by an ultrasound sensor at lo
ation l. In a �rst implementation of ourapproa
h (Burgard et al., 1996) we used a similar method, whi
h unfortunately turned outto be 
omputationally too expensive for lo
alization in real-time.To over
ome this disadvantage, we developed a sensor-model whi
h allows to 
omputeP (s j l) solely based on the distan
e ol to the 
losest obsta
le in the map along the dire
tionof the sensor. This distan
e 
an be 
omputed by ray-tra
ing in o

upan
y grid maps or400
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(b)Fig. 4. Probability of measuring a distan
e di (a) if obsta
le in distan
e ol is dete
ted and (b) dueto unknown obsta
les.CAD-models of the environment. In parti
ular, we 
onsider a dis
retization d1; : : : ; dn ofpossible distan
es measured by a proximity sensor. In our dis
retization, the size of theranges �d = di+1 � di is the same for all i, and dn 
orresponds to the maximal range ofthe proximity sensor2. Let P (di j l) denote the probability of measuring a distan
e di if therobot is at lo
ation l. In order to derive this probability we �rst 
onsider the following two
ases (see also Hennig 1997 and Fox 1998):a.) Known obsta
les: If the sensor dete
ts an obsta
le the resulting distribution ismodeled by a Gaussian distribution with mean at the distan
e to this obsta
le. LetPm(d j l) denote the probability of measuring distan
e d if the robot is at lo
ation l,assuming that the sensor beam is re
e
ted by the 
losest obsta
le in the map (along thesensor beam). We denote the distan
e to this spe
i�
 obsta
le by ol. The probabilityPm(d j l) is then given by a Gaussian distribution with mean at ol:Pm(d j l) = 1�p2�e� (d�ol)22�2 (22)The standard deviation � of this distribution models the un
ertainty of the measureddistan
e, based on� the granularity of the dis
retization of L, whi
h represents the robot's position,� the a

ura
y of the world model, and� the a

ura
y of the sensor.Figure 4(a) gives examples of su
h Gaussian distributions for ultrasound sensors andlaser range-�nders. Here the distan
e ol to the 
losest obsta
le is 230
m. Observe herethat the laser sensor has a higher a

ura
y than the ultrasound sensor, as indi
atedby the smaller varian
e.b.) Unknown obsta
les: In Markov lo
alization, the world model generally is assumedto be stati
 and 
omplete. However, mobile robot environments are often populatedand therefore 
ontain obje
ts that are not in
luded in the map. Consequently, there is2. Typi
al values for n are between 64 and 256 and the maximal range dn is typi
ally 500
m or 1000
m.401



Fox, Burgard & Thruna non-zero probability that the sensor is re
e
ted by an obsta
le not represented in theworld model. Assuming that these obje
ts are equally distributed in the environment,the probability Pu(di) of dete
ting an unknown obsta
le at distan
e di is independentof the lo
ation of the robot and 
an be modeled by a geometri
 distribution. Thisdistribution results from the following observation. A distan
e di is measured if thesensor is not re
e
ted by an obsta
le at a shorter distan
e dj<i and is re
e
ted atdistan
e di. The resulting probability isPu(di) = ( 0 i = 0
r(1�Pj<i Pu(dj)) otherwise: (23)In this equation the 
onstant 
r is the probability that the sensor is re
e
ted by anunknown obsta
le at any range given by the dis
retization.A typi
al distribution for sonar and laser measurements is depi
ted in Figure 4(b). Inthis example, the relatively large probability of measuring 500
m is due to the fa
tthat the maximum range of the proximity sensors is set to 500
m. Thus, this distan
erepresents the probability of measuring at least 500
m.Obviously, only one of these two 
ases 
an o

ur at a 
ertain point in time, i.e., thesensor beam is either re
e
ted by a known or an unknown obje
t. Thus, P (di j l) is aa mixture of the two distributions Pm and Pu. To determine the 
ombined probabilityP (di j l) of measuring a distan
e di if the robot is at lo
ation l we 
onsider the followingtwo situations: A distan
e di is measured, ifa.) the sensor beam is1.) not re
e
ted by an unknown obsta
le before rea
hing distan
e dia1 = 1�Xj<i Pu(dj); (24)2.) and re
e
ted by the known obsta
le at distan
e dia2 = 
d Pm(di j l) (25)b.) OR the beam is1.) re
e
ted neither by an unknown obsta
le nor by the known obsta
le beforerea
hing distan
e di b1 = 1�Xj<i P (dj j l) (26)2.) and re
e
ted by an unknown obsta
le at distan
e dib2 = 
r: (27)402
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(b)Fig. 5. Measured and approximated probabilities of (a) sonar and (b) laser measurements giventhe distan
e ol to the 
losest obsta
le along the sensing dire
tion.The parameter 
d in Equation (25) denotes the probability that the sensor dete
ts the 
losestobsta
le in the map. These 
onsiderations for the 
ombined probability are summarized inEquation (28). By double negation and insertion of the Equations (24) to (27), we �nallyget Equation (31).P (di j l) = p� (a1 ^ a2) _ (b1 ^ b2) � (28)= :p� :(a1 ^ a2) ^ :(b1 ^ b2) � (29)= 1� �[1� P (a1a2)℄ � [1� P (b1b2)℄� (30)= 1� �1� (1�Xj<i Pu(dj)) 
d Pm(di j l))) � (1� (1�Xj<i P (dj)) 
r� (31)To obtain the probability of measuring dn, the maximal range of the sensor, we exploit thefollowing equivalen
e: The probability of measuring a distan
e larger than or equal to themaximal sensor range is equivalent to the probability of not measuring a distan
e shorterthan dn. In our in
remental s
heme, this probability 
an easily be determined:P (dn j l) = 1�Xj<nP (dj j l) (32)To summarize, the probability of sensor measurements is 
omputed in
rementally for thedi�erent distan
es starting at distan
e d1 = 0
m. For ea
h distan
e we 
onsider the prob-ability that the sensor beam rea
hes the 
orresponding distan
e and is re
e
ted either bythe 
losest obsta
le in the map (along the sensor beam), or by an unknown obsta
le.In order to adjust the parameters �, 
r and 
d of our per
eption model we 
olle
tedeleven million data pairs 
onsisting of the expe
ted distan
e ol and the measured distan
edi during the typi
al operation of the robot. From these data we were able to estimate theprobability of measuring a 
ertain distan
e di if the distan
e ol to the 
losest obsta
le inthe map along the sensing dire
tion is given. The dotted line in Figure 5(a) depi
ts thisprobability for sonar measurements if the distan
e ol to the next obsta
le is 230
m. Again,the high probability of measuring 500
m is due to the fa
t that this distan
e representsthe probability of measuring at least 500
m. The solid line in the �gure represents thedistribution obtained by adapting the parameters of our sensor model so as to best �t the403
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(d)Fig. 6. Measured and approximated probability of sonar (a,b) and laser (
,d) measurements, respe
-tively. Ea
h table 
ontains the probabilities of distan
e measurements given the expe
ted distan
eol extra
ted from a map of the environment.measured data. The 
orresponding measured and approximated probabilities for the lasersensor are plotted in Figure 5(b).The observed densities for all possible distan
es ol to an obsta
le for ultrasound sensorsand laser range-�nder are depi
ted in Figure 6(a) and Figure 6(
), respe
tively. The approx-imated densities are shown in Figure 6(b) and Figure 6(d). In all �gures, the distan
e ol islabeled \expe
ted distan
e". The similarity between the measured and the approximateddistributions shows that our sensor model yields a good approximation of the data.Please note that there are further well-known types of sensor noise whi
h are not ex-pli
itly represented in our sensor model. Among them are spe
ular re
e
tions or 
ross-talkwhi
h are often regarded as serious sour
es of noise in the 
ontext of ultra-sound sensors.However, these sour
es of sensor noise are modeled impli
itly by the geometri
 distributionresulting from unknown obsta
les.3.3 Filtering Te
hniques for Dynami
 EnvironmentsMarkov lo
alization has been shown to be robust to o

