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AbstractÐThe task of automatic gesture recognition is highly challenging due to the presence of unpredictable and ambiguous

nongesture hand motions. In this paper, a new method is developed using the Hidden Markov Model based technique. To handle

nongesture patterns, we introduce the concept of a threshold model that calculates the likelihood threshold of an input pattern and

provides a confirmation mechanism for the provisionally matched gesture patterns. The threshold model is a weak model for all trained

gestures in the sense that its likelihood is smaller than that of the dedicated gesture model for a given gesture. Consequently, the

likelihood can be used as an adaptive threshold for selecting proper gesture model. It has, however, a large number of states and

needs to be reduced because the threshold model is constructed by collecting the states of all gesture models in the system. To

overcome this problem, the states with similar probability distributions are merged, utilizing the relative entropy measure. Experimental

results show that the proposed method can successfully extract trained gestures from continuous hand motion with 93.14 percent

reliability.

Index TermsÐHand gesture, gesture spotting, Hidden Markov Model, segmentation, pattern recognition, relative entropy, state

reduction, threshold model.

æ

1 INTRODUCTION

HUMAN gestures constitute a space of motion expressed
by the body, face, and/or hands. Among a variety of

gestures, the hand gesture is the most expressive and the
most frequently used one [1], [2], [3], [4], [5]. In this paper,
we define a gesture as a meaningful part of the hand motion
to communicate with a computer. The interaction using
hand gestures has been studied as an alternative form of
human-computer interface by a number of researchers,
including Quek [6], Kjeldsen and Kender [7], and Starner
and Pentland [8].

The task of locating meaningful patterns from a stream of
input signal is called pattern spotting [9]. Gesture spotting is

an instance of pattern spotting where it is critical to locate
the start point and the end point of a gesture pattern. It has
been regarded as a highly difficult task mainly due to two
aspects of signal characteristics: segmentation ambiguity [10]
and spatio-temporal variability [11].

The segmentation ambiguity problem concerns how to
determine when a gesture starts and when it ends in a
continuous hand trajectory. As the motion switches from
one gesture to another, the hand makes an intermediate
movement between the two gestures. Without knowing the

gesture boundaries, reference patterns have to be matched
with all possible segments of input signals, as shown in
Fig. 1. In this course, transitional motions may be mistaken
as meaningful ones. The other difficulty of gesture spotting

comes from the fact that the same gesture varies dynami-
cally in shape and duration, even for the same gesturer. An
ideal recognizer will extract gesture segments from the
continuous input signal and match them with reference
patterns allowing a wide range of spatio-temporal
variability.

Recently, the HMM has attracted the attention of many
researchers as a useful tool for modeling the spatio-
temporal variability of gestures [12]. However, it has some
limitation in representing nongesture patterns. In the study
of pattern spotting, each reference pattern is defined by a
keyword model and all the other patterns are modeled by a
single HMM called a garbage model or a filler model [13]. The
garbage model in speech recognition represents acoustic
nonkeyword patterns. It is usually trained using a finite set
of nonkeyword samples. It is not easy, however, to obtain
the set of nongesture training patterns because an almost
infinite number of meaningless motions can be obtained. To
overcome this problem, we make use of the internal
segmentation property1 of the HMM and introduce an
artificial threshold model that consists of the state copies
of all trained gesture models in the system. The artificial
threshold model is an HMM that yields positive matching
result with the patterns generated by the combination of
subpatterns of the predefined gesture patterns in arbitrary
order. One simple architecture of the threshold model is an
ergodic model constructed by fully connecting all the states
from all the gesture models in the system. We believe that
such a threshold model can provide a confirmation
mechanism for the provisionally matched gesture patterns.

