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Abstract

We describe key issues and achievements on the Pathfinder expert-system project.
Pathfinder research has extended over 5 years at the University of Southern California
and at Stanford University. Our investigation of automated reasoning has spanned
several paradigms for representing and reasoning with expert medical knowledge. The
Pathfinder team has concentrated on the construction of normative erpert systems,
which are expert systems based on the principles of decision theory. Within the nor-
mative paradigm, we have developed useful techniques for acquiring, representing, ma-
nipulating, and explaining complex medical knowledge. A large component of such
knowledge is made available only through careful assessment of subjective probabilis-
tic relationships. Although the bulk of Pathfinder research has been carried out within
the domain of lymph-node pathology, the insights and techniques have relevance to a
wide variety of complex biomedical domains. We introduce the project, describe the
significance of normative reasoning in medicine, and review theoretical and empirical
Pathfinder developments. We describe the techniques for constructing and managing
a large probabilistic knowledge base, the use of a normative hypothetico-deductive
architecture; the application of alternative information-acquisition strategies, the ex-
planation of probabilistic inference, and the heuristic and normative evaluation of the
Pathfinder reasoning system.



1 Introduction

For over 6 years, we have worked to construct an expert system, called Pathfinder, to as-
sist general pathologists with diagnosis in the specialty area of hematopathology [1,2]. A
major component of our research has addressed the acquisition and representation of expert
pathology knowledge, as well as the manipulation and explanation of that knowledge. We
have found that it is crucial to represent and reason with uncertain knowledge, and that
the capture and manipulation of uncertain knowledge is fundamentally different from cor-
responding tasks for knowledge held with certainty. Consequently, we have had to explore
carefully a variety of techniques proposed for reasoning under uncertainty, and to develop
new approaches to grapple with complex relationships among evidence and hypotheses.

Methodologies for reasoning under uncertainty have played a central role in the history
of medical informatics. Medical reasoning is typically dominated by great uncertainties:
the complexity of pathophysiology typically overwhelms the abilities of people to under-
stand all relevant details about the predicaments of their patients. Over the last 3 decades,
medical-informatics investigators explored several computer-based reasoning methodologies
for representing and manipulating uncertain biomedical knowledge for use in automated
medical reasoners. Researchers have hoped that expert reasoning systems, based on one or
more of these uncertain-reasoning methodologies, will one day serve as common sources of
expert advice when human experts are not available.

Beginning with early failures to represent complex uncertain knowledge successfully with
production rules and with nonprobabilistic scoring schemes, the Pathfinder team has con-
centrated on decision-theoretic methods for diagnosis. Decision theory, which includes prob-
ability theory and the maximum expected utility principle, provides a set of desirable rules
that people believe they should follow or wish they could follow when confronted with a
confusing, high-stakes decision. That is, the principles are viewed traditionally as norma-
tive. Psychologists have found, however, that people, including experts, deviate from these
principles in stereotypic fashion [3,4]. Thus, we believe that the development of norma-
tive expert systems—expert systems based on the principles of decision theory—will lead to
improvements in the delivery of expert knowledge.

A chief problem with the development of normative expert systems is the complexity of
traditional representations of knowledge in a decision-theoretic framework. This complexity
has dampened interest in applying decision theory in computer-based reasoning systems.
Pathfinder research has developed a set of techniques that can make normative expert sys-
tems practical to develop and to use. In addition to the fundamental work involving the
efficient acquisition and refinement of large normative knowledge bases and the development
of tractable reasoning strategies, we have explored the use of human-oriented classification
hierarchies for tailoring the system’s behavior to different users, and for the explanation of
the system’s recommendations. We have also developed and tested techniques for the evalua-
tion of the accuracy of diagnosis. Our work to solve problems of representing, manipulating,
and explaining uncertain knowledge is relevant to problems in artificial intelligence (AI) that
extend well beyond medical informatics.

Our presentation is organized in three main parts. In Part I, we provide background



information that is necessary to understand the new research presented in this paper. In
Sections 2 and 3, we introduce the domain of lymph-node pathology and we discuss problems
associated with diagnosis in this domain. In Section 4, we introduce the Pathfinder expert
system. In this section, we provide a history of the development of Pathfinder, and describe
its basic operation through the use of a simple example. In Section 5, we introduce the
hypothetico-deductive approach to reasoning, and discuss its application to expert systems
research. In Sections 6 through 8, we describe our use of both decision-theoretic and non-
decision-theoretic to represent uncertain medical knowledge, and discuss the events that led
to our eventual use of decision theory in Pathfinder.

In Part II, we present our new research inspired by the Pathfinder project. In Section 9,
we describe a representation that greatly facilitates the capture and representation of uncer-
tain knowledge within the probabilistic framework. In Sections 10 and 11, we discuss our
use of decision theory to identify pieces of evidence that are cost effective for narrowing a
differential diagnosis, and our methods for explaining such recommendations.

Finally, in Part III, we present a detailed evaluation of the diagnostic accuracy of two
versions of Pathfinder. In one version of Pathfinder, we assume that all pieces of evidence
are conditionally independent. The assumption of global conditional independence has been
made by almost all medical-informatics researchers in the past. In the other version, we avoid
this assumption. Instead, we represent accurately the probabilistic dependencies among the
pieces of evidence represented by the system. Our evaluation demonstrates dramatically
that it is important to represent such dependencies in the lymph-node domain.

Part 1
Background

2 Diagnosis in Surgical Pathology

As portrayed in Figure 1, surgical pathologists perform diagnosis primarily through the
identification of a set of relevant microscopic features that appears in a section of tissue. A
pathologist applies his knowledge about the features on a slide to determine the likelihood
of alternative diseases. The pathologist’s diagnosis is relayed to an oncologist, who directs a
patient’s cancer therapy, based on this recommendation. The quality of a patient’s therapy
therefore is greatly dependent on the accuracy of the pathologist’s diagnosis. Unfortunately,
surgical pathology diagnoses can be extremely difficult to make. For example, as is suggested
in Figure 1, within many areas of pathology, diseases with widely different therapies and
prognostic courses may resemble one another closely.

The task of a pathologist includes (1) identifying features and quantifying them; (2)
constructing a differential diagnoses, or set of diseases consistent with the observations;
(3) deciding what additional features to evaluate; (4) deciding what costly tests or stains
to employ; and (5) rendering a diagnoses. Thus, we must consider these components of
diagnosis in building a useful expert system for pathologists.
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Figure 1: A central component of surgical pathology diagnosis involves the identification of
microscopic features visible on a tissue-biopsy section. The pathologist’s diagnosis is used
by oncologists in the patient’s therapy. Within lymph-node pathology, diseases with widely
different outcomes may resemble one another closely. Thus, accurate diagnosis is required
for appropriate therapy.
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There are approximately 40 subspecialty areas in surgical pathology, representing exper-
tise in the diagnosis of pathology in tissues from the different human organ systems. Some
pathologists specialize in the diagnosis of disease in one or more subspecialties. These ex-
pert pathologists tend to focus their attention on difficult diagnostic problems within the
subspecialties.

Unlike a specialist, a general pathologist typically performs diagnosis on sections from a
wide range of organ systems. In each area of pathology, a pathologist may identify pieces of
evidence from among hundreds of distinct features. These features include colors and pat-
terns discernable at low magnifications, and assemblies of cells, cell structure, and organelle
structures seen at higher magnifications. If a general pathologist has difficulty with diagno-
sis, he frequently refers the case to a subspecialist. This referral process usually incurs both
a delay in diagnosis and an extra cost. Sometimes, the delay in diagnosis is unacceptable,
and the pathologist cannot refer the case to a subspecialist. For example, surgeons often
rely on pathologists for the timely diagnosis of disease in frozen tissue, taken from patients
under anesthesia [5,6].

3 Problems in Hematopathology

The Pathfinder team has explored the feasibility of providing computer-based expertise for
diagnosis, based on the status of features observed in a section of lymph-node tissue. The
pathology of the lymph nods poses difficult diagnostic problems. There are approximately
30 different types of primary and secondary malignant hematopoietic diseases of the lymph
node. These malignant diseases have to be distinguished from approximately 30 different
benign diseases, many of which closely simulate malignant lymphomas. For epidemiologic
and therapeutic reasons, it is important that the benign diseases be differentiated from
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malignant conditions and that a precise classification of malignant lymphoma be established,
so that the patient receives the most appropriate form of radiation therapy or chemotherapy
[7,8,9].

The diagnosis of lymph node diseases, based on morphologic presentation, is one of the
most difficult and problematic tasks of surgical pathology [10,11,12,13]. Several cooperative
oncology studies have documented that, although experts show agreement with one another,
the diagnosis rendered by a community-hospital pathologist may have to be changed by
expert hematopathologists in as many as 50 percent of the cases [14].

In response to the diagnostic problems in lymph-node pathology, the National Cancer
Institute (NCI) created the Lymphoma Task Force over 2 decades ago. The task force is now
called the Repository Center and the Pathology Panel for Lymphoma Clinical Studies. The
main function of this panel of expert pathologists is to confirm the diagnosis of the general
pathologists and to ensure that the pathologic diagnoses are made uniformly from one center
to another. Without uniformity in diagnosis, the results of multiple clinical therapeutic trials
could not be compared. Unfortunately, the panel is useful in only a small percentage (3
percent) of cases; the Pathology Panel annually reviews only 1000 cases, whereas more than
30,000 new cases of lymphomas are reported each year.

Our goal is to close the wide gap between the quality of diagnoses at community hospitals
and diagnoses by scarce experts in pathology specialty fields with Pathfinder. This normative
expert system promises to increase the accuracy of in-house pathology diagnoses, to reduce
the frequency and cost of referrals, and to assist operating-room pathologists who cannot
rely typically on the security blanket of an expert opinion.

4 The Pathfinder System

The Pathfinder expert system reasons about approximately 60 malignant and benign diseases
of lymph nodes, constructing differential diagnoses through the consideration of evidence
about the status of over 100 morphologic and nonmorphologic features visible in lymph-
node tissue. In Pathfinder, features are each structured into a set of two to ten mutually
exclusive and exhaustive values. These values typically represent the degree of severity of a
particular feature (e.g., necrosis may be absent, present, or prominent).

4.1 Implementation History

In the course of our research, we have implemented several versions of the probability-
based Pathfinder system. We constructed the earliest Pathfinder expert system with the
Maclisp language on a Digital Equipment Corporation DEC-2060. Later, we transferred
the program into the Portable Standard LISP (PSL) language and moved it to the Hewlett-
Packard 9836 LISP workstation. Two years ago, we reimplemented the program in Macintosh
Programmers’ Workshop (MPW) Object Pascal on the Macintosh II. We have continued to
refine and to test the knowledge base within the Macintosh II environment. As we shall
explain, we implemented a knowledge-acquisition program in the same system designed to



operate as a parallel application, enabling an engineer to cycle easily between knowledge-base
refinement and expert-system testing.

4.2 System Functionality

The Pathfinder system allows a user to enter values for one or more salient features of
a lymph-node section. Given these feature-value pairs, the system displays a differential
diagnosis ordered by likelihood of diseases. In response to a query from the user, Pathfinder
recommends a set of features that are the most cost effective for narrowing the differential
diagnosis. The pathologist can answer one or more of the recommended questions. This
process continues until the differential diagnosis is a single disease, there are no additional
tests or questions, or a pathologist determines the informational benefits are not worth the
costs of further observations or tests.

The operation of the latest version of Pathfinder is illustrated in Figures 2 through 8.
Figure 2 shows the initial Pathfinder screen. The FEATURE CATEGORY window displays
the categories of features that are known to the system; the OBSERVED FEATURES window
displays evaluated features; and the DIFFERENTIAL DIAGNOSIS window displays the list of
diseases with their associated probabilities. As there are no features observed at the outset
of a case, the probabilities shown are the prior probabilities of disease.

If the user double-clicks on the feature category SPHERICAL FEATURES, then Pathfinder
displays a list of atomic features for that category, as shown in Figure 3. To enter a particular
feature, the user double-clicks on that feature, and then selects one of the mutually exclusive
and exhaustive values for that feature. For example, Figure 4 shows what happens when the
user selects the feature F % AREA (percent area of the lymph-node section that is occupied by
follicles). In the figure, a third window appears that lists the values for this feature: NA (not
applicable), 1-10%, 11-50%, 51-75%, 76-90%, and >90%. Figure 5 shows the result of selecting
the last value for this feature. In particular, the feature-value F % AREA: >90% appears in
the middle column, and the differential diagnosis is revised, based on this observation.