asional 
hanges of an environmentsu
h as opened / 
losed doors or people walking by. Unfortunately, it fails to lo
alize arobot if too many aspe
ts of the environment are not 
overed by the world model. Thisis the 
ase, for example, in densely 
rowded environments, where groups of people 
overthe robots sensors and thus lead to many unexpe
ted measurements. The mobile robotsRhino and Minerva, whi
h were deployed as intera
tive museum tour-guides (Burgard et al.,1998a, 2000; Thrun et al., 1999), were permanently fa
ed with su
h a situation. Figure 7404
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RHINO

(a) (b)Fig. 7. Rhino surrounded by visitors in the Deuts
hes Museum Bonn.

(a) (b)Fig. 8. Typi
al laser s
ans obtained when Rhino is surrounded by visitors.shows two 
ases in whi
h the robot Rhino is surrounded by many visitors while giving atour in the Deuts
hes Museum Bonn, Germany.The reason why Markov lo
alization fails in su
h situations is the violation of theMarkovassumption, an independen
e assumption on whi
h virtually all lo
alization te
hniques arebased. As dis
ussed in Se
tion 2.3, this assumption states that the sensor measurementsobserved at time t are independent of all other measurements, given that the 
urrent stateLt of the world is known. In the 
ase of lo
alization in densely populated environments,this independen
e assumption is 
learly violated when using a stati
 model of the world.To illustrate this point, Figure 8 depi
ts two typi
al laser s
ans obtained during themuseum proje
ts (maximal range measurements are omitted). The �gure also shows theobsta
les 
ontained in the map. Obviously, the readings are, to a large extent, 
orrupted,sin
e people in the museum are not represented in the stati
 world model. The di�erentshading of the beams indi
ates the two 
lasses they belong to: the bla
k lines 
orrespondto the stati
 obsta
les in the map and are independent of ea
h other if the position of therobot is known. The grey-shaded lines are beams re
e
ted by visitors in the Museum. Thesesensor beams 
annot be predi
ted by the world model and therefore are not independentof ea
h other. Sin
e the vi
inity of people usually in
reases the robot's belief of being 
loseto modeled obsta
les, the robot qui
kly loses tra
k of its position when in
orporating all405



Fox, Burgard & Thrunsensor measurements. To reestablish the independen
e of sensor measurements we 
ouldin
lude the position of the robot and the position of people into the state variable L.Unfortunately, this is infeasible sin
e the 
omputational 
omplexity of state estimationin
reases exponentially in the number of dependent state variables to be estimated.A 
losely related solution to this problem 
ould be to adapt the map a

ording to the
hanges of the environment. Te
hniques for 
on
urrent map-building and lo
alization su
has (Lu & Milios, 1997a; Gutmann & S
hlegel, 1996; Shatkey & Kaelbling, 1997; Thrun etal., 1998b), however, also assume that the environment is almost stati
 and therefore areunable to deal with su
h environments. Another approa
h would be to adapt the per
eptionmodel to 
orre
tly re
e
t su
h situations. Note that our per
eptual model already assignsa 
ertain probability to events where the sensor beam is re
e
ted by an unknown obsta
le.Unfortunately, su
h approa
hes are only 
apable to model su
h noise on average. While su
happroa
hes turn out to work reliably with o

asional sensor blo
kage, they are not suÆ
ientin situations where more than �fty per
ent of the sensor measurements are 
orrupted. Ourlo
alization system therefore in
ludes �lters whi
h are designed to dete
t whether a 
ertainsensor reading is 
orrupted or not. Compared to a modi�
ation of the stati
 sensor modeldes
ribed above, these �lters have the advantage that they do not average over all possiblesituations and that their de
ision is based on the 
urrent belief of the robot.The �lters are designed to sele
t those readings of a 
omplete s
an whi
h do not 
omefrom obje
ts 
ontained in the map. In this se
tion we introdu
e two di�erent kinds of �lters.The �rst one is 
alled entropy �lter. Sin
e it �lters a reading based solely on its e�e
t onthe belief Bel(L), it 
an be applied to arbitrary sensors. The se
ond �lter is the distan
e�lter whi
h sele
ts the readings a

ording to how mu
h shorter they are than the expe
tedvalue. It therefore is espe
ially designed for proximity sensors.3.3.1 The Entropy FilterThe entropy H(L) of the belief over L is de�ned asH(L) = �Xl Bel(L = l) logBel(L = l) (33)and is a measure of un
ertainty about the out
ome of the random variable L (Cover &Thomas, 1991). The higher the entropy, the higher the robot's un
ertainty as to where itis. The entropy �lter measures the relative 
hange of entropy upon in
orporating a sensorreading into the belief Bel(L). More spe
i�
ally, let s denote the measurement of a sensor(in our 
ase a single range measurement). The 
hange of the entropy of Bel(L) given s isde�ned as: �H(L j s) := H(L j s)�H(L) (34)The term H(L j s) is the entropy of the belief Bel(L) after in
orporating the sensor mea-surement s (see Equations (18) { (20)). While a positive 
hange of entropy indi
ates thatafter in
orporating s, the robot is less 
ertain about its position, a negative 
hange indi
atesan in
rease in 
ertainty. The sele
tion s
heme of the entropy �lter is to ex
lude all sensormeasurements s with �H(L j s) < 0. In other words, it only uses those sensor readings
on�rming the robot's 
urrent belief. 406
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Fig. 9. Probability Pm(di j l) of expe
ted measurement and probability Pshort(di j l) that a distan
edi is shorter than the expe
ted measurement given the lo
ation l.Entropy �lters work well when the robot's belief is fo
used on the 
orre
t hypothesis.However, they may fail in situations in whi
h the robot's belief state is in
orre
t. This topi
will be analyzed systemati
ally in the experiments des
ribed in Se
tion 4.1. The advantageof the entropy �lter is that it makes no assumptions about the nature of the sensor dataand the kind of disturban
es o