The new ergodic model can match any described
gestures. However, a gesture is better described by the
dedicated model because the temporal order of subpatterns
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is better described in the model. These characteristics
illustrate that the likelihood of the new model can be used
for an adaptive threshold of the likelihood of gesture
models. In this sense, the new ergodic model is termed
threshold model. The threshold model differs from the
garbage model in that its likelihood provides a confidence
limit for the likelihoods calculated by other gesture models,
while that of the garbage model is just a similarity
measurement.

A potential weakness of the threshold model is in the
spotting speed. The threshold model usually has a large
number of states in proportion to the number of the gesture
models in the system. Accordingly, the computational
requirement increases exponentially and the spotting speed
slows down. In this paper, this problem is alleviated by
reducing the number of states of the threshold model based
on the relative entropy, which has been often used as a
measure of the distance between two probability distribu-
tions [14]. Pairs of states with the least distance are merged
repeatedly until the number of states reaches an experi-
mentally determined value.

The gesture spotting procedure in this paper is illu-
strated in Fig. 2. A hand location is detected whenever a
new image frame is grabbed and is used to build up a hand
trajectory. Here, the hand trajectory is automatically
projected into a 2D-plane because the location is expressed
by x- and y-coordinates of the center of the hand in a frame.
In short, the problem of this paper is how to locate
predefined gesture patterns from the 2D projected hand
trajectory that extends at each time step.

A gesture in this paper is described as a spatio-temporal
sequence of feature vectors that consist of the direction of

hand movement, as shown in Fig. 3a. A feature vector
should be converted to one of the 16 directional codewords
(Fig. 3b) by a vector quantizer because we make use of the
discrete HMM-based approach.

In this study, we chose the 10 most frequently used
browsing commands of PowerPoint2, and defined a gesture
for each of them, as shown in Table 1. The shapes of the
gestures were chosen to be distinct from each other while
keeping the naturalness of hand motion. However, this
choice includes a lot of confusions between gestures, as
shown in Fig. 4. The causes of the confusion are the extra
movement to locate the hand to start position of each
gesture (Fig. 4a) and the similarity of simple gestures to
some parts of complex gestures (Fig. 4b).

For each gesture, we design a model using the left-right
HMM utilizing the temporal characteristics of gesture
signals. A unique initial state and a unique final state are
in the model as shown in Fig. 5. The number of states in a
model is determined based on the complexity of the
corresponding gesture. It has been reported that the error
rate seems to reach the minimum at a specific value of N
[13], the number of states, although the model likelihood
improves further as N increases to some extent. It is,
however, necessary to limit the number of parameters in the
model with limited training samples. The number of states
in our gesture models ranges from five to eight, depending
on the complexity of the gesture shape. The gesture models
are trained using Baum-Welch reestimation algorithm.

To evaluate the proposed method, we have developed a
prototype system called PowerGesture with which one can
browse PowerPoint2 slides using gestural commands. The
rest of this paper is organized as follows: In Section 2, we
describe the background of the research, including previous
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Fig. 1. All possible segmentations for a gesture with varying start points

and the fixed end point t. The gesture recognizer will match all reference

patterns for each of the segments.

Fig. 2. Gesture spotting procedure.

Fig. 3. Feature vector and directional codewords. A feature vector is a

unit vector (cos �, sin �) which consists of normalized elements in x and y

directions. (a) Feature vector. (b) Directional codewords.



gesture recognition studies, and the HMM. Section 3 is

devoted to the detailed description of the threshold model and

the end-point detection. Experimental results are provided in

Section 4, and concluding remarks in Section 5.

2 BACKGROUND

2.1 Related Works

Gestures in general are defined as finite characteristic
motions made in 2D or 3D space using a suitable input
device. The 2D gestures are associated with a mouse or
stylus on a tablet. In this paper, we will consider only 3D
hand gestures captured with a camera. Hand gestures can
be further classified into two types: a posture and a gesture.
The posture is the static finger configuration without hand
movement, while the gesture is the dynamic hand move-
ment with or without finger motion.