As we mentioned, the user can continue to enter any number of features of his own
selection. Figure 6 shows the Pathfinder screen after the user has reported that follicles are
in a back-to-back arrangement and show prominent polarity. Alternatively, the user can
ask the program to recommend additional features for observation. Figure 7 shows that the
most cost effective feature to evaluate, given the current differential diagnosis, is monocytoid
cells. If the user observes that monocytoid cells are prominent, then we obtain the differential
diagnosis in Figure 8. In this case, the four features in the middle column have narrowed
the differential diagnosis to a single disease: the early phase of AIDS.

5 Hypothetico-Deductive Reasoning

The basic reasoning architecture of Pathfinder is referred to as hypothetico-deductive reason-
ing. A flow-chart representation of the general method is shown in Figure 9. In hypothetico-
deductive reasoning, a set of observations or test information is used to build a list of plausible
hypotheses. The list of hypotheses is then examined in the process of determining the best
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probabilities in the current clinical setting.
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Figure 9: Hypothetico-deductive reasoning. First, several salient manifestations are iden-
tified and input to the system. Based on these manifestations, the system constructs a
differential diagnoses—a list of hypotheses and likelihoods associated with these hypotheses.
Next, the system analyzes the current differential diagnosis to identify the next best manifes-
tations for the user to observe. The process-cycles until the differential diagnosis is narrowed
to a single disease, there are no additional tests or questions, or the user determines the
informational benefits are not worth the costs of further observations or tests.

15



next observations to make. The process cycles to refine the differential diagnosis. Cognitive
psychologists have found that physicians frequently employ hypothetico-deductive reasoning
in performing clinical diagnosis [15,16]. The hypothetico-deductive strategy may also be im-
portant in the consultation process among colleagues, defining the communication between
expert and referring physician during a consultation. The commonality of this strategy in
clinical medicine suggests that the behavior of expert systems that perform hypothetico-
deductive reasoning would be compatible with human diagnosticians.

As portrayed in Figure 9, there the two fundamental components of hypothetico-deductive
reasoning. First, we must apply a method for determining the likelihood of each disease,
given a set of observations. Second, we must identify those features or tests whose observa-
tion would be most useful in refining the differential diagnosis. Both of these tasks must be
performed under uncertainty.

6 Overview of Paradigms for Uncertain Reasoning

We shall now examine normative and nonnormative approaches to these tasks, in a historical
context. Then, we shall examine normative reasoning in Pathfinder in more detail.

6.1 Probability and Decision Theory

Probability theory has roots, over 3 centuries ago, in the work of Bernoulli, Laplace, Fermat,
and Pascal. There has been a tremendous amount of theoretical and practical research on
the theory and application of the principles of probability following the original pioneering
studies of the early probabilists. Probability theory is a set of axioms that defines measures
of belief in events or distinctions and describes how such measures can be made consistent or
combined to infer measure of belief in related events. Decision theory extends the language
of probability, and allows us to define and reason about alternatives or the actions available
to a decision maker, the outcomes of each possible action, and the preferences of a decision
maker for each possible outcome. In particular, as we have mentioned, decision includes
probability theory and the maximum expected utility (MEU) principle [17].

6.1.1 Probability as Personal Belief

The prevalent conception of the probability for event z is that it is a measure of the frequency
with which that event occurs, when repeated many times. A more general notion, however,
is that the probability for event z represents the degree of belief held by a person that
the event will occur. In this definition, we do not need to refer to the repetition of any
event. A probability of 1 for z indicates that the person who owns that probability believes
that the event will occur with certainty; a probability of 0 for z indicates that the persons
believes that the event definitely will not happen. Intermediate values correspond to various
degrees of uncertainty that the individual may have about the occurrence of z. Although
this interpretation of a probability differs from that of the frequency interpretation, both
measures obey the same set of axioms.
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The conception of probability as a measure of personal belief is central to research
on the use of probability and decision theory for representing and reasoning with expert
knowledge in computer-based reasoning systems. There is usually no alternative to acquiring
from experts the bulk of probabilistic information used in an expert system. Gathering a
significant portion of frequencies through empirical study would entail much time and great
expense. For example, there are over 75 thousand probabilities in the latest version of
Pathfinder; and some of these probabilities are on the order of 10~¢. Furthermore, even
when statistical studies have been preformed in some domain, we often cannot employ the
frequencies that these studies produce, because the specific diseases, features, and contexts
used in an expert system for that domain may not match those distinctions used in the
studies. Nonetheless, probability theory provides for the gradual integration of appropriate
statistical data into an expert system as it becomes available [18,19).

6.1.2 Normative Reasoning in Medicine

Decision theory prescribes widely accepted principles for rational belief and action under
uncertainty. This is why people or computer systems that hold beliefs and make decisions
that are consistent with probability and decision theory often are referred to as normative
reasoners. Many investigators have studied the justification for decision theory. Their anal-
yses show the equivalence between the axioms of decision theory and a set of fundamental
properties about manipulating beliefs and choosing actions that are found to be intuitive
and persuasive [20,17,21,22,23].

Research demonstrating differences between the descriptive behavior of humans and
the recommendations of normative decision models has highlighted the potential value of
normative reasoning systems for physicians. Studies have found that people are plagued
with judgment biases [3]. More specifically, such biases have been demonstrated in medical
problem solving [4,16]. Under the typical situations of high stakes in medicine, physicians
may make decisions that, from the perspective of a normative analysis, incur great costs to
patients. The goals of Pathfinder research are to codify expert judgments in a normative
representation and to provide to nonexpert clinicians conclusions drawn from these beliefs.
As we shall see in Part III, such an approach can be shown to deliver knowledge that is
superior to knowledge provided by unassisted experts.

6.1.3 Early Normative Systems

Early discussions and research projects on the automation of medical reasoning centered
on the implementation of normative expert reasoners [24]). Investigators worked to build
systems that might some day provide to physicians conclusions drawn from knowledge that
is encoded and manipulated in accordance with normative principles. Several medical diag-
nostic systems were constructed. These systems include Warner’s system for the diagnosis
of heart disease [25] and deDombal’s system for the analysis of acute abdominal pain [26).
Two of the early expert-systems research projects applied hypothetico-deductive reason-
ing. The earliest work on hypothetico-deductive reasoning was performed by Gorry [27].
Gorry applied this methodology to Warner’s heart-disease knowledge base, and, later, to a
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knowledge base for renal failure [28]. The approach, called the method of sequential diag-
nosis, was an improvement on older programs that required that all relevant findings in a
patient case be present before they could make a diagnosis. As there are often hundreds of
possible clinical findings to consider, the nonsequential approach has been considered less
suitable for application in a clinical setting than are systems using the method of sequential
diagnosis.

To build a differential diagnosis, Gorry’s systems (and other early probabilistic systems)
used probability theory. Further, to generate questions in his systems, Gorry applied a value-
of-information analysis based on decision theory. We shall describe this analysis in Section 8.
For both phases of the hypothetico-deductive analysis, Gorry’s systems incorporated the
assumptions that diseases are mutually exclusive and exhaustive, and that all pieces of
evidence are conditionally independent given the disease present. He, and other investigators
exploring normative reasoning, believed that it was necessary to make such assumptions to
make knowledge acquisition, diagnostic inference, and explanation tractable.

6.2 Nonnormative Reasoning Methodologies

Although the principles of decision theory are well understood and are widely accepted as
a gold standard or normative theory for decision making, medical-informatics researchers
became interested in nonprobabilistic approaches to reasoning in the early-1970s. Grow-
ing perceptions of the inadequacy of the early decision-theoretic reasoning systems led to
diminished interest in probability-based computational decision support [25,27,26]. Major
problems cited with the probabilistic and decision-theoretic approaches were the complex-
ity of building, representing, and manipulating knowledge bases. Investigators highlighted
the inadequacy of making global assumptions of conditional independence, and of mutual
exclusivity and exhaustivity, to regain tractability. Beyond problems with computational
intractability, critics of the decision-theoretic reasoning in expert systems have cited limited
expressiveness of normative representations, dwelling on the apparent differences between
the quantitative approach of probabilistic inference and the informal, qualitative nature of
human reasoning [29,30,28].

6.2.1 Heuristic Scoring Schemes

Several projects examined nonprobabilistic quantitative approaches within the hypothetico-
deductive framework. A well-known example of the use of heuristic scoring schemes for
capturing medical expertise is the Internist-1 project [31], and its descendents, the Quick
Medical Reference (QMR) [32] and Caduceus [33] projects. Internist-1 and QMR are based
on a hypothetico-deductive reasoning framework, similar to the strategy employed earlier
by Gorry in his work with simple probabilistic reasoning systems. Unlike Gorry, however,
the Internist-1 group elected not to use probability and decision theory, and instead applied
heuristics for constructing the differential diagnosis and an ad hoc scoring scheme for assign-
ing belief to competing entities. The Internist-1 team created several heuristic strategies to
generate recommendations on new evidence to acquire, given the current differential diag-
nosis. These systems acquired and combined several classes of numeric weighting measures
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to build differential diagnoses and to direct evidence-gathering strategies.

6.2.2 Production-Rule Paradigm

In the early 1970s, several groups of medical informatics researchers, concerned with prob-
lems with the expressiveness of the restricted forms of probabilistic inference and with the
complexity of attempts to relax the simplifying assumptions, became interested in the use of
newer logic-based reasoning techniques, developed in Al research on theorem proving. The
application of production rule systems to clinical medicine heralded the start of a new sub-
discipline of Al, called artificial intelligence in medicine (AIM). AIM researchers sought to
replace what were viewed as inappropriately complex quantitative approaches with methods
for performing more abstract symbolic reasoning.

AIM researchers, interested in logical reasoning methods, sought to apply logical rules of
the form IF A, THEN B—called production rules—to medical diagnosis. In a production-
rule system, rules are chained together through the logical interaction of their antecedents
and consequents, forming a directed graph. Production rules were appealing in that they
were considered to be a modular approach to representing expert knowledge [34]. The tra-
ditional production rule was interpreted as a straightforward logical implication. Unlike
the probabilistic and nonnormative hypothetico-deductive approaches, production-rule ap-
proaches generate questions based on a relatively fixed traversal of the directed graph formed
by the set of rules.

Attempts to apply production rules to reasoning about complex medical problems stim-
ulated the AIM community to introduce techniques for representing uncertainty to repre-
sentations built on the foundations of logical chaining. That is, in applying production rules
to real-world diagnosis, some investigators saw a need to modify the true-or-false nature of
rules, to capture uncertainty about implication. Researchers working on the Mycin project
introduced the quasiprobabilistic certainty-factor (CF) model, a numeric scheme for repre-
senting the degree of confirmation or disconfirmation of the consequent of a rule, given the
rule’s antecedent [34].

7 Pathfinder: A Return to Decision Theory

The first versions of the Pathfinder expert system were based on production rules. The rule-
based versions of Pathfinder were implemented in the Meta-Level Representation System
(MRS) [35]. Early on, we encountered two related problems with the behavior of rule-based
systems for reasoning in pathology. First, we found that the production-rule system’s se-
quences of questions appeared inflexible and inappropriate to our expert. In particular, the
rule-based system did not make use of the current differential diagnoses to determine the
most useful features to observe. Second, our rule-based approach did not consider uncer-
tainty. Given the closely related symptomology of many lymph-node diseases, there is often
uncertainty in pathology diagnosis, associated with a set of observations. For example, sev-
eral diseases might be possible given a set of histologic features. In such cases, it is important
to consider the different likelihoods of the diseases.

19



The descriptive inadequacy of the MRS-based Pathfinder system stimulated us to imple-
ment a hypothetico-deductive approach. Also, we experimented with three belief-combination
schemes to construct differential diagnoses: (1) the quasiprobabilistic Dempster-Shafer [36]
approach, (2) the Mycin CF approach, and (3) simple probabilistic inference, assuming con-
ditional independence among features given diseases. We evaluated the behavior of our
system informally with these alternative combination schemes.

7.1 Early Empirical Results

During masked studies, we noticed a significant improvement in the system’s diagnostic
accuracy when the combination scheme was converted from the quasiprobabilistic approaches
to simple probabilistic inference, assuming conditional independence. When we returned to
a methodology similar to the approach explored 2 decades earlier by Warner, Gorry, and
other medical-informatics pioneers, Pathfinder performed noticeably better than did the
other approaches. Later, in a formal study, we showed that the diagnostic accuracy of the
simple conditional-independence probabilistic method was superior to that of the Dempster—
Shafer and CF updating schemes [37]. The increased performance was quantified with an
evaluation scheme incorporating decision-theoretic and ad hoc measures. We shall describe
these metrics in detail in Part III.