urring in dynami
 environments.3.3.2 The Distan
e FilterThe distan
e �lter has spe
i�
ally been designed for proximity sensors su
h as laser range-�nders. Distan
e �lters are based on a simple observation: In proximity sensing, unmodeledobsta
les typi
ally produ
e readings that are shorter than the distan
e expe
ted from themap. In essen
e, the distan
e �lter sele
ts sensor readings based on their distan
e relativeto the distan
e to the 
losest obsta
le in the map.To be more spe
i�
, this �lter removes those sensor measurements s whi
h with prob-ability higher than 
 (this threshold is set to 0:99 in all experiments) are shorter thanexpe
ted, and whi
h therefore are 
aused by an unmodeled obje
t (e.g. a person).To see, let d1; : : : ; dn be a dis
rete set of possible distan
es measured by a proximitysensor. As in Se
tion 3.2, we denote by Pm(di j l) the probability of measuring distan
e diif the robot is at position l and the sensor dete
ts the 
losest obsta
le in the map along thesensing dire
tion. The distribution Pm des
ribes the sensor measurement expe
ted from themap. As des
ribed above, this distribution is assumed to be Gaussian with mean at thedistan
e ol to the 
losest obsta
le along the sensing dire
tion. The dashed line in Figure 9represents Pm, for a laser range-�nder and a distan
e ol of 230
m. We now 
an de�ne theprobability Pshort(di j l) that a measured distan
e di is shorter than the expe
ted one giventhe robot is at position l. This probability is obviously equivalent to the probability thatthe expe
ted measurement ol is longer than di given the robot is at lo
ation l and thus 
anbe 
omputed as follows: Pshort(di j l) = Xj>i Pm(dj j l): (35)407



Fox, Burgard & ThrunBel(Lt = l)
x y�

(0; 0; 0)Fig. 10. Grid-based representation of the state spa
eIn pra
ti
e, however, we are interested in the probability Pshort(di) that di is shorterthan expe
ted, given the 
omplete 
urrent belief of the robot. Thus, we have to averageover all possible positions of the robot:Pshort(di) = Xl Pshort(di j l)Bel(L = l) (36)Given the distribution Pshort(di), we now 
an implement the distan
e �lter by ex
luding allsensor measurements di with Pshort(di) > 
. Whereas the entropy �lter �lters measurementsa

ording to their e�e
t on the belief state of the robot the distan
e �lter sele
ts measure-ments solely based on their value and regardless of their e�e
t on the robot's 
ertainty.It should be noted that Fox (1998) additionally developed a blo
kage �lter for proximitysensors, whi
h is based on a probabilisti
 des
ription of situations in whi
h a sensor isblo
ked by an unknown obsta
le. We omit this �lter here sin
e its derivation is quite 
omplexand the resulting �lter is not signi�
antly di�erent from the distan
e �lter des
ribed here.3.4 Grid-based Representation of the State Spa
eWe will now return to the issue of how to represent and 
ompute the belief distributionof the robot eÆ
iently, des
ribing what one might think of as the \nut and bolts" of grid-based Markov lo
alization. Re
all that to obtain a

urate metri
 position estimates, ourapproa
h to Markov lo
alization uses a �ne-grained dis
retization of the state spa
e. HereL is represented by a three-dimensional, regularly spa
ed grid, where the spatial resolutionis usually between 10
m and 40
m and the angular resolution is usually 2 or 5 degrees.Figure 10 illustrates the stru
ture of a position probability grid. Ea
h layer of su
h a grid
orresponds to all possible poses of the robot with the same orientation.While su
h a �ne-grained approximation makes it possible to estimate the robot's po-sition with high a

ura
y, an obvious disadvantage of su
h a �ne-grained dis
retization lies408



Markov Lo
alization for Mobile Robots in Dynami
 Environmentsin the huge state spa
e whi
h has to be maintained. For a mid-size environment of size30 � 30m2, an angular grid resolution of 2Æ, and a 
ell size of 15 � 15
m2 the state spa
e
onsists of 7; 200; 000 states. The basi
 Markov lo
alization algorithm updates ea
h of thesestates for ea
h sensory input and ea
h atomi
 movement of the robot. Current 
omputerspeed, thus, makes it impossible to update matri
es of this size in real-time.To update su
h state spa
es eÆ
iently, we have developed two te
hniques, whi
h aredes
ribed in the remainder of this se
tion. The �rst method, introdu
ed in Se
tion 3.4.1,pre-
omputes the sensor model. It allows us to determine the likelihood P (s j l) of sensormeasurements by two look-up operations|instead of expensive ray tra
ing operations. These
ond optimization, des
ribed in Se
tion 3.4.2, is a sele
tive update strategy. This strategyfo
uses the 
omputation, by only updating the relevant part of the state spa
e. Based onthese two te
hniques, grid-based Markov lo
alization 
an be applied on-line to estimate theposition of a mobile robot during its operation, using a low-
ost PC.3.4.1 Pre-Computation of the Sensor ModelAs des
ribed in Se
tion 3.2, the per
eption model P (s j l) for proximity sensors only dependson the distan
e ol to the 
losest obsta
le in the map along the sensor beam. Based on theassumption that the map of the environment is stati
, our approa
h pre-
omputes and storesthese distan
es ol for ea
h possible robot lo
ation l in the environment. Following our sensormodel, we use a dis
retization d1; : : : ; dn of the possible distan
es ol. This dis
retizationis exa
tly the same for the expe
ted and the measured distan
es. We then store for ea
hlo
ation l only the index of the expe
ted distan
e ol in a three-dimensional table. Pleasenote that this table only needs one byte per value if 256 di�erent values for the dis
retizationof ol are used. The probability P (di j ol) of measuring a distan
e di if the 
losest obsta
leis at distan
e ol (see Figure 6) 
an also be pre-
omputed and stored in a two-dimensionallookup-table.As a result, the probability P (s j l) of measuring s given a lo
ation l 
an qui
kly be
omputed by two nested lookups. The �rst look-up retrieves the distan
e ol to the 
losestobsta
le in the sensing dire
tion given the robot is at lo
ation l. The se
ond lookup is thenused to get the probability P (s j ol). The eÆ
ient 
omputation based on table look-upsenabled our implementation to qui
kly in
orporate even laser-range s
ans that 
onsist ofup to 180 values in the overall belief state of the robot. In our experiments, the use ofthe look-up tables led to a speed-up-fa
tor of 10, when 
ompared to a 
omputation of thedistan
e to the 
losest obsta
le at run-time.3.4.2 Sele
tive UpdateThe sele
tive update s
heme is based on the observation that during global lo
alization,the 
ertainty of the position estimation permanently in
reases and the density qui
kly 
on-
entrates on the grid 
ells representing the true position of the robot. The probability ofthe other grid 
ells de
reases during lo
alization and the key idea of our optimization is toex
lude unlikely 
ells from being updated.For this purpose, we introdu
e a threshold3 " and update only those grid 
ells l withBel(Lt = l) > ". To allow for su
h a sele
tive update while still maintaining a density over3. In our 
urrent implementation " is set to 1% of the a priori position probability.409