This paper explores a vision-based analysis of hand
gestures that are viewed as spatio-temporal patterns. Major
approaches for analyzing spatial and temporal patterns
include Dynamic Time Warping (DTW) [10], Neural Net-
works (NNs) [1], [7], and Hidden Markov Models (HMMs)
[8], [12]. The DTW is a template-based dynamic-program-
ming (DP) matching technique that has been applied to
problems with temporal variability [10]. Although it has
been successful in small vocabulary tasks, the DTW needs a
large number of templates for a range of variations.
Furthermore, it cannot handle undefined patterns.

Takahashi et al. [10] proposed a spotting algorithm,
called continuous dynamic programming (CDP), to recog-
nize gestures of the body and arms. In the method, the
predefined pattern corresponding to a gesture is described
with a spatio-temporal vector field derived by the three-
directional gradient ofan image sequence. An input pattern
is compared with the predefined patterns by the CDP
matching method. The CDP matching works as follows: An
input pattern is generated from an input image sequence at
each time t. They regard the time t as a possible end point of
a gesture and compare the input pattern with all predefined

patterns. They make use of the dynamic programming for
calculating the distance between two patterns regardless of
the time difference. Since the distance drops down to
minimum value at the end point of the corresponding
gesture, the distances with all gestures in the system are
recorded and observed in each time step. Once a distance
moves to the minimum value, the corresponding prede-
fined pattern (a gesture) is fired. The weakness of the
approach is that it performs not so robustly with respect to
shape variations.

As larger data sets become available, more emphasis is
being placed on Neural Networks. For representing
temporal information with NNs, there are two approaches:
recurrent neural networks and feed-forward networks with
a complex preprocessing phase. The problem of the neural
networks arising in the context of gesture spotting is how to
model nongesture patterns. Although the neural networks
have shown effectiveness in recognizing the static patterns
(the postures), they are not suited for the dynamic patterns
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TABLE 1
Gestures Used

Fig. 4. Confusion between gestures. (a) Confusion caused by the extra
hand movement and (b) by the similar shapes. Each dotted curve
represents a gesture pattern and the dark curve represents a plausible
gesture which should be ignored.



(the gestures) [2]. Kjeldsen and Kender [7] developed a
gesture-based interface using the neural networks for
window system control. The system has two functional
layers: hand tracking layer and action layer. The hand-
tracking layer identifies and tracks the user's hand in real-
time. In this layer, they extract the hand by taking
advantage of the unique coloration of human skin, which
is a kind of color histogramming technique. The action layer
is based on a grammar to map an event (identified by the
hand-tracking layer) to an action of the system. The
grammar also utilizes both the motion and the pose of the
hand. The authors use neural networks to classify hand
poses only when needed.

The Hidden Markov Model (HMM) is another statistical
modeling tool that can be applied to analyzing time-series
with spatial and temporal variability [12]. In spite of the
success in online handwriting recognition [16], [17] and
speech recognition [9], [13], only a few researchers have
used the HMM to recognize hand gestures [8], [18]. Starner
and Pentland implemented an HMM-based system for
recognizing sentence-level American Sign Language (ASL)
without explicitly modeling fingers [8]. In their work, the
subject wears distinctly colored gloves on both hands and
sits in a chair in front of the camera to aid hand tracking.
They chose an eight-element feature vector consisting of
each hand's x- and y-coordinates, axis angle of the least
inertia, and the eccentricity of the bounding ellipse. The
HMM is used to recognize data strings and is combined
with statistical grammars to bring the context during
training and recognition. For recognition, the Viterbi
algorithm is used both with and without a strong grammar
based on the known forms of the sentences. However, once
the recognizer starts, the subject must conduct only sign
languages because it cannot separate undefined hand
motions.

We choose the HMM-based approach because it can be
applied to analyzing time-series with spatio-temporal
varibilities and can handle undefined patterns. The
following section describes the definition and the topol-
ogies of the HMM.