Like many AIM researchers at the time, we believed that probability and decision theory
were inadequate for representing medical expertise. Yet, our empirical evidence highlighted
the promise of these techniques. Our best-available method for reasoning was a highly
constrained form of probabilistic inference. We believed that we could produce even more
accurate diagnostic behavior by relaxing the conditional-independence restrictions.

We were familiar with the literature in Al and medical informatics that warned about
the intractability of relaxing the assumption of independence. This fear of intractability
was based on a sense that a move beyond a simple conditional-independence model would
necessarily encounter massive interdependence among pieces of evidence. Nonetheless, we
believed that we could capture and manage all dependencies that could be identified as
relevant by an expert. We speculated that cognitive limitations might constrain the com-
plexity of our normative computer-based models for diagnosis; even in cases where there is,
in reality, great interdependency among evidence and diseases, experts may attend to only
the most salient dependencies.! In cases where our models were so complex as to require
intractable representational and computational effort, we could seek to reason with decision
theory about tradeoffs associated with alternative approximations [38,39).

The acquisition of a comprehensive dependency model promised to capture the knowledge
of experts with fidelity. We set out to examine the nature of dependencies in pathology, and
to develop techniques for managing the complexity associated with acquiring, representing,
and reasoning with these dependencies. We also undertook in-depth study of the foundations
of belief and action under uncertainty and of the relationship of the nonprobabilistic schemes
to probability theory.

10f course, we may be able to extend a normative model, built to capture an expert’s view of the world,
with new dependencies introduced through statistical study.
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We are not alone in the investigation of probabilistic and decision-theoretic inference
in medical expert systems; several other recent or ongoing research projects have explored
normative reasoning in medical expert systems. Projects include the Nestor system for rea-
soning about endocrinology disorders [40], the Glasgow Dyspepsia expert system for assisting
in gastroenterology diagnosis [41], the Neurex system for diagnosis of neurological findings
[42], the Medas system for assisting physicians in emergency medicine [43], and the Munin
system for diagnosis of muscular disorders (44].

7.2 Theoretical Study of Nonnormative Methods

Following our empirical analyses, we embarked on theoretical work addressing the relation-
ships of probability and decision theory to alternative methods. In some of our earliest the-
oretical research, we identified commonalities in several nonprobabilistic reasoning method-
ologies. A number of the popular belief-updating schemes employed by AIM researchers,
including the Mycin CF approach and the Internist-1 scoring scheme, could be shown to be
based on a stereotypical modular-updating paradigm [45]. Such schemes combine independent
measures of change in belief, or belief updates. We worked to develop an understanding of
what the foundations of belief-updating schemes are and of how alternative approaches were
related to probability theory [46,47). We showed how AIM researchers had without justifi-
cation assumed modularity among belief updates [48], and we demonstrated that uncertain
beliefs are fundamentally less modular than are beliefs held with certainty. We discussed how
the nonmodularity of uncertain knowledge frequently makes the rule-based calculi unusable
or intractable for reasoning with uncertainty in a coherent manner [49)]. v

A detailed analysis showed that the original Mycin CF model is inconsistent with prob-
ability theory and that we could make it consistent with a relatively simple modification
[47). The analysis clearly showed that the consistent version of the CF model implied in-
dependence constraints on evidence that were even stronger than had been assumed by the
medical-informatics researchers who had examined probabilistic updating with the assump-
tion of conditional independence; that is, investigators using the CF model were implicitly
assuming that evidence was conditionally independent given diseases hypotheses, as well as
given their negation [47].

We also found that the Mycin CF approach, and several other ad hoc belief-combination
schemes, confused many Al researchers and medical informaticists about belief-updates ver-
sus absolute beliefs [47,50]. Certainty factors were defined to be measures of the degree of
change in belief in a hypothesis, given evidence. Yet many people referred to—and assessed—
these quantities as measures of absolute belief.

More recent discussions, building on the earlier analyses, have also described the in-
adequate handling of prior probabilities, or prevalence rates, in rule-based expert systems
[51,52). When a CF-based updating scheme makes a recommendation, it uses measures
of belief assigned to competing diseases without consideration of priors. Thus, in effect, a
system based on this scheme treats all diseases as having equal prior probabilities.

In other work on the analysis of the relationship of probability theory to heuristic
uncertainty-management schemes, we have looked at the rationale that motivated researchers
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Figure 10: Overview of Pathfinder’s hypothetico-deductive architecture. First, the patholo-
gist enters salient features. Next, a probabilistic reasoner determines a differential diagnosis,
based on those features. Then, a value-of-information analysis identifies features that are
useful for narrowing the differential diagnosis. At the end of each cycle, the system makes
available explanations of its recommendations.

to create different nonprobabilistic schemes [51,53]. We have also examined the relationship
of the Internist-1 scoring scheme to probability theory [46]. In this work, performed in col-
laboration with the QMR team, we found relationships between numeric quantities used in
the Internist-1 system and probabilistic quantities.?

8 Decision-theoretic Inference in Pathfinder

In this section, we discuss details of the decision-theoretic computations employed in the
hypothetico-deductive approach of Pathfinder. We also contrast these techniques to those
used in earlier normative medical expert systems.

As shown in Figure 10, we use probability theory to construct the differential diagnosis
from a set of observations. This analysis is performed on a probability model that captures
the diagnostic prowess of the expert pathologist. Next, we use a decision-theoretic calcula-

2This work has led to ongoing research on the transformation of the QMR knowledge base to a probabilistic
model, and on the concomitant development of a normative version of the QMR system [54,55].
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tion to identify morphologic features or laboratory tests that are useful for narrowing this
differential diagnosis. In this phase, we examine both the costs and the benefits of observing
these features or tests.

8.1 Computation of the Differential Diagnosis

As we discussed in Section 4, distinctions in the Pathfinder model include disease states,
features, and a set of mutually exclusive and exhaustive values for each feature. Let m and
n denote the number of diseases and features, respectively. Also, let d,d;,...,d, denote
the disease entities. For the moment, let us suppose that each disease d; may be present
or absent. Let D; denote some instance of diseases. That is, D; denotes some assignment
of present or absent to each of the diseases d,d,,...,d,. For example, D, may represent
the state in which a patient has both AIDS and a nonHodgkin’s lymphoma, but no other
disease. Further, let f;, f3, ..., f, denote the features, and let v; denote an observed value
for the ith feature. Now imagine that we have observed values for ¢ features. To simplify
the notation, let us renumber the n features so that we have observed values for the first
q features. In Pathfinder, we are interested in determining the probability of each disease
instance, given the observations fyvy, fovs, ..., fovg. This quantity for disease instance D;
is known as the posterior probability of D;, and is denoted

P(D.i'flvl,fzvz, ceey fq"q)

Thus, the number of probabilities we seek to determine is exponential both in the number
of observed features and in the number of diseases.

In principle, we can assess directly the posterior probabilities from an expert. Aside
from the intractable nature of this task, most physicians are more comfortable assessing
probabilities in the opposite direction. That is, they are more comfortable assessing the
probabilities that the set of observations fivi, fovs, ..., fyv, will appear given a particular
disease instance D;, denoted

p(fl”laf?”?a" '1fqvqle)

Using Bayes’ theorem, we can compute from these probabilities and prior probability of
diseases instances p(D);), the desired posterior probabilities

p(fivy, favy, .-, fov4|D;) p(d;)
ED,, p(flvlaf2v2v R ,fqvq IDk) p(Dk)

where the sum over D runs over all disease instances. Unfortunately, this approach to the
problem is also intractable, because the number of probabilities of the form
p(fivy, favae, ..., fove|D;) is exponential both in the number of diseases and in the number
of features.

To manage the complexity of the general case, researchers, in the past, made two as-
sumptions. First, they supposed that all findings were conditionally independent, given any
disease state. That is, they assumed that, if the true disease state of the patient was known,

p(Dijlvl,f2v27 see quvq) =
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then the likelihood of seeing any observation f;v; did not depend on observations made about
any other features. Thus,

P(fiUiIDj,flUl, ooy fic1imy, fi+10i+1a ceey fqvq) = P(fivi|Dj)

Given this assumption, it follows from the axioms of probability [56] that

p(frvr, favas .-, fovqlD5) = p(fiv1|D;) p(fava|D;) ..., p(fqvalD;)

Second, investigators supposed that the traditional disease entities were mutually exclusive
and exhaustive. That is, they assumed that each disease instance corresponded to a situation
where only one disease was present. Given these two assumptions, the posterior probabilities
of disease were determined from the tractable computation

p(fiv1ld;) p(favald;) - .., p(fovqld;) p(d;)
Ya, p(fivaldi) p(favaldi) ..., p(fovolde) p(dk)

where d; represents the disease instance in which only disease d; is present. Thus, only
the conditional probabilities p(f;v;|d;) and the prior probabilities p(d;) are required for the
computation.

In Pathfinder, the assumption that diseases are mutually exclusive is appropriate, be-
cause co-occurring diseases almost always appear in different lymph nodes or in different
regions of the same lymph node, and a user can analyze each area of pathology separately.
Also, the large scope of Pathfinder makes reasonable the assumption that the set of dis-
eases is exhaustive. The assumption of global conditional independence, however, is highly
inaccurate. For example, given certain diseases, the finding that follicles are abundant in
the tissue section increases greatly the chances that sinuses in the interfollicular areas will
be partially or completely destroyed. Thus, Pathfinder has provided an excellent testbed
to study, in isolation, one of the central difficulties in knowledge acquisition for normative
expert systems.

p(djlflvl, f2”2, PN ,fqvq) =

8.2 Computation of Recommendations for Evidence Gathering

Suppose we have observed the set of features F' = {fi, fa,..., f;}. Given these observations,
should we examine some other set of features F,.,? In the decision-theoretic framework, we
can determine the appropriate action—to observe or not to observe the additional features—
by computing the value of information of observing Fp.w, and by comparing this value to
the cost of observing F,.,. We should make the additional observations if and only if the
value of information exceeds the cost. If there is no set of features for which this criterion
holds, we should halt the hypothetico-deductive cycle, and make a diagnosis.

To compute the value associated with observing a set of additional features, we need
to know the decision maker’s preference or utility for each possible clinical outcome. Let
Uy;,a; denote the utility of the situation in which a patient has disease d; and is diagnosed
as having d;. In Section 10, we discuss how to assess these quantities. Given a matrix of all
Uy, 4;, we first determine the optimal diagnosis for the patient, under the assumption that
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we observe no additional features. To determine this diagnosis, we use the MEU principle,
which states that the optimal diagnosis is the one that maximizes the expected utility of the
patient. Formally, let ¢ denote the set of feature-value pairs fiv;, fovs, ..., fyv, that we
have observed thus far. The optimal diagnosis, given observations ¢, denoted dz(¢), is then
given by

dz(¢) = argmax,, [Z p(di|#) Ud.-,d,] (1)
d;

where the function argmax, [] returns the diagnosis that maximizes its argument. We can
also compute the expected utility of this diagnosis, given the observations ¢. This quantity,
denoted EU(dz(¢)|#), is given by

EU(dz(4)4) = ; p(dil$) Ug, dz() (2)

Now imagine that we observe an additional set of features Fy.w. Let F' denote the union
of these features and the features in F, and let ¢' denote the set of observations for the

features in F’. Given these observations, we can compute the optimal diagnosis dz(¢') and
its expected utility EU(dz(¢')|¢):

dz(¢') = argmax,; [Z p(dilé) Ud,.,dj] (3)

EU(dz(¢')|¢) = ; p(dil$) Uy, aeig') (4)

We can also compute the expected utility of the original diagnosis, given observations ¢,
denoted EU(dz(¢)|¢)
EU(d$(¢)|¢) = 2 p(d,|¢) Ud.‘.dz(é) (5)
d;

The quantity EU(dz(¢)|¢') is never greater than the measure EU(dz(¢')|¢'), because, by
definition, the diagnosis dz(¢') maximizes the expected utility of the patient, given the ob-
servations ¢'. The difference between EU(dz(¢')|¢') and EU(dz(¢)|4') represents the value
of observing the set of features F,.,. To determine this value, in general, we must average
over all the possible observations associated with the new features. Let EV(Fpw|¢) denote
the value of observing the features in Fi.w, given that we have already made observations ¢
about the features in F. We obtain

EV(Facul$) = 3 p(4 |6) [EU(dz(4)|8') — EU(dz(¢)|¢)] (6)
"

The computation of EV(F,.w|¢) is exponential in the number of features in the set Fj ..
Consequently, researchers have adopted a myopic policy, in which the elements of Fy., are
restricted to one or a small number of features. In principle, this assumption could affect
the diagnostic accuracy of an expert system, because evidence gathering might be halted
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prematurely.® Nonetheless, Gorry has shown that the use of an approximation where F.,
is restricted to a single feature does not diminish significantly the diagnostic accuracy of an
expert system for congenital heart disease [27]. In Pathfinder, we similarly restrict F,., to
a single feature.