Fox, Burgard & Thrunthe entire state spa
e, we approximate P (st j l) for 
ells with Bel(Lt = l) � " by the apriori probability of measuring st. This quantity, whi
h we 
all eP (st), is determined byaveraging over all possible lo
ations of the robot:eP (st) =Xl P (st j l) P (l) (37)Please note that eP (st) is independent of the 
urrent belief state of the robot and 
anbe determined beforehand. The in
remental update rule for a new sensor measurement stis 
hanged as follows (
ompare Equation (9)):Bel(Lt = l)  � ( �t � P (st j l) � Bel(Lt�1 = l) if Bel(Lt�1 = l) > "�t � ~P (st) �Bel(Lt�1 = l) otherwise (38)By multiplying eP (st) into the normalization fa
tor �t, we 
an rewrite this equation asBel(Lt = l)  � 8<: ~�t � P (stjl)eP (st) �Bel(Lt�1 = l) if Bel(Lt�1 = l) > "~�t � Bel(Lt�1 = l) otherwise (39)where ~�t = �t � eP (st).The key advantage of the sele
tive update s
heme given in Equation (39) is that all 
ellswith Bel(Lt�1 = l) � " are updated with the same value ~�t. In order to obtain smoothtransitions between global lo
alization and position tra
king and to fo
us the 
omputationon the important regions of the state spa
e L, for example, in the 
ase of ambiguities we usea partitioning of the state spa
e. Suppose the state spa
e L is partitioned into n segmentsor parts �1; : : : ; �n. A segment �i is 
alled a
tive at time t if it 
ontains lo
ations with prob-ability above the threshold "; otherwise we 
all su
h a part passive be
ause the probabilitiesof all 
ells are below the threshold. Obviously, we 
an keep tra
k of the individual proba-bilities within a passive part �i by a

umulating the normalization fa
tors ~�t into a value�i. Whenever a segment �i be
omes passive, i.e. the probabilities of all lo
ations within�i no longer ex
eed ", the normalizer �i(t) is initialized to 1 and subsequently updated asfollows: �i(t + 1) = ~�t � �i(t). As soon as a part be
omes a
tive again, we 
an restore theprobabilities of the individual grid 
ells by multiplying the probabilities of ea
h 
ell with thea

umulated normalizer �i(t). By keeping tra
k of the robot motion sin
e a part be
amepassive, it suÆ
es to in
orporate the a

umulated motion whenever the part be
omes a
tiveagain. In order to eÆ
iently dete
t whether a passive part has to be a
tivated again, westore the maximal probability Pmaxi of all 
ells in the part at the time it be
omes passive.Whenever Pmaxi � �i(t) ex
eeds ", the part �i is a
tivated again be
ause it 
ontains at leastone position with probability above the threshold. In our 
urrent implementation we parti-tion the state spa
e L su
h that ea
h part �i 
onsists of all lo
ations with equal orientationrelative to the robot's start lo
ation.To illustrate the e�e
t of this sele
tive update s
heme, let us 
ompare the update ofa
tive and passive 
ells on in
oming sensor data. A

ording to Equation (39), the di�eren
elies in the ratio P (st j l)= ~P (st). An example of this ratio for our model of proximity sensorsis depi
ted in Figure 11 (here, we repla
ed st by a proximity measurement di). In thebeginning of the lo
alization pro
ess, all 
ells are a
tive and updated a

ording to the ratio410
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Fig. 11. Ratio P (dijl)~P (di) for sonar and laser measurements for expe
ted distan
e ol of 230
m.depi
ted in Figure 11. The measured and expe
ted distan
es for 
ells that do not representthe true lo
ation of the robot usually deviate signi�
antly. Thus, the probabilities of these
ells qui
kly fall below the threshold ".Now the e�e
t of the sele
tive update s
heme be
omes obvious: Those parts of the statespa
e that do not align well with the orientation of the environment, qui
kly be
ome passiveas the robot lo
alizes itself. Consequently, only a small fra
tion of the state spa
e has tobe updated as soon as the robot has 
orre
tly determined its position. If, however, theposition of the robot is lost, then the likelihood ratios for the distan
es measured at thea
tive lo
ations be
ome smaller than one on average. Thus the probabilities of the a
tivelo
ations de
rease while the normalizers �i of the passive parts in
rease until these segmentsare a
tivated again. On
e the true position of the robot is among the a
tive lo
ations, therobot is able to re-establish the 
orre
t belief.In extensive experimental tests we did not observe eviden
e that the sele
tive updates
heme has a noti
ably negative impa
t on the robot's behavior. In 
ontrast, it turnedout to be highly e�e
tive, sin
e in pra
ti
e only a small fra
tion (generally less than 5%)of the state spa
e has to be updated on
e the position of the robot has been determined
orre
tly, and the probabilities of the a
tive lo
ations generally sum up to at least 0.99.Thus, the sele
tive update s
heme automati
ally adapts the 
omputation time required toupdate the belief to the 
ertainty of the robot. This way, our system is able to eÆ
ientlytra
k the position of a robot on
e its position has been determined. Additionally, Markovlo
alization keeps the ability to dete
t lo
alization failures and to relo
alize the robot. Theonly disadvantage lies in the �xed representation of the grid whi
h has the undesirablee�e
t that the memory requirement in our 
urrent implementation stays 
onstant even ifonly a minor part of the state spa
e is updated. In this 
ontext we would like to mentionthat re
ently promising te
hniques have been presented to over
ome this disadvantage byapplying alternative and dynami
 representations of the state spa
e (Burgard et al., 1998b;Fox et al., 1999).4. Experimental ResultsOur metri
 Markov lo
alization te
hnique, in
luding both sensor �lters, has been imple-mented and evaluated extensively in various environments. In this se
tion we present some411



Fox, Burgard & Thrunof the experiments 
arried out with the mobile robots Rhino and Minerva (see Figure 1).Rhino has a ring of 24 ultrasound sensors ea
h with an opening angle of 15 degrees. Both,Rhino and Minerva are equipped with two laser range-�nders 
overing a 360 degrees �eldof view.The �rst set of experiments demonstrates the robustness of Markov lo
alization in tworeal-world s
enarios. In parti
ular, it systemati
ally evaluates the e�e
t of the �lteringte
hniques on the lo
alization performan
e in highly dynami
 environments. An additionalexperiment illustrates a further advantage of the �ltering te
hnique, whi
h enables a mobilerobot to reliably estimate its position even if only an outline of an oÆ
e environment isgiven as a map.In further experiments des
ribed in this se
tion, we will illustrate the ability of ourMarkov lo
alization te
hnique to globally lo
alize a mobile robot in approximate worldmodels su
h as o

upan
y grid maps, even when using ina

urate sensors su
h as ultrasoundsensors. Finally, we present experiments analyzing the a

ura
y and eÆ
ien
y of grid-basedMarkov lo
alization with respe
t to the size of the grid 
ells.The experiments reported here demonstrate that Markov lo
alization is able to globallyestimate the position of a mobile robot, and to reliably keep tra
k of it even if only anapproximate model of a possibly dynami
 environment is given, if the robot has a weakodometry, and if noisy sensors su
h as ultrasound sensors are used.4.1 Long-term Experiments in Dynami
 EnvironmentsFor our mobile robots Rhino and Minerva, whi
h operated in the Deuts
hes Museum Bonnand the US-Smithsonian's National Museum of Ameri
an History, the robustness and re-liability of our Markov lo
alization system was of utmost importan
e. A

urate positionestimation was a 
ru
ial 
omponent, as many of the obsta
les were \invisible" to the robots'sensors (su
h as glass 
ages, metal bars, stair
ases, and the alike). Given the estimate ofthe robot's position (Fox et al., 1998b) integrated map information into the 
ollision avoid-an
e system in order to prevent the robot from 
olliding with obsta
les that 
ould not bedete
ted.Figure 12(a) shows a typi
al traje
tory of the robot Rhino, re
orded in the museumin Bonn, along with the map used for lo
alization. The reader may noti
e that only theobsta
les shown in bla
k were a
tually used for lo
alization; the others were either invisibleor 
ould not be dete
ted reliably. Rhino used the entropy �lter to identify sensor readingsthat were 
orrupted by the presen
e of people. Rhino's lo
alization module was able to (1)globally lo
alize the robot in the morning when the robot was swit
hed on and (2) to reliablyand a