2.2 Hidden Markov Model (HMM)

The HMM is rich in mathematical structures; it serves as the
theoretical basis for a wide range of applications. It can
model spatio-temporal information in a natural way. It also
has elegant and efficient algorithms for learning and
recognition, such as the Baum-Welch algorithm and Viterbi
search algorithm [12].

The HMM is a collection of states connected by
transitions [12], [15]. Each transition has a pair of
probabilities: a transition probability (which provides the

probability for taking the transition) and an output prob-
ability (which defines the conditional probability of emitting
an output symbol from a finite alphabet given a state). A
formal characterization of HMM is as follows:

. fs1; s2; s3; . . . ; sNgÐA set of N states. The state at
time t is denoted by the random variable qt.

. fv1; v2; v3; . . . ; vMgÐA set of M distinct observation
symbols, or a discrete alphabet. The observation at
time t is denoted by the random variable Ot. The
observation symbols correspond to the physical
output of the system being modeled.

. A � faijgÐAn N �N matrix for the state transition
probability distributions where aij is the probability
of making a transition from state si to sj:

aij � P �qt�1 � sj j qt � si�:

. B � fbj�k�gÐAn N �M matrix for the observation
symbol probability distributions where bj�k� is the
probability of emitting vk at time t in state sj:

bj�k� ÿ P �Ot � vk j qt � sj�:

. � � f�igÐThe initial state distribution where �i is
the probability that the state si is the initial state:

�i � P �q1 � si�:

Since A, B, and � are probabilistic, they must satisfy the
following constraints:

. �jaij � 1 8i, and aij � 0.

. �kbj�k� � 1 8j, and bj�k� � 0.

. �i�i � 1 and �i � 0.

Following the convention, a compact notation � � �A;B; ��
is used which includes only probabilistic parameters.

Some examples of the HMM topologies are illustrated in
Fig. 6. The left-right model as shown in Fig. 6a is good for
modeling order-constrained time-series whose properties
sequentially change over time [15]. Since the left-right
model has no backward path, the state index either
increases or stays the same as time increases. In other
words, the state proceeds from left to right or stays where it
was. On the other hand, every state in the ergodic or fully
connected model can reach every other state in a single
transition, as shown in Fig. 6b.

3 SPOTTING WITH THRESHOLD MODEL

3.1 Threshold Model

For correct gesture spotting, the likelihood of a gesture
model for a given pattern should be distinct enough.
Unfortunately, although the HMM recognizer chooses a
model with the best likelihood, we cannot guarantee that
the pattern is really similar to the reference gesture unless
the likelihood value is high enough. A simple thresholding
for the likelihood often does not work. Therefore, we
propose a new concept, called threshold model, that yields the
likelihood value to be used as a threshold. A gesture is
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Fig. 5. An example of the gesture models.



recognized only if the likelihood of the best gesture model is
higher than that of the threshold model.

The HMM's internal segmentation property implies that
each state with its self-transition represents a segmental
pattern of a target gesture and that outgoing transitions
represent a sequential progression of the segments in a
gesture. With this property, we can construct an ergodic
model with the states copied from all gesture models in the
system and then fully connect the states (Fig. 7). In this
model, each state can be reached by all other states in a
single transition. Output observation probabilities and self-
transition probabilities in this model are kept as in the
gesture models, but all outgoing transition probabilities are
equally assigned as

aij � 1ÿ aij
N ÿ 1

; for all j; i 6� j;

where aij is the transition proability from state si to sj and
N is the number of states (the sum of all states excluding the
start and final states). The start and final states produce no
observation. Fig. 7 shows the threshold model as a
simplified version of the ergodic model in Fig. 6b.