Part 11
New Research

9 Construction of a Normative Knowledge Base

We shall now focus on one of the most problematic areas of using decision theory in diagnosis:
the construction of a probability model for computing differential diagnoses. The phrase
“knowledge-acquisition bottleneck” has been used frequently among researchers in medical
informatics and in artificial intelligence to express frustration about the difficult process
of encoding knowledge. Indeed, the acquisition of knowledge has been considered a major
impediment to constructing genuinely useful computer aids. The knowledge acquisition
problem has been especially salient in the case of probability-based reasoning systems.

The construction of a normative knowledge base entails three phases: (1) identify im-
portant distinctions, (2) acquire relevant dependencies among these distinctions, and (3)
quantify the probabilistic strengths of the dependencies. Our decomposition of the model-
construction process into distinct phases should not imply a rigid separation among the
components of model building. We have found that there is typically a great deal of interac-
tion among the phases, because work on the development of one aspect of model construction
tends to lead to the incremental refinement of other aspects of the model.

9.1 The Identification and Refinement of Distinctions

The first phase of knowledge-base construction involves the identification of the disease
entities, the features relevant to diagnoses, and the set of mutually exclusive and exhaustive
values associated with each feature. One of the most difficult components of this portion
of knowledge acquisition is making the distinctions unambiguous. To accomplish this task,
we use a technique from decision analysis called the clarity test. Consider the event large
cells are abundant. Using the clarity test, we ask the expert: “Would an omniscient being
be able to determine the presence of abundant large cells with certainty in a particular
lymph-node section?” If the expert answers “no,” the distinction does not pass the clarity
test. We must then work to make the definition of the distinction more precise. This task
is typically an iterative one. In our example, the expert might settle on the more precise

3For example, suppose that only two feature remain unobserved. In this case, a value-of-information
analysis on each feature alone might indicate that neither feature is cost effective for observation, yet the
value of information for the feature pair could exceed the cost of their observation. Furthermore, the
observation of these two features could change the diagnosis significantly.
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event of lymphoid cells greater than 20 microns in diameter occupy more than 70 percent of
the total cell population in nonfollicular areas.

Pathfinder’s diseases, features, and feature-value pairs were determined in several meet-
ings among four hematopathology experts (Drs. Costan Berard, Jerome Burke, Ronald
Dorfman, and Bharat Nathwani). The initial consensus model was developed through spir-
ited communication among the experts and knowledge engineers. During this process, the
knowledge engineers noted that many features traditionally considered as independent pieces
of evidence in pathology could be shown to have overlapping or interdependent relevance
to diseases. Attempts to clarify and redefine features, so as to optimize the features’ inde-
pendent diagnostic relevance, were typically received with enthusiasm by the pathologists.
We found that many features that had been described traditionally by pathologists had not
before been scrutinized from an informational perspective.

9.2 Capture and Representation of Probabilistic Dependencies

Two difficulties have provided major challenges to investigators attempting to construct
normative expert systems in medicine: (1) more than one disease may be present at one
time; and (2) features are probabilistically dependent on one another, even when diseases
that are present in a patient are known with certainty. As we discussed in Section 8.1,
Pathfinder has provided an excellent testbed to study the latter problem in isolation.

9.2.1 Belief Networks

We have addressed the problem of probabilistic dependencies by using a representation de-
veloped in the decision-science community called belief networks [57,58]. The belief network
is a graphical knowledge-representation language that encodes probabilistic dependencies
among propositions and events. The representation rigorously describes probabilistic re-
lationships, yet has a human-oriented qualitative structure that facilitates communication
between the expert and the probabilistic model. Moreover, the representation can represent
any probabilistic-inference problem.*

A belief network is a directed acyclic graph that contains nodes that represent distinc-
tions, and arcs that represent dependencies among those distinctions. Figure 11 shows a
belief network for the problem of distinguishing NS (ordinary nodular sclerosis Hodgin’s dis-
ease) from CP (cellular phase of nodular sclerosis Hodgin’s disease). The node DISEASE
represents the two possible diseases, and the nodes CAP THICKENING (capsule thickening of
10 or more lymphocyte diameters), FCB (fibrocollagenous bands), and FIBROSIS represent
the features that are relevant to the discrimination of these two diseases. Each node in the
belief network is associated with a set of mutually exclusive and exhaustive values. For this
inference problem, the values of the node DISEASE are NS and CP, and the values for each
of the features nodes are T (true or present) and F (false or absent).

In a belief network, an arc from node z to node y reflects an assertion by the builder of
that network that the probability distribution for y may depend on the value assigned to z.

4In this paper, we address only the representation of probabilistic-inference problems with belief networks.
Nonetheless, an extension of belief networks called influence diagrams [57) can represent any decision problem.
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We say that the z conditions y. For example, in Figure 11, the arcs from the disease node
to the feature nodes reflect the expert’s belief that the probability of observing a particular
value for each feature may depend on the disease that is present. In addition, the arc from
CAP THICKENING to FCB reflects the expert’s assertion that the probability distribution
for FCB may depend on whether or not there is capsule thickening, even when the identity
of the disease is known. Conversely, the lack of arcs in a belief network reflect assertions
of conditional independence. In Figure 11, there is no arc between CAP THICKENING and
FIBROSIS nor is there an arc between FCB and FIBROSIS. The lack of these arcs encode the
expert’s assertion that FIBROSIS is conditionally independent of CAP THICKENING and FCB,
given the identity of the patient’s disease.

Each node in a belief network is associated with a set of probability distributions. In
particular, a node has a probability distribution for every instance of its conditioning nodes.
For example, in Figure 11, FIBROSIS is conditioned by DISEASE. Thus, FIBROSIS has two
probability distributions (shown below the belief network in Figure 11): the probability dis-
tribution for observing fibrosis given that a patient has NS, and the distribution for observing
fibrosis given that a patient has CP. Similarly, CAP THICKENING has two probability distribu-
tions. In contrast, FCB is conditioned by both DISEASE and CAP THICKENING. Consequently,
this node has four distributions corresponding to the instances where DISEASE is NS or CP,
and where CAP THICKENING is T or F. Finally, DISEASE has only one distribution—the prior
probability of disease—because it is not conditioned by any nodes.

Given any belief network, we can construct a joint probability distribution for the entire
domain of that network. We can build this distribution from the probability distributions as-
sociated with each node in the network, and from the assertions of conditional independence
reflected by the lack of arcs in the network. For example, as shown in Figure 11, let d, ¢, b,
and f represent the variables DISEASE, CAP THICKENING, FCB, and FIBROSIS, respectively.
From the product rule for probabilities [56], we know tha.t the joint probability distribution
for these variables is given by

p(d,e,b, f) = p(d) p(c|d) p(blc,d) p(fIb, c,d) (M

In addition, we know that FIBROSIS is conditionally independent of CAP THICKENING and
FCB, given DISEASE. That is,

p(f1b,¢,d) = p(f|d) (8)
Combining Equations 7 and 8, we have
p(d,c,b, f) = p(d) p(c|d) p(blc,d) p(f1b) (9)

The four sets of probability distributions on the right-hand side of Equation 9 are exactly
those distributions associated with the nodes in the belief network.

Thus, using a belief network, knowledge engineers can greatly simplify the capture of
probabilistic dependencies, without the need to sacrifice a precise probabilistic representa-
tion nor the need to make erroneous assumptions of conditional independence. If an expert
believes that—for example—CAP THICKENING and FCB are conditionally independent, he
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FIBROSIS

p.d=NS) =0.95 p(b=Tlc=F,d=Ns) =0.05

p(b=Tlc=T,d=Ns) =0.35
p(c=T1d=Ns) =09 p(b=Tlc=F d=cp) =0.00
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p(f =T 1d=Ns) =0.05
p(f=T1d=cp) =0.00

Figure 11: A belief network for the discrimination of the diseases NS (ordinary nodular
sclerosis Hodgkin’s disease) and CP (cellular phase nodular sclerosis Hodgkin’s disease). The
features relevant to this diagnostic problem are CAP THICKENING (capsule thickening of
10 or more lymphocyte diameters), FCB (fibrocollagenous bands), and FIBROSIS. The arcs
from the disease node to the feature nodes reflect the expert’s belief that the likelihood of
observing each feature may depend on the disease that has manifested in the lymph node.
The arc from CAP THICKENING to FCB represents the expert’s assertion that the probability
of FCB may depend on whether or not there is capsule thickening, given disease. Conversely,
the lack of arcs from CAP THICKENING and FCB to FIBROSIS represent the expert’s belief
that FIBROSIS is conditionally independent of the other two features, given disease. The
probability distributions associated with each node are shown below the belief network (T
denotes true or present, and F denotes false or absent).
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can represent this dependency explicitly. On the other hand, if he believes that the fea-
tures are conditionally independent, he can represent this assertion. In either case, we can
construct a joint probability distribution for the domain.

Furthermore, builders of expert systems can use belief networks to simplify probabilistic
inference—in the case of Pathfinder, the computation of the probability of disease given
observations. Researchers have developed several algorithms that exploit the assertions of
conditional independence embedded in a belief network for this computation [59,58,60,61].
In Pathfinder, we use a special case of the algorithm described in [60].

9.2.2 Similarity Networks for Focusing Attention

Figure 12 illustrates the complete belief network for Pathfinder. In the figure, we have
omitted the arcs from DISEASE to the feature nodes to highlight the conditional dependencies
among the features. The belief network is complex. In fact, we were unable to construct
this network directly. Instead, we developed a representation, called a similarity network,
that allowed us to decompose the construction of this belief network into a set of tasks of
manageable size [51,62,63)].

A similarity network consists of a similarity graph and a collection of local belief networks.
A similarity graph is an undirected graph whose vertices (nodes) represent the mutually ex-
clusive diseases, and whose edges connect diseases that an expert considers to be similar or
difficult to discriminate in practice. Figure 13 shows the similarity graph for Pathfinder. The
edge between INTERFOLLICULAR HD (interfollicular Hodgkin’s disease) and MIXED CELLU-
LARITY HD (mixed-cellularity Hodgkin’s disease), for example, reflects the expert’s opinion
that these two diseases are often mistaken for each other in practice.

Associated with each edge in a similarity graph is a local belief network. The local belief
network for an edge is a belief network that contains only those features that are relevant to
the differential diagnosis of the two diseases that are connected by that edge. The local belief
networks are typically small, because the disease pairs for which they are constructed are
similar. For example, the belief network in Figure 11 is the local belief network for the edge
between CELLULAR PHASE NSHD (cellular phase nodular sclerosis Hodgkin’s disease) and
NODULAR SCLEROSING HD (ordinary nodular sclerosis Hodgkin’s disease) in the similarity
graph. The local belief network contains only the features CAP THICKENING, FCB, and
FIBROSIS. Thus, the expert believes that only these features are relevant to the differential
diagnosis of these two types of nodular sclerosis Hodgkin’s disease.

As another example, the local belief network in Figure 14 is associated with the edge be-
tween L&H DIFFUSE HD (lymphocytic and histiocytic diffuse Hodgkin’s disease) and L&H
NODULAR HD (lymphocytic and histiocytic nodular Hodgkin’s disease) in the similarity
graph. The local belief network contains only the features L&H NODULES (lymphocytic
and histiocytic nodules) and PTGC (progressively transformed germinal centers). The lack
of the arc between the two features reflects the expert’s assertion that the two features are
conditionally independent, given the presence of either of these two diseases.