urately keep tra
k of the robot's position. In the entire six-day deployment period, inwhi
h Rhino traveled over 18km, our approa
h led only to a single software-related 
ollision,whi
h involved an \invisible" obsta
le and whi
h was 
aused by a lo
alization error thatwas slightly larger than a 30
m safety margin.Figure 12(b) shows a 2km long traje
tory of the robot Minerva in the National Museumof Ameri
an History. Minerva used the distan
e �lter to identify readings re
e
ted byunmodeled obje
ts. This �lter was developed after Rhino's deployment in the museum inBonn, based on an analysis of the lo
alization failure reported above and in an attempt toprevent similar e�e
ts in future installations. Based on the distan
e �lter, Minerva was able412
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Duration: 4.8 hours
Distance: 1540 meters (a) Duration: 1 hour

Distance: 2000 meters (b)Fig. 12. Typi
al traje
tories of (a) Rhino in the Deuts
hes Museum Bonn and (b) Minerva in theNational Museum of Ameri
an History.to operate reliably over a period of 13 days. During that time Minerva traveled a total of44km with a maximum speed of 1.63m/se
.Unfortunately, the eviden
e from the museum proje
ts is ane
dotal. Based on sensordata 
olle
ted during Rhino's deployment in the museum in Bonn, we also investigated thee�e
t of our �lter te
hniques more systemati
ally, and under even more extreme 
onditions.In parti
ular, we were interested in the lo
alization resultsa.) when the environment is densely populated (more than 50% of the sensor reading are
orrupted), andb.) when the robot su�ers extreme dead-re
koning errors (e.g. indu
ed by a person 
arry-ing the robot somewhere else). Sin
e su
h 
ases are rare, we manually in
i
ted su
herrors into the original data to analyze their e�e
t.4.1.1 DatasetsDuring the experiments, we used two di�erent datasets. These sets di�er mainly in theamount of sensor noise.a.) The �rst dataset was 
olle
ted during 2.0 hours of robot motion, in whi
h the robottraveled approximately 1,000 meters. This dataset was 
olle
ted when the museumwas 
losed, and the robot guided only remote Internet-visitors through the museum.The robot's top speed was 50
m/se
. Thus, this dataset was \ideal" in that theenvironment was only sparsely populated, and the robot moved slowly.b.) The se
ond dataset was re
orded during a period of 4.8 hours, during whi
h Rhinotraveled approximately 1,540 meters. The path of this dataset is shown in Fig-ure 12(a). When 
olle
ting this data, the robot operated during peak traÆ
 hours.It was frequently fa
ed with situations su
h as the one illustrated in Figure 7. Therobot's top speed was 80
m/se
.Both datasets 
onsist of logs of odometry and laser range-�nder s
ans, 
olle
ted while therobot moved through the museum. Using the time stamps in the logs, all tests have been413
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entage of noisy sensor measurements averaged over time intervals of �ve minutes.
ondu
ted in real-time simulation on a SUN-Ultra-Spar
 1 (177-MHz). The �rst dataset
ontained more than 32,000, and the se
ond dataset more than 73,000 laser s
ans. Toevaluate the di�erent lo
alization methods, we generated two referen
e paths, by averagingover the estimates of nine independent runs for ea
h �lter on the datasets (with smallrandom noise added to the input data). We veri�ed the 
orre
tness of both referen
e pathsby visual inspe
tion; hen
e, they 
an be taken as \ground truth."Figure 13 shows the estimated per
entage of 
orrupted sensor readings over time for bothdatasets. The dashed line 
orresponds to the �rst data set, while the solid line illustratesthe 
orruption of the se
ond (longer) data set. In the se
ond dataset, more than half ofall measurements were 
orrupted for extended durations of time, as estimated by analyzingea
h laser reading post-fa
to as to whether it was signi�
antly shorter than the distan
e tothe next obsta
le.4.1.2 Tra
king the Robot's PositionIn our �rst series of experiments, we were interested in 
omparing the ability of all threeapproa
hes|plain Markov lo
alization without �ltering, lo
alization with the entropy �lter,and lo
alization with the distan
e �lter|to keep tra
k of the robot's position under normalworking 
onditions. All three approa
hes tra
ked the robot's position in the empty museumwell (�rst dataset), exhibiting only negligible errors in lo
alization. The results obtainedfor the se
ond, more 
hallenging dataset, however, were quite di�erent. In a nutshell,both �lter-based approa
hes tra
ked the robot's position a

urately, whereas 
onventionalMarkov lo
alization failed frequently. Thus, had we used the latter in the museum exhibit,it would inevitably have led to a large number of 
ollisions and other failures.Filter None Entropy Distan
efailuresI [%℄ 1:6 � 0:4 0:9 � 0:4 0:0 � 0:0failuresII [%℄ 26:8 � 2:4 1:1 � 0:3 1:2 � 0:7Table 2: Ability to tra
k the robot's position.Table 2 summarizes the results obtained for the di�erent approa
hes in this tra
kingexperiment. The �rst row of Table 2 provides the per
entage of failures for the di�erent414
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Distance at final position:  19 cm
Certainty at final position: 0.003

final position (a) final position

Distance at final position:  1 cm
Certainty at final position: 0.987 (b) Distance at final position:  1 cm

Certainty at final position: 0.998

final position (
)Fig. 14. Estimated and real paths of the robot along with endpoints of in
orporated sensor mea-surements using (a) no �lter, (b) entropy �lter, and (
) distan
e �lter.�lters on the �rst dataset (error values represent 95% 
on�den
e intervals). Position esti-mates were 
onsidered a \failure" if the estimated lo
ation of the robot deviated from thereferen
e path by more than 45
m for at least 20 se
onds. The per
entage is measured intime during whi
h the position was lost, relative to the total time of the dataset.As 
an be seen here, all three approa
hes work well, and the distan
e �lter provides thebest performan
e. The se
ond row provides the failures on the se
ond dataset. While plainMarkov lo
alization failed in 26.8% of the overall time, both �lter te
hniques show almostequal results with a failure of less than 2%. Thus, the two �lter te
hniques are robust inhighly dynami
 environments, plain Markov lo
alization is prone to fail.To shed light onto the question as to why Markov lo
alization performs so poorly when
ompared to the �lter algorithms, we analyzed the sensor readings that ea
h method usedduring the lo
alization task. Figure 14 shows, for a a small fra
tion of the data, the measure-ments in
orporated into the robot's belief by the three di�erent approa
hes. Shown thereare the end points of the sensor measurements used for lo
alization relative to the positionson the referen
e path. Obviously, both �lter approa
hes manage to fo
us their attention onthe \
orre
t" sensor measurements, whereas plain Markov lo
alization in
orporates massiveamounts of 
orrupted (misleading) measurements. As also illustrated by Figure 14, both�lter-based approa
hes produ
e more a

urate results with a higher 
ertainty in the 
orre
tposition.4.1.3 Re
overy from Extreme Lo
alization FailuresWe 
onje
ture that a key advantage of the original Markov lo
alization te
hnique lies in itsability to re
over from extreme lo
alization failures. Re-lo
alization after a failure is oftenmore diÆ
ult than global lo
alization from s
rat
h, sin
e the robot starts with a belief thatis 
entered at a 
ompletely wrong position. Sin
e the �ltering te
hniques use the 
urrentbelief to sele
t the readings that are in
orporated, it is not 
lear that they still maintainthe ability to re
over from global lo
alization failures.To analyze the behavior of the �lters under su
h extreme 
onditions, we 
arried out aseries of experiments during whi
h we manually introdu
ed su
h failures into the data totest the robustness of these methods in the extreme. More spe
i�
ally, we \tele-ported" therobot at random points in time to other lo
ations. Te
hni
ally, this was done by 
hangingthe robot's orientation by 180�90 degree and shifting it by 0�100
m, without letting therobot know. These perturbations were introdu
ed randomly, with a probability of 0:005 per415