Maintaining the output probability distributions and the
self-transition probabilities makes the states represent any
subpattern of reference patterns and the ergodic structure
makes it match well with any patterns generated by
combining the subpatterns in any order. The likelihood of
the model, given a gesture pattern, would be smaller than
that of the dedicated gesture model because of the reduced
forward transition probabilities. Consequently, the like-
lihood can be used as an adaptive threshold for selecting
the proper gesture model (Fig. 8). For this reason, we call it
the threshold model. The threshold model acts as a base-line.
A candidate gesture is found when a specific gesture model
rises above the threshold model.

3.2 Gesture Spotting Network

In many gesture recognition tasks, a gesture spotter receives
a stream of continuous hand motion with an intermittent

sequence of several gestures. To spot them in the input
stream, we have constructed a circular gesture spotting
network (GSN), as shown in Fig. 9. In the figure, S is the
dummy start state.

The gesture spotting network finds the start and end
points of gestures embedded in the input stream. For this, it
is desirable to know how and in what state sequence the
model produces the most likely observation sequence. We
can uncover a state sequence using the Viterbi algorithm,
where we adopt the optimality criterion of maximizing the
probability of a state sequence that produces the observa-
tion sequence.

To find the single best state sequence, Q1;t � q1q2 . . . qt,
for the given observation O1;t � O1O2 . . .Ot, we need to
define the quantity:

�t�i� � max
Q1;t

P �Q1;tÿ1; qt � si; O1;t j ��

with the highest probability along a single path arriving at
si at time t and accounting for the first t observations. We
have, by induction:

�1�j� � �jbj�O1� 1 � j � N;
�t�j� � maxi��tÿ1�i�aij� � bj�Ot� 2 � t � T; 1 � j � N:

For the backtracking information, we use  t�j� to keep the
argument that maximizes �t�j� for each t and j.

 t�j� � arg max
i
��tÿ1�i�aij� 2 � t � T; 1 � j � N:

In case of null transitions, the likelihood of the source state
at time t is simply maximized without time delay as

�t�j� � max
i
��t�i�aij�;

i� � arg max
i
��t�i�aij�;

 t�j� �  t�i��:
Finally, to uncover the most likely state sequence Q� �
q �1 q

�
2 . . . q�T after the preceding computation, we must trace

back to the initial state by following the Viterbi path of  s
as:

q�T � sN;
q�t �  t�1�q�t�1� t � T ÿ 1; T ÿ 2; . . . 1:

This algorithm described above is known as the Viterbi
algorithm [19]. It can be efficiently implemented using a
lattice structure. We use this algorithm for calculating
likelihood and finding the start point from the end point.

For reliable spotting, the model transition probability
into the threshold model p�TM� is tuned to satisfy:

P �XG j �G�p�G� > P �XG j �TM�p�TM� �1�

p�XTM j �G�p�G� < P �XTM j �TM�p�TM�; �2�
where XG denotes a gesture pattern, XTM a nongesture
pattern, �G the target gesture model, �TM the threshold
model, and NG the number of gesture models in the system.
Inequalities (1) and (2) imply that a gesture should best
match with the corresponding gesture model and a
nongesture with the threshold model, respectively. The
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Fig. 6. Types of the HMM: (a) left-right model (b) ergodic model.



model transition probabilities into gesture model p�G�s are

set equal using p�TM� as

p�G� � 1ÿ p�TM�
NG

:

With a sequence of spotting experiments, we have decided

p�TM� as the value generating the best result.
Inequality (1) says that the likelihood of a gesture model

should be greater than that of the threshold model. The time

satisfying such a condition can be called a candidate end point

(CEP). Once we obtain CEP, its corresponding start point

can easily be found by backtracking the Viterbi path

because the final state can only be reached through the

start state in the left-right HMM. There are, in general,

several such CEPs satisfying (1). Thus, the remaining

problem is the determination of the right end point. This

will be described in the next section.