Given the similarity graph and all its associated local belief networks, we can construct
the belief network for the entire domain of lymph-node pathology—called the global belief
network—with a simple procedure. In particular, we construct the graph union of all the
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Figure 12: The complete belief network for Pathfinder. The node DISEASE contains over 60
lymph-node diseases. The conditioning arcs from DISEASE to other nodes are not shown so

that the conditional dependencies among features are highlighted. The Appendix contains

a key to the feature and disease abbreviations.
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The nodes in the graph represent the

mutually exclusive diseases that can manifest in a lymph node. Edges connect diseases that
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Figure 13: The similarity graph for Pathfinder.
the expert considers to be similar.
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Figure 14: The local belief network for the problem of differentiating L&H DIFFUSE HD
(lymphocytic and histiocytic diffuse Hodgkin’s disease) and L&H NODULAR HD (lymphocytic
and histiocytic nodular Hodgkin’s disease).

local belief networks. The operation of graph union is straightforward. The nodes in the
graph union of a set of graphs is the simple union of the nodes in the individual graphs.
Similarly, the arcs in the graph union of a set of graph is the simple union of the arcs in the
individual graphs. That is, a node (or arc) appears in the graph union, if and only if there is
such a node (or arc) in at least one of the individual graphs. The belief network in Figure 12
is the belief network formed by this procedure.

Under relatively weak conditions, the global belief network constructed is this manner
is valid [63]. That is, any joint distribution that satisfies the assertions of conditional in-
dependence implied by the local knowledge maps also satisfies the assertions of conditional
independence implied by the global knowledge map. We say that the construction of the
global knowledge map from the similarity network is sound. Thus, the similarity-network
representation greatly facilitates the construction of large belief networks. A similarity net-
work allows an expert to decompose the task of building a large belief network into modular
and relatively small subtasks. Using a similarity network, an expert can focus his attention
on relatively small diagnostic problems that correspond to actual clinical dilemmas.

Several important features of the similarity-network representation are discussed in [62]
and [63]. For example, similarity networks can be extended to include local belief networks
for sets of hypotheses that contain two or more elements. Essentially, we need only to replace
the similarity graph with a similarity hypergraph. (A hypergraph consists of nodes and edges
among node sets of arbitrary size.) The representation also can be used in situations where
diseases are not mutually exclusive.

A similarity network derives its power from its ability to represent assertions of condi-
tional independence that are not conveniently represented in an ordinary belief network. To
illustrate such an assertion, we let variable d represent the mutually exclusive and exhaustive
diseases d,,ds,...,d,. Further, let dc denote a proper subset of diseases. If d and feature f
are independent, given that one of the elements of d¢ is present, we say that f is not relevant
to dc. Formally, a feature f is not relevant to the set dc, if and only if

p(di|fv,dc) = p(dildc) (10)

for all values v of variable f, and for all diseases d; in dc. In Equation 10, the set dc, which
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conditions both probabilities, denotes the disjunction of its elements. We call the form of
conditional independence represented by Equation 10 subset independence. Using Bayes’
theorem, we can derive an equivalent criterion for subset independence. In particular, we
can show that a feature f is not relevant to the set of diseases dc, if and only if

p(fvldi) = p(fvld;) (11)

for all pairs d;,d; € dc, and for all values v of feature f.

Assertions of subset independence are asymmetric. In general, an assertion of conditional
independence is asymmetric if it holds for only some instances of its variables. Assertions of
subset independence, in particular, hold for only proper subsets of the disease variable d.

We cannot easily encode subset independence or other forms of asymmetric conditional
independence in an ordinary belief network [63]. In contrast, such assertions are represented
naturally by local knowledge maps. In particular, if we omit the feature f from the local
knowledge map for the diseases d; and d;, then we are asserting that f is not relevant to
the set {d;,d;}. In the next section, we examine how to exploit subset independence for
probability assessment.

9.3 Quantification of Probabilistic Relationships

In Section 9.2.1, we saw that each node in a belief network is associated with a set of prob-
ability distributions. In Figure 11 we represented these distributions simply as a table of
numbers. We can, however, represent such distributions in a similarity network. For exam-
ple, consider the feature PTGC (progressively transformed germinal centers). In the global
knowledge map (see Figure 12), this feature is conditioned by DISEASE. Thus, we need to
assess the probability distribution for PTGC, given each disease. Figure 15 shows how we
can represent these assessments, using the Pathfinder similarity graph. In the figure, only
the portion of the similarity graph for Hodgkin’s diseases is shown. To simplify the presen-
tation, we shall restrict our attention to these diseases in the remainder of this discussion.
The rounded rectangle labeled with the feature name contains the mutually exclusive and
exhaustive values for the feature: ABSENT and PRESENT. The two numbers under each dis-
ease are the probability distribution for the feature given that disease. For example, the
probability that PTGC is PRESENT, given L&H NODULAR HD, is 0.1.

As another example, consider the feature CLASSIC SR (classic Sternberg-Reed cells).

In the global knowledge for Pathfinder, the node DISEASE and the node MONONUCLEAR ..

SR (mononuclear variants of Sternberg-Reed cells) are the parents of CLASSIC SR. Conse-
quently, we need to assess distributions for CLASSIC SR, given both DISEASE and all possible
values of MONONUCLEAR SR. Figure 16 shows how we can encode these assessments, using
Pathfinder’s similarity graph. Figure 16(a) contains distributions for classic Sternberg-Reed
cells, given each Hodgkin’s disease, for the case where mononuclear variants of Sternberg-
Reed cells are rare (less than three cells in a 4~square-centimeter section of the lymph node).
Similarly, Figure 16(b) contains such distributions for the case where mononuclear variants
of Sternberg-Reed cells are present (three to 20 cells in a 4-square—centimeter section of
the lymph node). These two sets of distributions represent quantitatively the expert’s be-
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Figure 15: Probability assessment using a similarity network. The probability distributions
for the feature PTGC, given the various types of Hodgkin’s disease, are shown. The rounded
rectangle labeled with the feature name contains the mutually exclusive and exhaustive
values for the feature: ABSENT and PRESENT. The numbers below each disease are the
probability distribution for PTGC given that disease. For example, the probability that
PTGC is PRESENT, given L&H NODULAR HD, is 0.1.
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lief that the chances of seeing classic Sternberg-Reed cells are greater when there are more
mononuclear variants of Sternberg-Reed cells.

We can use the assertions of subset independence encoded in the similarity network to
simplify probability assessment. Let us again consider the assessments for PTGC in Figure 15.
A black oval on an edge in the similarity graph reflects that the feature PTGC is present in
the local knowledge map corresponding to that edge. Conversely, a white oval on an edge
represents that this feature is absent from that local knowledge map. As shown in the
figure, when a feature is omitted from a local belief network, the conditional probability
distributions on either side of an edge are equal. This observation follows from Equation 11
and from the fact that any feature omitted from a local belief network cannot be relevant
to the two diseases associated with that map. Consequently, for the feature PTGC, we need
to assess probability distributions given only L&H DIFFUSE HD and L&H NODULAR HD. The
remaining distributions must be equal to the distribution for L&H DIFFUSE HD.

A problem with this approach to assessment is illustrated in Figure 17. Specifically, the
probability distributions for the feature CAP THICKENING (capsule thickening) given INTER-
FOLLICULAR HD and DIFFUSE FIBROSIS HD are equal. Because we did not connect these
diseases in the similarity graph, however, the equality of these distributions remains hidden
until we assess the actual probabilities. We can remedy this difficulty by composing a local
belief network for every pair of diseases. For domains such as Pathfinder’s that contain many
diseases, however, this alternative is impractical. Alternatively, we can compose a partition
of the diseases for each feature to be assessed. In composing a partition, we place each
disease into one and only one set. We place two or more diseases in the same set only if the
nondistinguished variable associated with the partition is not relevant to those hypotheses
in the set. After composing the partition for a given feature, we assesses probability distri-
butions for the feature, given each disease. Given Equation 11, however, we need to assess
only one probability distribution for each set in the partition.

A partition for the feature CAP THICKENING is shown in Figure 18. In this partition,
the diseases are divided into four sets: the singleton sets containing NODULAR SCLEROSIS
HD, SYNCYTIAL NSHD, and CELLULAR PHASE NSHD, and the set labeled HODGKIN’S that
contains the remaining diseases. The partition reflects the assertion that the feature CAP
THICKENING is relevant to none of the six diseases in the set HODGKIN’S. That is, if the
expert knew that the true disease was in the set HODGKIN’S, then his observation of the
status of the lymph-node capsule would not change his relative probabilities of the diseases
in that set. Consequently, we need to assess only four probability distributions. These
distributions, shown below the sets in Figure 18, are the same as those shown in Figure 17.
By using this partition, we uncover equalities among the distributions for CAP THICKENING
before we assess probabilities; we thereby avoid the assessment of three distributions.

Using partitions to assess the joint probability distribution for Pathfinder, we decreased
the time to assess a belief network by more than a factor of five. At first, this observation
may seem surprising, given that a partition must be composed for each conditioning instance
of every feature. Two factors contributed to the efficiency of the approach. First, the task of
composing a single partition is straightforward. Apparently, as is the case with assertions of
symmetric conditional independence, people find it easy to make judgments of subset inde-
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Figure 16: Probability assessment for dependent features. (a) The probability distributions
for the feature CLASSIC SR (classic Sternberg-Reed cells), given each Hodgkin’s disease, and
given that MONONUCLEAR SR (mononuclear variants of Sternberg—Reed cells) are RARE
(less than three cells in a 4-square—centimeter section of the lymph node). (b) Similar
distributions given that mononuclear variants of Sternberg-Reed cells are PRESENT (three
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Figure 17: Hidden equivalence in a similarity network. The assessment of the feature CAP
THICKENING is shown. The values for the feature are ABSENT (<5 lymphocyte diame-
ters), SLIGHT (5-10 lymphocyte diameters), MODERATE (10-20 lymphocyte diameters), and
MARKED (>20 lymphocyte diameters). Although the distributions for INTERFOLLICULAR
HD and DIFFUSE FIBROSIS HD are equal, this equality is hidden until the actual assessments
are made, because the two diseases are not connected in the similarity graph.
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Figure 18: Assessment of probabilities using a partition. The partition contains four sets of
diseases consisting of three singleton sets and the set labeled HODGKIN’S. We need to assess
only one probability distribution for each set.

38



pendence without assessing the probabilities underlying such judgments. Second, partitions
often are identical or related from one feature to another. In constructing partitions, we can
use this close relationship to avoid constructing each partition from scratch.

9.4 A Graphical Knowledge-Acquisition Tool

A crucial step in the development of the probabilistic-dependency model for the lymph-node
system was the construction of a computer-based knowledge-acquisition tool, called SimNet,
based on the similarity-network representation [63]). All the figures of belief networks and
similarity networks shown in this paper were created with SimNet.

The tool allows similarity networks to be constructed and edited on a large bit-mapped
display. In practice, an expert first uses the system to create a similarity graph. The expert
then selects an edge of interest, and the program automatically sets up a belief-network
template (containing only the disease node) from which the expert can construct the local
belief network. As the belief networks are created by the expert, the global belief network is
constructed automatically. An expert can then use SimNet to assess the probabilities associ-
ated with the global belief network. Using the program, the expert can encode probabilities
directly in the similarity graph, or in partitions.

10 Decision Theory for Evidence Gathering

One of the major components of the hypothetico-deductive cycle is the identification of
features that are cost-effective for narrowing the differential diagnosis. As we discussed in
Section 8.2, such features are identified by the computation of value of information. These
computations, in turn, require a utility model for diagnosis. In this section, we discuss
Pathfinder’s utility models, and describe extensions to traditional value-of-information com-
putations.

10.1 A Utility Model for the Patient

The utility Uy,4;, summarizes the preferences of the decision maker for the situation in
which a patient has disease d;, but is diagnosed as having disease d;. Factors that influence
such preferences include the length of the patient’s expected life, the pain associated with
treatment and with the disease itself, the psychological trauma to the patient and his family,
and the monetary cost associated with treatment and with disability.

The most fundamental question in utility assessment is: Who is the decision maker?
From our perspective, a pathologist is only a provider of information. Thus, the Uy, 4, in the
utility model of a computer-based diagnostic system should reflect the patient’s preferences.
For example, consider the situation where a pathologist believes, after reviewing a case,
that the probability of the benign infection mononucleosis is 0.9, and that the probability of
Hodgkin'’s disease is 0.1. Should the patient be treated for Hodgkin’s disease now, or should
he wait for more definitive diagnostic signs to develop? Delaying treatment of Hodgkin’s
disease decreases the chances of long-term survival if the patient has this condition. On the
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other hand, the treatment for Hodgkin’s disease is highly invasive and thus carries significant
risk. In addition to suffering the acute trauma of chemotherapy and radiotherapy, a patient
is likely to become sterile and is put at increased risk for developing other cancers. The
decision about therapy will depend on how the patient feels about the alternative outcomes.
Different patients may have dramatically different preferences.