Fox, Burgard & ThrunFilter None Entropy Distan
eDataset Itre
 [se
℄ 237 � 27 1779 � 548 188 � 30failures [%℄ 10:2 � 1:8 45:6 � 7:1 6:8 � 1:6Dataset IItre
 [se
℄ 269 � 60 1310 � 904 235 � 46failures [%℄ 39:5 � 5:1 72:8 � 7:3 7:8 � 1:9Table 3: Summary of re
overy experiments.meter of robot motion. Obviously, su
h in
idents make the robot lose tra
k of its position.Ea
h method was tested on 20 di�erently 
orrupted versions of both datasets. This resultedin a total of more than 50 position failures in ea
h dataset. For ea
h of these failures wemeasured the time until the methods re-lo
alized the robot 
orre
tly. Re-Lo
alization wasassumed to have su

eeded if the distan
e between the estimated position and the referen
epath was smaller than 45
m for more than 10 se
onds.Table 3 provides re-lo
alization results for the various methods, based on the two dif-ferent datasets. Here tre
 represents the average time in se
onds needed to re
over froma lo
alization error. The results are remarkably di�erent from the results obtained undernormal operational 
onditions. Both 
onventional Markov lo
alization and the te
hniqueusing distan
e �lters are relatively eÆ
ient in re
overing from extreme positioning errors inthe �rst dataset, whereas the entropy �lter-based approa
h is an order of magnitude lesseÆ
ient (see �rst row in Table 3). The unsatisfa
tory performan
e of the entropy �lter inthis experiment is due to the fa
t that it disregards all sensor measurements that do not
on�rm the belief of the robot. While this pro
edure is reasonable when the belief is 
orre
t,it prevents the robot from dete
ting lo
alization failures. The per
entage of time when theposition of the robot was lost in the entire run is given in the se
ond row of the table. Pleasenote that this per
entage in
ludes both, failures due to manually introdu
ed perturbationsand tra
king failures. Again, the distan
e �lter is slightly better than the approa
h with-out �lter, while the entropy �lter performs poorly. The average times tre
 to re
over fromfailures on the se
ond dataset are similar to those in the �rst dataset. The bottom row inTable 3 provides the per
entage of failures for this more diÆ
ult dataset. Here the distan
e�lter-based approa
h performs signi�
antly better than both other approa
hes, sin
e it isable to qui
kly re
over from lo
alization failures and to reliably tra
k the robot's position.The results illustrate that despite the fa
t that sensor readings are pro
essed sele
tively,the distan
e �lter-based te
hnique re
overs as eÆ
iently from extreme lo
alization errors asthe 
onventional Markov approa
h.4.2 Lo
alization in In
omplete MapsA further advantage of the �ltering te
hniques is that Markov lo
alization does not requirea detailed map of the environment. Instead, it suÆ
es to provide only an outline whi
h416
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(a) (b) (
)Fig. 15. (a) Outline of the oÆ
e environment and (b,
) examples of �ltered (grey) and in
orporated(bla
k) sensor readings using the distan
e �lter.

31m

22m

(a)
C

A

B

3m

20m (b)Fig. 16. (a) O

upan
y grid map of the 1994 AAAI mobile robot 
ompetition arena. (b) Traje
toryof the robot and ultrasound measurements used to globally lo
alize the robot in this map.merely in
ludes the aspe
ts of the world whi
h are stati
. Figure 15(a) shows a ground planof our department building, whi
h 
ontains only the walls of the university building. The
omplete map, in
luding all movable obje
ts su
h as tables and 
hairs, is shown in Figure 19.The two Figures 15(b) and 15(
) illustrate how the distan
e �lter typi
ally behaves whentra
king the robot's position in su
h a sparse map of the environment. Filtered readingsare shown in grey, and the in
orporated sensor readings are shown in bla
k. Obviously,the �lter fo
uses on the known aspe
ts of the map and ignores all obje
ts (su
h as desks,
hairs, doors and tables) whi
h are not 
ontained in the outline. Fox (1998) des
ribes moresystemati
 experiments supporting our belief that Markov lo
alization in 
ombination withthe distan
e �lter is able to a

urately lo
alize mobile robots even when relying only on anoutline of the environment.4.3 Lo
alization in O

upan
y Grid Maps Using SonarThe next experiment des
ribed here is 
arried out based on data 
olle
ted with the mobilerobot Rhino during the 1994 AAAI mobile robot 
ompetition (Simmons, 1995). Figure 16(a)shows an o

upan
y grid map (Morave
 & Elfes, 1985; Morave
, 1988) of the environment,
onstru
ted with the te
hniques des
ribed in (Thrun et al., 1998a; Thrun, 1998b). The sizeof the map is 31� 22m2, and the grid resolution is 15
m.417
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Robot position (A)

(a)
Robot position (B)

(b)
Robot position (C)

(
)Fig. 17. Density plots after in
orporating 5, 18, and 24 sonar s
ans (darker positions are morelikely).
(a) (b)Fig. 18. Odometry information and 
orre
ted path of the robot.Figure 16(b) shows a traje
tory of the robot along with measurements of the 24 ultra-sound sensors obtained as the robot moved through the 
ompetition arena. Here we usethis sensor information to globally lo
alize the robot from s
rat
h. The time required topro
ess this data on a 400MHz Pentium II is 80 se
onds, using a position probability gridwith an angular resolution of 3 degrees. Please note that this is exa
tly the time needed bythe robot to traverse this traje
tory; thus, our approa
h works in real-time. Figure 16(b)also marks positions of the robot after per
eiving 5 (A), 18 (B), and 24 (C) sensor sweeps.The belief states during global lo
alization at these three points in time are illustrated inFigure 17.The �gures show the belief of the robot proje
ted onto the hx; yi-plane by plotting forea
h hx; yi-position the maximum probability over all possible orientations. More likelypositions are darker and for illustration purposes, Figures 17(a) and 17(b) use a logarithmi
s
ale in intensity. Figure 17(a) shows the belief state after integrating 5 sensor sweeps (seealso position A in Figure 16(b)). At this point in time, all the robot knows is that it is in oneof the 
orridors of the environment. After integrating 18 sweeps of the ultrasound sensors,the robot is almost 
ertain that it is at the end of a 
orridor (
ompare position B in Fig-ures 16(b) and 17(b)). A short time later, after turning left and integrating six more sweepsof the ultrasound ring, the robot has determined its position uniquely. This is representedby the unique peak 
ontaining 99% of the whole probability mass in Figure 17(
).Figure 18 illustrates the ability of Markov lo
alization to 
orre
t a