3.3 End-Point Detection

If we look at time-evolution of the likelihood of individual

models, the threshold model usually scores the best. As the

forward pass gets close to the end of a gesture, the target

gesture model soars up above the threshold. As shown in

Fig. 10, the likelihood of the model last is initially lower than

that of the threshold model. After time 12, however, the

likelihood of the model last becomes greater. All points

between 13 and 16 are candidate end points (CEPs) of the

gesture last. Each time we encounter a CEP, the correspond-

ing start point is determined by backtracking the Viterbi

path.
The end-point detection is the process of choosing the

best among these CEPs. It removes nested gestures and

makes the spotter fire only once when a gesture is

encountered. The process is initiated when the last CEP of

the current gesture is found after the preceding gesture to
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Fig. 7. A simplified structure of the threshold model. The dotted arrows are null transitions.

Fig. 8. A sample likelihood evolution graph of the gesture models and the threshold model demonstrating the adaptiveness of the threshold

likelihood. The thick line is the threshold likelihood.



fire or when the elapsed time steps since the last gesture are

greater than a given length. The last condition implements a

duration constraint.The detection criterionis defined as

follows:

1. When the immediately following pattern B is not a
gesture, as in Fig. 11a, the last CEP of the preceding
gesture A is determined as the end point. A is
reported.

2. When the immediately following pattern B is by
itself a gesture, there are two alternatives:

a. When the start point of B precedes the first CEP,
as in Fig. 11b of A, A is regarded as a part of a
larger current gesture (B) which includes A and
extends beyond the CEP of A. All the CEPs of A
are ignored.

b. When B starts between the first and the last
CEPs of A, as in Fig. 11c, the immediately
preceding CEP is chosen as the end point of A.

We cannot fire a gesture immediately at a CEP because

the detected gesture may be a part of a larger gesture, as in

Fig. 11b. Since the delayed response may cause one to

wonder whether one's gesture has been recognized cor-

rectly or not, we resolve it with two approaches. One is

limiting the delay time to some extent by introducing a

maximum length of the nongesture pattern that is longer

than the largest gesture. Another is taking advantage of

heuristic information to catch one's completion intentions,

such as moving the hand out of the camera range or

freezing the hand for a while. Once the intention is detected,

all input signals are removed and the remaining gestures

are retrieved. Fig. 12 illustrates the flowchart of the end-
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Fig. 9. Gesture Spotting Network. A label denotes the name of a gesture and each dotted line represents a transition between models.

Fig. 10. A sample gesture and its likelihood evolution. (a) Trajectory of a sample gesture for last. (b) The likelihood evolution of the gesture models

and the threshold model for a sample gesture.



point detection routine. In the figure, we introduce a stack
to check the gesture embedding.

3.4 Enhancing the Performance

Since we constructed the threshold model by combining all
the gesture models in the system, the number of states in
the threshold model is equal to the sum of the states of all
gesture models excluding the start and final states. This
means that the number of states in the threshold model
increases as the number of gesture models increases.
Consequently, the increased number of states increases
time and space requirements. To overcome this problem,
we propose using relative entropy to reduce the number of
states of the threshold model.

The entropy H�XX� of a discrete random variable X is

defined by:

H�XX� � ÿ
X
x2X

p�x� log p�x�;

where p�x� is a probability mass function. The entropy

measures the expected uncertainty of the source that

generates the possible event XX. The more uncertain, the

bigger the entropy.
Consider two discrete probability distributions pp �

fp1; p2; . . . ; pMg and qq � fq1; q2; . . . ; qMg. One problem is

how to measure the difference between pp and qq. This leads

to the idea of the relative entropy of pp given qq, or vice versa.