In practice, pathologists do not acquire detailed knowledge about the preferences of
patients for each case. Instead, pathologists make a best guess about the preferences of their
patients. Pathologists traditionally assume that their best guess about patient utility will
suffice, and that patient-specific variations are not significant enough to warrant the cost of
acquiring patient preferences. Indeed, the standards of practice in pathology, and throughout
medicine, center on the role of the physician as the ultimate decision maker. The development
of efficient techniques for acquiring and representing individual patient preferences could
make the use of such knowledge more feasible, and thus more common. Several researchers
have investigated the dynamic assessment of patient preferences [64,65,66]. In one approach,
researchers encode several prototypical utility models, and use attributes of the patient’s
personality to choose the most appropriate model for that patient.

For the Pathfinder utility model, we asked our expert to imagine that he was a pa-
tient, and to provide the Uy, 4; accordingly. We hope to extend our current approach with
techniques for custom-tailoring utilities to individual patients.

A difficulty in creating the utility model was developing a unit of preference that could
be used to measure the utilities associated with both major and minor misdiagnoses. A
version of Howard’s worth-numeraire model [67] provided a solution to this problem. In
this model, utilities associated with major misdiagnoses are measured in terms of life-and-
death gambles, whereas utilities associated with minor diagnoses are measured in terms of
dollars. To measure the utility of a major misdiagnosis, for example, we asked the expert to
imagine that he had—say—Hodgkin’s disease, and that he had been misdiagnosed as having
mononucleosis. We then asked him to imagine that there was a magic pill that would rid him
of this disease with probability 1 — p, but would kill him, immediately and painlessly, with
probability p. The expert then provided the value of p that made him indifferent between
his current situation and the situation in which he takes the pill. To measure the utility
of a minor misdiagnosis—say, the diagnosis of cat-scratch disease in a patient with viral
lymphadenitis—we simply asked the expert how much he would be willing to pay to be
cured if he faced such a misdiagnosis.

The worth-numeraire model of Howard provides a means to convert utilities expressed in
monetary terms to small probabilities of immediate, painless death. The lymph-node expert,
for example, had a conversion rate of $20 per micromort. A micromort is a one-in—1-million
chance of immediate, painless death. The conversion makes possible the direct comparison
of utilities for minor and major misdiagnoses.

Like many of its predecessors, the model determines what an individual would have to
be paid to assume some chance of death, and what he would be willing to pay to avoid a
given risk. Also like many of its predecessors, the model shows that, for small risks of death
(typically, p < 0.001), the amount someone would be willing to pay (or would have to be
paid) to avoid (or to assume) such a risk is linear in p. That is, for small risks of death,
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an individual acts like an expected-value decision maker with a finite value attached to his
life. For significant risks of death, however, the model deviates strongly from linearity. For
example, the model shows that there is a maximum probability of death, beyond which an
individual will accept no amount of money to risk that chance of death. Many people find
this result to be intuitive.

10.2 A Utility Model for Research and Education

We designed Pathfinder primarily to help the community pathologist to make decisions
about patient cases. Nonetheless, our program would be useful in a research and education
setting as well. In these settings, the patient utility model may not be ideal. For example,
academic pathologists seek to increase their understanding of the clinical significance of the
most subtle disease distinctions. In particular, they are interested in identifying as many
subtypes of diseases as possible, in the hope that medical researchers will develop more
specific and effective therapies. Thus, academic pathologists are interested in discriminating
diseases that currently have the same therapy and prognostic course. In this context, a
utility model should treat all distinctions as being equally important; that is, Uy, 4, = 1 and
Ua; a; = 0 for d; # d;. We call this utility model a discrimination model. A discrimination
model is also appropriate in an educational setting because pathologists in training should be
sensitized to all available distinctions. The use of a patient utility model in this setting could
obscure useful distinctions. Thus, Pathfinder makes available both the patient utility model
and the discrimination model for reasoning about the best observations to make. That is,
Pathfinder performs value-of-information computations on each model separately to provide
recommendations for evidence gathering.

In the computations based on the discrimination model, we employ an efficient approx-
imation to the computation of value of information [68]. This approximation makes use of
a measure of information called entropy. The higher the entropy of a differential diagnosis,
the greater our uncertainty about the identity of the patient’s illness. In this approach, fea-
tures are ranked by the change in expected entropy of the differential diagnosis that results
from their observation. Ben-Bassat has shown theoretically that the value of information
of a feature, given a discrimination model, is approximately closely by the expected change
in entropy of the differential diagnosis. Other researchers have used this approximation in
medical expert systems [28].

10.3 Integration of Heuristic Abstraction

So far, we have discussed evidence-gathering strategies that consider only the most specific
disease distinctions available to Pathfinder. We have found that pathologists tend to work
at levels of abstraction higher than the level of analysis provided by these detailed decision-
theoretic computations [1,69].

We and other researchers have observed that the pathologists’ evidence-gathering strate-
gies often can be described by the traversal of disease hierarchies [1,70]. One such disease
hierarchy is shown in Figure 19. When using this hierarchy, a pathologist first considers
features that discriminate between only benign and malignant diseases. If the differential
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Figure 19: A heuristic problem-solving hierarchy that shows a pathologist categorizes dis-
eases into a sequence of abstraction classes to manage the complexity of diagnostic inference.

diagnosis is narrowed to only malignant diseases, the pathologist then discriminates between
primary and metastatic diseases. If metastatic diseases are ruled out, the pathologist con-
siders features that discriminate between non-Hodgkin’s and Hodgkin’s. Finally, when all
diseases under consideration are in the same group, a pathologist discriminates among these
diseases individually.

The use of abstraction hierarchies by our domain expert, and other pathologists partic-
ipating in Pathfinder research, can be viewed as a coarsening of the utility models. Rather
than apply the value-of-information calculations to single diagnostic entities, we apply the
calculations to groups, considering the probability of each group, and the utility of misdi-
agnoses among groups of diseases. That is, we allow the pathologist to consider the utility
Ue,..G,, associated with misdiagnosing patients who have a disease in group G,,, instead
assigning a disease in group G,. The utility of misdiagnosis among diseases within each
group is considered to be zero.

The utilities Ug,, ¢, can be assessed off line and can be stored as grouped utility matrices.
Alternatively, during a case analysis, a physician may wish to define groups of hypotheses that
reflect his current perspective on the problem. For these situations, we can approximate the
utilities dynamically from the utilities Uy, 4, for single diseases, available in the Pathfinder’s
ungrouped utility models. For example, we can approximate the utility of misdiagnosis
_ among two groups G; and G; to be the average of utilities Uy, 4;, where d; is an element
of Gy, and where d; is an element of G,; or, we can take the cost of misdiagnosis between
groups G, and G; to be the maximum utility Uy, 4,, such that d; and d; are elements of G,
and Gg, respectively.

We have developed a heuristic abstraction facility that allows a user to define such
groups of diseases [68). The current capability is based on a grouped-discrimination model.
In this model, we set Ug,, g,, = 0 for all G, and we set Ug, g, = Ug,g, for all G; # G;
and G, # G,. Multiple windows—each representing a different perspective on the same
problem—may be displayed simultaneously. By clicking on one of the windows, a user
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activates the perspective. He then can ask the system to generate a recommendation about
the best way to discriminate among the leading disease classes represented in the window.

By using evidence-gathering strategies based on grouped utility models, we can introduce
human-oriented flexibility to recommendation generation. We were not the first investigators
to discover such abstraction in clinical problem solving. Cognitive psychology studies have
found that clinicians, in a variety of specialty areas of medicine, frequently make use of
abstraction [15,16]. We join the cognitive psychologists in conjecturing that decomposing
the task of diagnosis into familiar discriminatory subproblems may be useful for managing
the complexity of clinical problem solving for humans.

11 Explanation of Pathfinder Recommendations

Most medical-informatics researchers agree that the comprehension of automated reasoning
by users is an important factor in the acceptance of advice from expert systems [71,72].
Several researchers have criticized probabilistic reasoning systems, saying that the advice
they generate is difficult to explain [29,73]. We believe that the difficulty of explaining
decision-theoretic inference is related to the inescapable complexity of normative analysis.
Our approach to explanation is to trade off the opacity of a complete explanation with the
transparency of simpler incomplete summaries of the discriminatory power of a feature.

Recall that there are two determinants of whether or not a feature is useful for obser-
vation: the value of information of observing that feature, and the cost of observing that
feature. The latter component is easy to display to the user. For example, in one version
of Pathfinder, we display the monetary cost associated with observing the feature (see the
bottom of Figure 20). In other versions, we display other components of cost, including
estimates of the time it takes to observe a feature, and the degree of tedium associated with
such a task. ]

Communicating to the user the details of value-of-information computations, however,
is more difficult. In principle, the program should display the effect of entering each value
of a feature on every disease on the differential diagnosis, as well as the likelihood that each
value will be observed, given the differential diagnosis. In Pathfinder, however, we show the
effect of entering each value of a feature on only two groups of diseases in the differential
diagnosis. In particular, for two groups of diseases G, and G;, we generate a set of likelihood
ratios for each possible value v of the feature

p(fIG1)
p(fv|G,)

where p(fv|G;), ¢ = 1,2, denotes the probability that fv is observed given that the true
disease state of the patient lies in G;. We then display graphically the logarithm of each
likelihood ratio, known as the weight of evidence of the feature-value pair fv in favor of
G relative to G, [21]. Several other probability-based expert-system projects have used
likelihood ratios and weights of evidence to explain the relevance of evidence to hypotheses
under consideration [41,40,42,43].
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Figure 20: A graphical justification for the recommendation of MONOCYTOID CELLS. For
each value of the feature, the length and direction of a bar reflects the change in the prob-
ability of AIDS EARLY relative to the change in the probability of FLORID FOLLIC HYPERP,
given the observation of that feature-value pair. The justification also includes the monetary
cost of observing the feature.

We experimented with qualitative text and graphical displays of weights of evidence. We
found a graphical approach to be the most effective. A bit map of Pathfinder’s graphical
justification of the diagnostic utility of the feature monocytoid cells is displayed in Figure
20. In the figure, G is the singleton set that corresponds to AIDS EARLY (the early phase of
AIDS); G, is the singleton set that corresponds to the benign disease FLORID FOLLIC HYPERP
(florid reactive follicular hyperplasia). For each value of the feature, a bar is displayed that
extends toward either AIDS EARLY or FLORID FOLLIC HYPERP. For a given value of the
feature, the length of the bar is proportional to the absolute value of the weight of evidence
of that feature-value in favor of AIDS EARLY relative to FLORID FOLLIC HYPERP; if the bar
extends toward AIDS EARLY, then the weight of evidence is positive, and that feature-value
favors AIDS EARLY; conversely, if the bar extends toward FLORID FOLLIC HYPERP, then the
weight of evidence is negative, and that feature-value favors FLORID FOLLIC HYPERP. By
glancing at the graph, we can determine that the absence of monocytoid cells favors FLORID
FOLLIC HYPERP, whereas the presence or prominence of these cells favors AIDS EARLY.
These facts suggest immediately that the feature MONOCYTOID CELLS is a useful feature to
evaluate, as the cost of observing this feature is negligible.
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Part II1
System Evaluation

12 Previous Evaluations

Medical expert systems can be evaluated according to their performance across several differ-
ent dimensions. For example, we can evaluate the diagnostic accuracy of an expert system,
the effect that use of such a system can have on the accuracy of diagnoses rendered in prac-
tice, or the value to the physician of making such a system available for use in a clinical
setting. Several investigators have discussed the problems with determining the value of
expert systems in clinical decision making [71,72,74,34]. To date, most evaluations have not
attempted to characterize the frequency with which physicians will use an available expert
systems and the difference in diagnostic performance between an unassisted and assisted
clinician. Instead, studies have examined the diagnostic accuracy of expert systems relative
to the performance of physicians or to gold-standard diagnoses.