umulated dead-re
koning errors by mat
hing ultrasound data with o

upan
y grid maps. Figure 18(a)shows a typi
al 240m long traje
tory, measured by Rhino's wheel-en
oders in the 1994418
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Fig. 19. Path of the robot and referen
e positionsAAAI mobile robot 
ompetition arena. Obviously, the rotational error of the odometryqui
kly in
reases. Already after traveling 40m, the a

umulated error in the orientation(raw odometry) is about 50 degrees. Figure 18(b) shows the path of the robot estimatedby Markov lo
alization, whi
h is signi�
antly more 
orre
t.4.4 Pre
ision and Performan
eWe will now des
ribe experiments aimed at 
hara
terizing the pre
ision of position esti-mates. Our experiments also 
hara
terize the time needed for global lo
alization in relationto the size of the grid 
ells. Figure 19 shows a path of the robot Rhino in the ComputerS
ien
e Department's building at the University of Bonn. This path in
ludes 22 referen
epositions, where the true position of the robot was determined using the s
an mat
hingte
hnique presented in (Gutmann & S
hlegel, 1996; Lu & Milios, 1994). All data re
ordedduring this run were split into four disjoint tra
es of the sensor data. Ea
h of these di�erenttra
es 
ontained the full length of the path, but only every fourth sensor reading whi
h wassuÆ
ient to test the lo
alization performan
e.Figure 20(a) shows the lo
alization error averaged over the four runs and all referen
epositions. The error was determined for di�erent sizes of grid 
ells, using a laser range-�nder or ultrasound sensors. These results demonstrate (1) that the average lo
alizationerror for both sensors is generally below the 
ell size and (2) that laser range-�nders providea signi�
antly higher a

ura
y than ultrasound sensors. When using the laser range-�nderat a spatial resolution of 4
m, the average positioning error 
an even be redu
ed to 3.5
m.Figure 20(b) shows the average CPU-time needed to globally lo
alize the robot as afun
tion of the size of the grid 
ells. The values represent the 
omputation time neededon a 266MHz Pentium II for global lo
alization on the path between the starting pointand position 1. In this experiment, we used a �xed angular resolution of four degrees.In the 
ase of 64
m 
ell size, the average lo
alization time is approximately 2.2 se
onds.419
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(b)Fig. 20. (a) Average lo
alization error and (b) average CPU-time needed for global lo
alization timeboth for ultrasound sensors and laser range-�nder depending on the grid resolution.Of 
ourse, the e�e
tive time needed for global lo
alization in pra
ti
e highly depends onthe stru
ture of the environment and the amount of information gathered on the path ofthe robot. For example, due to the symmetry of the 
orridor of this oÆ
e environment,the robot is not able to lo
alize itself unless it enters a room. The reader may noti
ethat re
ently, we developed a de
ision-theoreti
 method for a
tively guiding the robot topla
es whi
h allow it to resolve ambiguities during global lo
alization (Fox et al., 1998a;Fox, 1998). Based on this method, the lo
alization pro
ess be
omes more eÆ
ient, espe
iallyin oÆ
e environments with a lot of indistinguishable pla
es as, for example, long 
orridors.The experiments des
ribed above demonstrate that our metri
 variant of Markov lo
al-ization is able to eÆ
iently estimate the position of a mobile robot in dynami
 environments.It furthermore 
an deal with approximate models of the environment su
h as o

upan
ygrid maps or rough outline maps. Finally, it is able to eÆ
iently and a

urately estimatethe position of a mobile robot even if ultrasound sensors are used.5. Related WorkMost of the te
hniques for mobile robot lo
alization in the literature belong to the 
lass oflo
al approa
hes or tra
king te
hniques, whi
h are designed to 
ompensate odometri
 erroro

urring during navigation. They assume that the initial position of the robot is known(see Borenstein et al. 1996 for a 
omprehensive overview). For example, Wei� et al. (1994)store angle histograms 
onstru
ted out of laser range-�nder s
ans taken at di�erent lo
ationsin the environment. The position and orientation of the robot are 
al
ulated by maximizingthe 
orrelation between the stored histograms and laser range-s
ans obtained while therobot moves through the environment. The estimated position, together with the odometryinformation, is then used to predi
t the position of the robot and to sele
t the histogramused for the next mat
h. Yamau
hi (1996) and S
hulz et al. (1999) apply a similar te
hnique,but they use hill-
limbing to mat
h lo
al maps built from ultrasound sensors into a globalo

upan
y grid map. As in the approa
h by Wei� et al. (1994), the lo
ation of the robotis represented by the position yielding the best mat
h. These te
hniques, in 
ontrast toMarkov lo
alization, do not represent the un
ertainty of the robot in its 
urrent belief andtherefore 
annot deal appropriately with globally ambiguous situations.420
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alization for Mobile Robots in Dynami
 EnvironmentsA popular probabilisti
 framework for position tra
king are Kalman �lters (Maybe
k,1990; Smith et al., 1990), a signal pro
essing te
hnique introdu
ed by Kalman (1960). Asmentioned in Se
tion 2.4, Kalman �lter-based methods represent their belief of the robot'sposition by a unimodal Gaussian distribution over the three-dimensional state-spa
e of therobot. The mode of this distribution yields the 
urrent position of the robot, and thevarian
e represents the robot's un
ertainty. Whenever the robot moves, the Gaussian isshifted a

ording to the distan
e measured by the robot's odometry. Simultaneously, thevarian
e of the Gaussian is in
reased a

ording to the model of the robot's odometry. Newsensory input is in
orporated into the position estimation by mat
hing the per
epts withthe world model.Existing appli
ations of Kalman �ltering to position estimation for mobile robots aresimilar in how they model the motion of the robot. They di�er mostly in how they updatethe Gaussian a

ording to new sensory input. Leonard and Durrant-Whyte (1991) mat
hbea
ons extra
ted from sonar s
ans with bea
ons predi
ted from a geometri
 map of theenvironment. These bea
ons 
onsist of planes, 
ylinders, and 
orners. To update the 
ur-rent estimate of the robot's position, Cox (1991) mat
hes distan
es measured by infraredsensors with a line segment des
ription of the environment. S
hiele and Crowley (1994)
ompare di�erent strategies to tra
k the robot's position based on o

upan
y grid mapsand ultrasoni
 sensors. They show that mat
hing lo
al o

upan
y grid maps with a globalgrid map results in a similar lo
alization performan
e as if the mat
hing is based on fea-tures that are extra
ted from both maps. Sha�er et al. (1992) 
ompare the robustness oftwo di�erent mat
hing te
hniques with di�erent sour
es of noise. They suggest a 
ombi-nation of map-mat
hing and feature-based te
hniques in order to inherit the bene�ts ofboth. Lu and Milios (1994,1997b) and Gutmann and S
hlegel (1996) use a s
an-mat
hingte
hnique to pre
isely estimate the position of the robot based on laser range-�nder s
ansand learned models of the environment. Arras and Vestli (1998) use a similar te
hnique to
ompute the position of the robot with a very high a