The relative entropy was introduced by Kullback [20]; it is

also discussed in the literature by other names such as the

Kullback-Leibler information criterion, cross entropy, or directed

divergence. The relative entropy D�ppkqq� between two

discrete probability distributions is defined by

D ppkqq� � �
XM
i�1

pi log
pi
qi
;

where 0 log 0
qi
� 0 and pi log pi

0 � 1. The relative entropy is

always nonnegative; it is zero if and only if pp equals qq [14].
To be precise, the relative entropy is not a true distance

between distributions since it is not symmetric and does not

satisfy the triangle inequality. Nonetheless, it is often useful

to think of relative entropy as the distance between

distributions because the ordering of distributions can be

predefined and the calculation is very simple [21]. Since, the

relative entropy is not symmetric, in other words
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Fig. 11. Determination of an end point. (a) Nongesture is following. (b)
Nested gesture. (c) Gesture is following. Each dark curve A represents
the preceding gesture that may be reported and the dotted curve B
represents the immediately following pattern or gesture.

Fig. 12. The procedure of the end-point detection.



D�ppkqq� 6� D�qqkpp�, let us change relative entropy for symme-

tricity slightly as:

D ppkqq� � � 1

2

XM
i�1

pi log
pi
qi
� qi log

qi
p1

� �
: �3�

The proposed state reduction procedure is based on (3) and

the algorithm follows.

[Algorithm] State reduction in the threshold model.

Let pp�i� and qq�j� be discrete probability distributions of M

observation symbols in state i and state j, respectively.

Step 1. Calculate the symmetric relative entropy for each

pair p and q of output probability distributions as

D�pp�i�kqq�j�� � 1

2

XM
k�1

p
�i�
k log

p
�i�
k

q
�j�
k

� q�j�k log
q
�j�
k

p
�i�
k

 !
:

Step 2. Find an �i; j� pair with the minimum symmetric

relative entropy D�pp�i�kqq�j��.

Step 3. Merge two states and recalculate the probability

distribution of M observation symbols in the merged

state as:

p
�i�
k

0 � p
�i�
k � q�j�k

2
:

Step 4. If the number of states is greater than an

experimentally determined value, then go to Step 1.

Through a set of experiments, we have found that the

suitable number of states of the threshold model without

severe degradation in spotting power is about one and a

half the number of observation symbols. The time complex-

ity of the gesture spotter, C, is defined as follows:

C � K � lNT �N2
thT ;

where K is the number of gesture models in the system, l is

the number of transitions per state, N is the average number

of states of gesture models in the system, Nth is the number

of states of the threshold model, and T is the length of an

observation sequence. The first term is the sum of the time
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Fig. 13. Block diagram of the Power Gesture system.

Fig. 14. Hand extraction procedure. (a) Camera image. (b) I-component image. (c) Binary image. (d) After segmentation.



complexity of gesture models in the system and the second

is that of the threshold model. In our gesture spotter, we

quantize the direction of hand movement in 16 values and

the number of states in the threshold model is reduced from

44 to 24. Consequently, the expected saving of the matching

time with such a reduction is 63.91 percent.

4 EXPERIMENTAL RESULTS

We implemented the PowerGesture system with which one

can browse PowerPoint2slides using gestural commands.

For the experiments, we have chosen 10 most frequently

used browsing commands of PowerPoint2and defined a

gesture for each of them, as shown in Table 1.
Fig. 13 shows the cascade architecture of PowerGesture.

It is built on a Pentium Pro PC with Windows 95. It grabs

image frames using the Matrox Meteor2 board. The Hand

Tracker finds the hand in a sequence of image frames captured

by a camera and makes a (sin, cos) pair as a directional feature

for the hand's moving direction. The Vector Quantizer assigns

one of the 16 codewords for a directional feature. Then, the

Gesture Spotter detects individual gestures using the end-point

detection routine. As a recognition result, the corresponding

PowerPoint2 commands are generated for the gestures.

Finally, PowerPoint2 controls the slide presentation.
Fig. 14 shows the hand-tracking process. It converts an

RGB color image (Fig. 14a) to a YIQ color image (Fig. 14b).