Investigators have shown that simple probabilistic systems can perform at a level com-
parable to that of experts, and sometimes at a considerably higher level [28,75,76]. The
system of deDombal averaged greater than 90 percent correct diagnoses of acute abdominal
pain; expert physicians averaged only 65 to 80 percent correct with the same cases [75]. Re-
searchers interested in the efficacy of nonprobabilistic approaches have undertaken several
formal and informal evaluations of the performance of rule-based and quasiprobabilistic sys-
tems. Evaluation of the rule-based Mycin system [77] studied the performance of the system
against an expert gold-standard {34]. The evaluation showed that Mycin’s recommendations
were approved by a majority of experts in approximately 75% of cases. Investigators also
studied the usefulness of the rule-based Oncocin system [78]—a program for managing on-
cology protocols—for improving data collection [79]. Researchers analyzed the completeness
of clinical trial data before and after Oncocin was introduced into a clinical setting. Data
completeness was increased significantly with the introduction of the system. The study
showed that data recorded about observations and test ordering are significantly improved
with use of the system.

13 Evaluation of Pathfinder’s Diagnostic Accuracy

Over the last year, we performed an evaluation of Pathfinder that compared the diagnostic
accuracy of inference with a knowledge base containing conditionally independent features,
and inference with a more sophisticated dependency model. Most significant in our evalua-
tion is the development of a novel combination of ad hoc and decision-theoretic metrics for
exploring the value of different systems. The Pathfinder team is planning to perform a sim-
ilar study to analyze the value of making available normative expert systems to community
pathologists.

In our evaluation, we compared the accuracy of the current version of Pathfinder, in which
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probabilistic dependencies are represented, with that of an earlier version of the program,
in which all features are assumed to be conditionally independent [63]. In the evaluation
study, 53 cases were selected in sequence from a large library of referrals. For each case, a
community pathologist reported salient morphologic features to both versions of Pathfinder.
Often, the pathologist reported (to both systems) additional features that were recommended
for evaluation by one or both systems. For each case, the pathologist entered features until
she believed that no additional observations were relevant to that case. In most instances,
she stopped entering features when neither program had features to recommend. For several
cases, however, although one or both systems recommended features, she did not observe
any of these features, because she believed that they would not have a significant effect
on the differential diagnosis. For several other cases, where neither system had features to
recommend, she identified features on her own that she though might be relevant to the case,
and entered those features. ,

We gauged the diagnostic accuracy of the probability distributions produced by Pathfinder
by assigning the distributions a score based on two metrics: an expert-rating metric, and a
formal decision-theoretic metric. The two approaches were complementary in their ability
to identify components of the system that affected diagnostic accuracy [37].

13.1 Expert-Rating Approach

In the expert-rating approach, the lymph-node expert was asked to rate directly, on a subjec-
tive scale, the quality of the probability distributions produced by each version of Pathfinder.
For each case, he was shown the features reported by the nonexpert, as well as the proba-
bility distributions produced by the two versions of the system. The expert was blinded as
to the identity of the distributions, and the distributions were displayed in random order.
For each probability distribution, the expert was asked, “On a scale from zero to ten—zero
being unacceptable and ten being perfect—how accurately does the distribution reflect your
beliefs?” The 0-to-10 scale provided an informal measure of the difference between the
diagnostic accuracy of the two probabilistic models.

The expert-rating evaluation metric is useful because it is easy to apply, and because
it readily exposes differences between probability distributions. Unfortunately, inferring
the importance of differences with this metric is difficult. It is impossible to deduce from
the expert-rating method, for example, whether or not the additional effort to represent
dependencies among features was cost effective.

13.2 Decision-Theoretic Approach

We used the utility model described in Section 10 to measure the significance of differences
in the probability distributions produced by the two versions of Pathfinder. For both ver-
sions of Pathfinder, we computed a quantity called inferential loss. The inferential loss
reflects the difference in expected utility between the Pathfinder’s diagnosis and diagnosis
that we obtain from the gold-standard probability distribution associated with a case. Several
researchers have suggested that similar decision-theoretic metrics be used to evaluate diag-
nostic computer systems [80,81,82]; some investigators have actually employed such metrics
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in evaluations [83,84,85].

The procedure for computing inferential loss for a given case is identical for both versions
of Pathfinder. We present a generic analysis here. First, the expert examines the observations
reported by the community pathologist for a given case. Based on these features, the expert
assesses a probability distribution over the diseases—the gold-standard distribution. Based
on these same features, Pathfinder also produces a probability distribution over diseases. Let
¢ denote these observations, and let p,¢(d;|¢) and pg.(d:|¢) represent the probability of the
ith disease under the Pathfinder distribution (either version) and gold-standard probability
distribution, respectively.

Then, we determine the optimal diagnosis associated with the gold-standard distribution,
denoted dzg(4), by identifying the diagnosis that maximizes the expected utility of the
patient given the distribution. Similarly, we determine the optimal diagnosis associated
with the Pathfinder distribution, denoted dz(¢). Formally, we compute

dzg(9) = argmaxy, ZP&S(‘L‘M) Udi.d,'
- d" -

dzyi(4) = argmaxy, |D _ ppr(dil@) Us,
L di d

Next, we compute the expected utilities of both diagnoses. When computing expected utility,
we use the gold-standard distribution, which reflects the assumed best distribution. That is,
we compute

EU(dzg(4)|4) = ;Pp(dild’) U dzgu(9)

EU(dzpe(6)6) = 3_ Per(dil8) Ui asye9)
’ -

Finally, we determine inferential loss, denoted IL, for the Pathfinder distribution. We obtain

IL = EU(dzg,(¢)|¢) — EU(dzpi(4)|4)

By construction, IL is always a nonnegative quantity. If both the Pathfinder and gold-
standard distributions imply the same diagnosis, then the inferential loss is zero, a perfect
score. Note that the units of inferential loss are micromorts—the same as those for the
diagnostic utilities Uy, 4;.

13.3 Results of the Evaluation

The expert-rating and decision-theoretic scores for the two versions of Pathfinder are shown
in Tables 1 and 2, respectively. Although the standard deviations are wide, both metrics
show a significant difference using a bootstrap permutation test [86] (achieved significance
level (ASL) of 0.007 for the expert-rating scores, and ASL of 0.07 for the decision-theoretic
scores). The difference of 0.95 between the averages of the expert-rating scores does not carry
much meaning. However, the difference in inference loss of approximately 300 micromorts
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Expert Ratings (0-10)
Knowledge Base mean sd
Independence KB 7.99 2.32
Dependence KB 8.94 1.51

Table 1: Expert-rating scores comparing the diagnostic accuracy of the condi-
tional-independence knowledge base (Independence KB) with that of the knowledge base
containing dependency information (Dependency KB).

Inferential Loss (micromorts)
Knowledge Base mean sd
Independence KB 340 1684
Dependence KB 16 104

Table 2: Decision-theoretic scores comparing the diagnostic accuracy of the condi-
tional-independence knowledge base (Independence KB) with that of the knowledge-base
containing dependency information (Dependency KB).

has a clear interpretation. Assuming that a patient is willing to convert micromorts to dollars
at a rate of $20 per micromort, as our expert was, the results in this metric show that it is
worth approximately $6000 per case to the patient to have the more sophisticated Pathfinder
knowledge be used instead of the earlier knowledge base that assumed global independence
among features. '

Although the decision-theoretic metric is superior to the expert-rating method in terms
of the clarity it affords, the expert-rating method has its advantages as well. For example,
measurements of inferential loss may be extremely variable from patient to patient because
the diagnostic utilities may similarly vary. Also, the expert ratings tend to be more sensitive
to differences in diagnostic accuracy. This is not surprising, because experts tend to be
hypersensitive to errors in diagnosis, whether such errors matter to a decision maker or not,
because the integrity of the expert is at stake. Of course, the decision-theoretic metric can
be modified to be more sensitive. Considerations of integrity or liability, for example, can
be incorporated into the diagnostic utilities. Indeed, the fact that components of preference
can be made explicit and are under the direct control of the expert is one advantage of the
decision-theoretic approach. Finally, the expert-rating metric is easier to apply than the
decision-theoretic metric. It took approximately 60 hours of our expert’s time to develop
the utility model used in this evaluation. In contrast, it took the expert less than 1 minute
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per case to rate the distributions using the heuristic score. Overall, the two approaches are
complementary.

14 Problem of Feature Identification

A pathologist can misidentify features or can fail to recognize important features. The
decision-theoretic metric allowed us to measure the importance of such errors. Qur experi-
ment was straightforward. After we computed the results described in the previous section,
the expert reviewed the tissue sections directly and provided a probability distribution over
diseases based on the features he observed. This distribution will be called the true prob-
ability distribution. To measure the importance of feature identification, we compared the
gold-standard distribution to the true distribution using the decision-theoretic computations
similar to those described in Section 13.2. The scores derived in this manner reflected the
significance of feature identification because the only difference between the true and gold-
standard distributions was that the former is generated by the expert while he was looking
at the features observed by the community pathologist, whereas the latter was generated by
the expert while he was looking directly at the tissue sections.

The results of this experiment are startling. The scores for the gold-standard distri-
butions relative to the true distributions average approximately 8,000 micromorts. This
observation means that a patient is taking on an additional 8 in 1/1000 chance of death per
case, if the community pathologist rather than our expert identifies features. Qur commu-
nity pathologist was a former fellow of our expert, and thus was more likely to be proficient
at feature identification in the lymph node domain. Therefore, this approach to evaluation
strongly suggests that future research help pathologists to recognize features. Of course, a
similar experiment should be conducted to quantify the differences in diagnoses rendered by
expert pathologists in order for us to judge the true significance of these results.

Part IV
Epilogue

15 Future Pathfinder Research

Pathology diagnosis depends on the accurate recognition of histologic features, as well as on
coherent reasoning under uncertainty. We plan to undertake detailed clinical trials to deter-
mine the relative contribution of the these two tasks to inaccurate diagnosis. In particular,
we shall analyze the gains expected from the computer-based construction of differential
diagnoses and generation of recommendations about optimal diagnostic strategies. We shall
also study the improvements in feature identification that come from the use of a videoli-
brary of features stored on a random-access videodisc. The evaluation of Pathfinder in the
clinical setting will also focus on sociological factors. For example, it is important to un-
derstand how physicians’ habits will be modified by the introduction of such a system into
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surgical-pathology practices. We shall seek also to understand the affect that such systems
might have on patterns of case referral.

Other continuing Pathfinder research, in collaboration with investigators at Carnegie-
Mellon University, involves the study of computer-based vision techniques for the automated
identification of features on histopathology sections. This work has already yielded pre-
liminary techniques for recognizing important features on lymph-node sections. The work
also has identified a set of subcognitive features—features that are not traditionally used in
pathology diagnosis, yet are well correlated with diseases and prognostic course. We are
also investigating the feasibility of integrating automated microscopy with expert-reasoning
systems. Such integrated systems might one day work with human experts as colleagues in
feature recognition and diagnosis.

16 Summary and Conclusions

We reviewed 6 years of Pathfinder research on building expert systems that are founded
on the principles of probability and decision theory. After describing Pathfinder’s behav-
ior, we introduced the hypothetico-deductive paradigm for diagnosis. We then described
the axiomatic bases of probability and utility, and discussed the notion of probability as
a measure of personal belief. We reviewed different paradigms for reasoning under uncer-
tainty that have been pursued by medical-informatics investigators. We then introduced
tractable methods for acquiring, representing, computing, and explaining decision-theoretic
knowledge. We presented the belief network as a formal foundation for the representation of
uncertain knowledge, and discussed several enhancements to the representation that make
it an intuitive and tractable representation for large knowledge bases. We described how
a graphical knowledge-acquisition system, based on the similarity-network representation,
could speed up the knowledge acquisition process, making feasible large, probability-based
knowledge bases. We then described our assessment of a patient utility model, and presented
techniques for introducing flexibility to normative inference. This flexibility is achieved by
representing human-oriented disease abstractions that enable users to perform discrimina-
tory inference at arbitrary levels of abstraction. We discussed our work on the explanation of
complex decision-theoretic computation. Finally, we reviewed our evaluation of Pathfinder.
The evaluation used both an expert-rating metric and a decision-theoretic metric to test the
diagnostic accuracy of our expert system. We used these metrics to compare a sophisticated
dependency model with a simple model that embodies the assumption of global conditional
independence among features. Finally, we described our plans to undertake more detailed
clinical trials and to continue to study the automated recognition of features.