ura
y. All these variants, however,rest on the assumption that the position of the robot 
an be represented by a single Gaus-sian distribution. The advantage of Kalman �lter-based te
hniques lies in their eÆ
ien
yand in the high a

ura
y that 
an be obtained. The restri
tion to a unimodal Gaussiandistribution, however, is prone to fail if the position of a robot has to be estimated froms
rat
h, i.e. without knowledge about the starting position of the robot. Furthermore,these te
hnique are typi
ally unable to re
over from lo
alization failures. Re
ently, Jens-felt and Kristensen (1999) introdu
ed an approa
h based on multiple hypothesis tra
king,whi
h allows to model multi-modal probability distributions as they o

ur during globallo
alization.Markov lo
alization, whi
h has been employed su

essfully in several variants (Nour-bakhsh et al., 1995; Simmons & Koenig, 1995; Kaelbling et al., 1996; Burgard et al., 1996;Hertzberg & Kir
hner, 1996; Koenig & Simmons, 1998; Oore et al., 1997; Thrun, 1998a),over
omes the disadvantage of Kalman �lter based te
hniques. The di�erent variants ofthis te
hnique 
an be roughly distinguished by the type of dis
retization used for the rep-resentation of the state spa
e. Nourbakhsh et al. (1995), Simmons and Koenig (1995),and Kaelbling et al. (1996) use Markov lo
alization for landmark-based navigation, and thestate spa
e is organized a

ording to the topologi
al stru
ture of the environment. Herenodes of the topologi
al graph 
orrespond to distin
tive pla
es in hallways su
h as openings421
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tions and the 
onne
tions between these pla
es. Possible observations of the robotare, for example, hallway interse
tions. The advantage of these approa
hes is that they 
anrepresent ambiguous situations and thus are in prin
iple able to globally lo
alize a robot.Furthermore, the 
oarse dis
retization of the environment results in relatively small statespa
es that 
an be maintained eÆ
iently. The topologi
al representations have the disad-vantage that they provide only 
oarse information about the robot's position and that theyrely on the de�nition of abstra
t features that 
an be extra
ted from the sensor information.The approa
hes typi
ally make strong assumptions about the nature of the environments.Nourbakhsh et al. (1995), Simmons and Koenig (1995), and Kaelbling et al. (1996), forexample, only 
onsider four possible headings for the robot position assuming that the
orridors in the environment are orthogonal to ea
h other.Our method uses instead a �ne-grained, grid-based dis
retization of the state spa
e.The advantage of this approa
h 
ompared to the Kalman �lter based te
hniques 
omesfrom the ability to represent more 
omplex probability distributions. In a re
ent experi-mental 
omparison to the te
hnique introdu
ed by Lu and Milios (1994) and Gutmann andS
hlegel (1996), we found that Kalman �lter based tra
king te
hniques provide highly a

u-rate position estimates but are less robust, sin
e they la
k the ability to globally lo
alize therobot and to re
over from lo
alization errors (Gutmann et al., 1998). In 
ontrast to the topo-logi
al implementations of Markov lo
alization, our approa
h provides a

urate position es-timates and 
an be applied even in highly unstru
tured environments (Burgard et al., 1998a;Thrun et al., 1999). Using the sele
tive update s
heme, our te
hnique is able to eÆ
ientlykeep tra
k of the robot's position on
e it has been determined. It also allows the robot tore
over from lo
alization failures.Finally, the vast majority of existing approa
hes to lo
alization di�er from ours in thatthey address lo
alization in stati
 environments. Therefore, these methods are prone to failin highly dynami
 environments in whi
h, for example, large 
rowds of people surround therobot (Fox et al., 1998
). However, dynami
 approa
hes have great pra
ti
al importan
e,and many envisioned appli
ation domains of servi
e robots involve people and populatedenvironments.6. Dis
ussionIn this paper we presented a metri
 variant of Markov lo
alization, as a robust te
hniquefor estimating the position of a mobile robot in dynami
 environments. The key idea ofMarkov lo
alization is to maintain a probability density over the whole state spa
e of therobot relative to its environment. This density is updated whenever new sensory input isre
eived and whenever the robot moves. Metri
 Markov lo
alization represents the statespa
e using �ne-grained, metri
 grids. Our approa
h employs eÆ
ient, sele
tive updatealgorithms to update the robot's belief in real-time. It uses �ltering to 
ope with dynami
environments, making our approa
h appli
able to a wide range of target appli
ations.In 
ontrast to previous approa
hes to Markov lo
alization, our method uses a �ne-grained dis
retization of the state spa
e. This allows us to 
ompute a

urate positionestimates and to in
orporate raw sensory input into the belief. As a result, our system 
anexploit arbitrary features of the environment. Additionally, our approa
h 
an be appliedin arbitrary unstru
tured environments and does not rely on an orthogonality assumption422
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alization for Mobile Robots in Dynami
 Environmentsor similar assumptions of the existen
e of 
ertain landmarks, as most other approa
hes toMarkov lo
alization do.The majority of the lo
alization approa
hes developed so far assume that the world isstati
 and that the state of the robot is the only 
hanging aspe
t of the world. To be able tolo
alize a mobile robot even in dynami
 and densely populated environments, we developeda te
hnique for �ltering sensor measurements whi
h are 
orrupted due to the presen
e ofpeople or other obje
ts not 
ontained in the robot's model of the environment.To eÆ
iently update the huge state spa
es resulting from the grid-based dis
retization,we developed two di�erent te
hniques. First, we use look-up operations to eÆ
iently 
om-pute the quantities ne
essary to update the belief of the robot given new sensory input.Se
ond, we apply the sele
tive update s
heme whi
h fo
uses the 
omputation on the rel-evant parts of the state spa
e. As a result, even large belief states 
an be updated inreal-time.Our te
hnique has been implemented and evaluated in several real-world experimentsat di�erent sites. Re
ently we deployed the mobile robots Rhino in the Deuts
hes Mu-seum Bonn, Germany, and Minerva in the Smithsonian's National Museum of Ameri
anHistory, Washington, DC, as intera
tive museum tour-guides. During these deployments,our Markov lo
alization te
hnique reliably estimated the position of the robots over longperiods of time, despite the fa
t that both robots were permanently surrounded by visitorswhi
h produ
ed large amounts of false readings for the proximity sensors of the robots.The a

ura
y of grid-based Markov lo
alization turned out to be 
ru
ial to avoid even su
hobsta
les that 
ould not be sensed by the robot's sensors. This has been a

omplished byintegrating map information into the 
ollision avoidan
e system (Fox et al., 1998b).Despite these en
ouraging results, several aspe
ts warrant future resear
h. A key disad-vantage of our 
urrent implementation of Markov lo
alization lies in the �xed dis
retizationof the state spa
e, whi
h is always kept in main memory. To s
ale up to truly large en-vironments, it seems inevitable that one needs variable-resolution representations of thestate spa
e, su
h as as the one suggested in (Burgard et al., 1997; 1998b; Gutmann et al.,1998). Alternatively, one 
ould use Monte-Carlo based representations of the state spa
eas des
ribed in (Fox et al., 1999). Here, the robot's belief is represented by samples that
on
entrate on the most likely parts of the state spa
e.A
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