Pathfinder research has demonstrated that a decision-theoretic representation is suf-
ficiently tractable and expressive to capture the important knowledge in the domain of
lymph-node pathology. We hope that our experiences will inspire other medical-informatics
investigators to develop normative expert systems for medicine.
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Appendix: Glossary of Terms

Diseases of the Lymph Node

AIDS EARLY: AIDS, early phase

AIDS INVOLUTIONARY: AIDS, involutionary phase

AILD: Angio-immunoblastic lymphadenopathy

ALIP: Atypical lymphoplasmacytic and immunoblastic proliferation

AML: Acute myeloid leukemia

B-IMMUNOBLASTIC: Immunoblastic plasmacytoid diffuse lymphoma
CARCINOMA: Carcinoma

CAT SCRATCH DISEASE: Cat-scratch disease

CELLULAR PHASE NSHD: Cellular phase of nodular sclerosis Hodgkin’s disease
DERMATOPATHIC LADEN: Dermatopathic lymphadenitis

DIFFUSE FIBROSIS HD: Diffuse fibrosis Hodgkin’s disease

EM PLASMACYTOMA: Extramedullary plasmacytoma

FLORID FOLLIC HYPERP: Florid reactive follicular hyperperplasia

GLH HYALINE VACULAR: Giant lymph-node hyperplasia, hyaline vacular type
GLH PLASMA CELL TYPE: Giant lymph-node hyperplasia, plasma-cell type
GRANULOMATOUS LADEN: Granulomatous lymphadenitis

HAIRY CELL LEUKEMIA: Hairy cell leukemia

HISTIOCYTOSIS X: Histiocytosis x

IBL-LIKE T-CELL LYM: Immunoblastic lymphadenopathy-like T-cell lymphoma
INFECTIOUS MONO: Infectious mononucleosis

INTERFOLLICULAR HD: Interfollicular Hodgkin’s disease

JAPANESE ATL: Japanese adult T-cell lymphoma

KAPOSIS SARCOMA: Kaposis sarcoma

L&H DIFFUSE HD: Lymphocytic and histiocytic diffuse Hodgkin’s disease
L&H NODULAR HD: Lymphocytic and histiocytic nodular Hodgkin’s disease
LARGE CELL, DIF: Large cell diffuse lymphoma

LARGE CELL, FOL: Large cell follicular lymphoma

LEPROSY: Leprosy

LYMPHANGIOGRAPHIC: Lymphangiography effect

LYMPHOBLASTIC: Lymphoblastic lymphoma

MALIG HISTIOCYTOSIS: Malignant histiocytosis

MANTLE ZONE: Mantle-zone lymphoma

MANTLE ZONE HYPERL: Mantle-zone hyperplasia

MAST CELL DISEASE: Mast-cell disease

MELANOMA: Melanoma

MIXED CELLULARITY HD: Mixed-cellularity Hodgkin’s disease

MIXED, FCC DIF: Mixed (follicular center cell type) diffuse lymphoma
MIXED, FOL: Mixed (follicular center cell type) follicular lymphoma
MULTIPLE MYELOMA: Multiple myeloma

MYCOSIS FUNGOIDES: Mycosis fungoides
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NECROTIZ NONKIKUCHI: Non-Kikuchi’s necrotizing lymphadenitis
NECROTIZING KIKUCHI: Kikuchi’s necrotizing lymphadenitis
NODULAR SCLEROSIS HD: Nodular sclerosis Hodgkin’s disease
PLASMACYTOID LYCTIC: Small lymphocytic diffuse lymphoma with plasmacytoid features
RETICULAR TYPE HD: Reticular type Hodgkin’s disease
RHEUMATOID ARTHRITIS: Rheumatoid arthritis

SARCOIDOSIS: Sarcoidosis

SHML: Sinus histiocytosis with massive lymphadenopathy

SINUS HYPERPLASIA: Sinus hyperplasia

SMALL CLEAVED, DIF: Small cleaved diffuse lymphoma

SMALL CLEAVED, FOL: Small cleaved follicular lymphoma

SMALL LYMPHOCYTIC: Small lymphocytic lymphoma

SMALL NONCLEAVED DIF: Small noncleaved diffuse lymphoma
SMALL NONCLEAVED FOL: Small noncleaved follicular lymphoma
SYNCYTIAL NSHD: Syncytial nodular sclerosis Hodgkin’s disease
SYPHILIS: Syphilis

T-IMMUNOB LRG: Peripheral T-cell lymphoma, large-cell type
T-IMMUNOB MIX: Peripheral T-cell lymphoma, mixed-cell type
TOXOPLASMOSIS: Toxoplasmosis

TRUE HISTIOCYTIC: True histiocytic lymphoma

TUBERCULOSIS: Tuberculosis

VIRAL NOS: Viral lymphadenitis, not otherwise specified
WHIPPLE’S DISEASE: Whipple’s disease

Features of the Lymph Node

ABR T-CELL PHENO: Abberrant T-cell phenotype in medium-sized or large lymphoid cells
ACID FAST STAIN: Acid fast stain

B GENE REARRANGEMENT: Immunoglobulin gene rearrangement

BNG HIST: Benign histiocytes not otherwise specified in the nonfollicular areas

BNG HIST FOAMY: Foamy benign histiocytes in the nonfollicular areas that do not contribute
to mottling

BNG HIST LANGERHANS: Langerhans benign histiocytes in the nonfollicular areas

BNG HIST SS: Starry-sky benign histiocytes in the nonfollicular areas

CAP THICKENING: Capsule thickening (number of lymphocytes thick)

CARCINOMA CELLS: Carcinoma cells

CLASSIC SR: Classic Sternberg-Reed cells (number per 4-square-centimeter

DIL VASC SP: Vascular spaces dilated by red blood cells

EMPERIPOLESIS: Number of histiocytes showing emperipolesis

EOSIN MICROAB: Eosinophil microabscessess

EOSIN MYELO&META: Eosinophilic myelocytes and metamyelocytes

EOSINOPHILS: Eosinophils (not in microabcesses)

EPI HIST CLUS: Epithelioid histiocyte clusters
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EPI HIST CLUS FOL EN: Epitheliod histiocyte clusters encroaching and/or within follicles
EPI HIST NONCLUSTERS: Epitheliod histiocyte nonclusters (percent of total cell population)
EXTRAVASC CLUS CLR C: Extravascular clusters of clear lymphoid cells

F % AREA: Percent area occupied by follicles

F CC CYTOLOGY: Cytology of follicular center cells in most follicles

F CENTERS ATROPHIC: Atrophic centers in any follicles

F CYTOLOGY COMP: Similar cells inside and outside of most follicles

F DEFINITION: Definition of follicles

F DENSITY: Follicle density

F HEMORRHAGES: Hemmorrhages in any of the follicles

F LYMPH INFIL: Lymphocyte infiltration of any follicles

F MANTLE ZONES: Follicle mantle zones in any follicles

F MIT FIGURES: Follicle mitotic figures in 10 high-power fields

F MZ CONCENTRIC RIMS: Mantle zone concentric rims in any follicles

F MZ STATUS: Follicle mantle zones

F POLARITY: Prominent polarity in any follicle

F RADIALLY PEN BV: Number of follicles showing radially penetrating blood vessels

F SS PATTERN: Follicle starry-sky histiocytes (average number in one 10X objective power)
FCB: Fibrocollagenous bands or sclerosis

FCB NODULES: Nodules formed by fibrocollagenous bands

FIBROSIS: Fibrosis

FITE STAIN: Fite stain

FOLLICLES: Follicles

FOREIGN BODY: Foreign body (number in 4-square-centimeter section)

HAIRY CELLS: Hairy cells

HTLV I: HTLV I antibody test

HTLV III: HTLV III antibody test

INTRAVASC CLUS LYMPH: Intravascular clusters of lymphoid cells

KARYORRHEXIS: Karyorrhexis

L&H NODULES: Lymphocytic and hitiocytic nodules ,

L&H SR: Lymphocytic and hitiocytic variants of Sternberg-Reed cells (number in 4-square-
centimeter section)

LACUNAR SR: Lacunar variants of Sternberg-Reed cells (number in 4-square-centimeter sec-
tion)

LANGHANS: Langhans cells (number in 4cm? section)

LC LYSOZYME: Lysozyme positivity in medium-sized and/or large lymphoid cells
LEUKEMIC CELLS: Leukemic cells

LLC CHROMATIN: Chromatin of most large lymphoid cells

LLC CYTOPLASM: Cytoplasm of most large lymphoid cells

LLC EV CLUS: Large lymphoid cells in extravascular clusters of clear cells

LLC IDENTITY: Identity of most large lymphoid cells

LLC IV CLUS: Large lymphoid cells in intravascular clusters

LLC NUC SHP: Nuclear shape of most large lymphoid cells
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LLC NUCLEOLI: Nucleolar features of most large lymphoid cells

LLC NUM: Number of large lymphoid cells in the nonfollicular areas (percent of total cell
population)

LLC+MLC > 50%: Number of medium-sized and large lymphoid cells in the nonfollicular areas
exceeds 50 percent of total cell population

LRG LMPH CELLS: Large lymphoid cells

MAST CELLS: Mast cells (number in 4cm? section)

MED LYMPH CELLS: Medium-sized lymphoid cells

MELANOMA CELLS: Melanoma cells

MITOTIC FIG: Mitotic figures in 10 high-power fields (nonfollicular areas)

MLC CHROMATIN: Chromatin structure of most medium-sized lymphoid cells

MLC CYTOPLASM: Cytoplasm of most medium-sized lymphoid cells

MLC EV CLUS: Medium-sized lymphoid cells in extravascular clusters of clear cells

MLC IV CLUS: Medium-sized lymphoid cells in intravascular clusters

MLC NUC SHP: Nuclear shape of most medium-sized lymphoid cells

MLC NUCLEOLI: Nucleolar features of most medium-sized lymphoid cells

MLC NUM: Number of Medium-sized lymphoid cells in the nonfollicular areas (percent of
total cell population)

MONOCYT: Monocytoid cells (percent of total cell population)

MONONUCLEAR SR: Mononuclear variants of Sternberg-Reed cells (number in 4-square-
centimeter section)

MOTTLING HIST: Mottling by langerhans or other histiocytes

MOTTLING LLC: Mottling by large lymphoid cells

MUMMY: Large mummified cells (number in 4-square-centimeter section)

NECROSIS: Necrosis

NEUTROPHIL MICROABSC: Neutrophil microabcessess

NEUTROPHILS: Neutrophils (not in microabcesses)

NONSIN NONFOL AREAS: Nonsinus nonfollicular areas

PAS STAIN: Strong PAS positivity in the histiocytes

PERICAP INFILTR: Pericapsular infiltration

PLASMA: Plasma cells in the nonfollicular areas (percent of total cell population)

PLASMA TYPE: Plasma cell type

PLEOMORPHIC SR: Pleomorphic variants of Sternberg-Reed cells (number in 4-square-centimeter
section)

PSEUDOFOLLICLES: Pseudofollicles

PTGC: Progressively transformed germinal centers

RUSSELL&DUTCHER: Russell and/or Dutcher bodies

SARCOMA CELLS: Sarcoma cells

SCHAUMAN: Schauman cells

SIGNET-RING: Signet-ring cells

SINUSES: Sinuses

SLC CHROMATIN: Chromatin structure of most small lymphoid cells

SLC CYTOPLASM: Cytoplasm of most small lymphoid cells
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SLC EV CLUS: Small lymphoid cells in extravascular clusters of clear cells

SLC IV CLUS: Small lymphoid cells in intravascular clusters

SLC NUC SHP: Nuclear shape of most small lymphoid cells

SLC NUM: Number of small lymphoid cells in the nonfollicular areas (percent of total cell
population)

SML LYMPH CELLS: Small lymphoid cells

SR-LIKE: Sternberg-Reed-like cells (number in 4cm? section)

SYSTEMIC AIDS: Systemic AIDS

T GENE REARRANGEMENT: T-cell receptor gene rearrangement

TRANSITION FORMS: Transition forms (lymphoid cells having sizes other than the sizes of
small, medium-sized, or large cells) in the nonfollicular areas

VASC CHANGES: Endarteritis or periarteritis

VASC PROLIF NONSLIT: Vascular proliferation (non-slitlike)

VASC PROLIF SLIT: Vascular proliferation slitlike

List of Symbols

Sheffer stroke

|
¢ The greek letter phi
>; The summation over the index 1
C  Subset of
€ Element of
# Not equal to
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