Since the I-component in YIQ color space is sensitive to skin

colors [22], we simply apply a threshold to the I-component

to produce a binary image (Fig. 14c). The hand region is

then detected using the one-pass labeling algorithm [22], as

shown in (Fig. 14d). In order to make the image processing

simple, we assume that only one hand is used to make

gestures in the simple background.
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TABLE 2
Isolated Gesture Patterns for the HMM Training and Testing

TABLE 3
The Reults of the Threshold Model Test

Fig. 15. Spotting results associated with p�TM�. (a) The number of errors. (b) The detection ratio and the reliability in percentage.



In the following experiments, we carry out two tests. The
first is an isolated gesture recognition test. This test
examines whether the trained gesture model is acceptable
and whether the threshold model generates appropriate
threshold values. The other test observes the overall
performance of the gesture spotter. In addition, we will
see how the state reduction of the threshold model affects
the performance and speed of the system.

4.1 Isolated Gesture Recognition Test

For a single gesture, we have collected 250 isolated samples
from eight subjects (in total, 2,500 isolated samples for all
gestures in the system) and have partitioned them into
training and test sets, as shown in Table 2. Since the success
of the gesture spotter greatly depends on the discrimination
power of the gesture models and the threshold model, we
carry out an isolated gesture recognition task carefully. The
result is shown in Table 3. Most errors come from the failure
of hand extraction that distorts the hand trajectory data. In
case of error, gestures are rejected due to the lower
likelihood of the target gesture model than that of the
threshold model. With the reduced threshold model, we got
exactly the same result as with the original one. This
demonstrates that the discrimination power of the gesture
spotter is rarely affected by the state reduction for isolated
gesture samples.

4.2 Gesture Spotting Test

Since the second test evaluates the capability of the gesture
extraction for continuous hand motions, we have collected
60 test samples from one person. Each sample is a sequence
of 200 image frames (about 30 sec.) which contains more
than one gesture and natural hand motions such as moving
the hand to the start position of a gesture. In addition, some
gestures can be embedded in a larger gesture.

In the gesture spotting task, there are three types of
errors: The insertion error occurs when the spotter reports a
nonexistent gesture, the deletion error occurs when the
spotter fails to detect a gesture, and the substitution error

occurs when the spotter falsely classifies a gesture. The
detection ratio is the ratio of correctly recognized gestures
over the number of input gestures:

Detection ratio � correctly recognized gestures

# of input gestures
:

In calculating the detection ratio, the insertion errors are not
considered. The insertion errors are likely to cause the
deletion errors or the substitution errors because they often
force the spotter to remove all or part of the true gestures
from observation. To take into account the effect of the
insertion errors, another performance measure, called
reliability, is introduced that considers the insertion errors
as follows.

Reliability � correctly recognized gestures

# of input gestures�# of insertion errors
:

We have counted errors and calculated the detection

ratio and reliability by varying model transition probability,

p�TM�, as shown in Fig. 15. A high p�TM� makes the

threshold likelihood high; thus, many gestures are rejected.

On the other hand, a low p�TM� reduces the likelihood and,

therefore, more gestures are likely to be reported. In Fig. 15a,

as p�TM� decreases between 1.0 and 0.1, the deletion errors

decrease sharply. However, as p�TM� passes 0.1, the

deletion errors begin to increase because the increase of

the insertion errors causes more deletion errors. The

deletion errors directly affect the detection ratio, whereas

the insertion errors do not. However, it should be noted that

many insertion errors are not totally independent of the

detection ratio because some insertion errors cause the

deletion errors or the substitution errors (Fig. 15b).
We have conducted the same test for the reduced

threshold model, and have obtained almost the same
results. Table 4 shows the spotting performance of the
reduced threshold model with p�TM� � 0:1. The experi-
ments showed 93.38 percent reliability with the original
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TABLE 4
Spotting Results with the Reduced Threshold Model (p�TM� � 0:1)



threshold model and 93.14 percent reliability with the
reduced threshold model. This confirms that the state
reduction minimally affects the reliability of gesture
spotting.

4.3 The Speed of Gesture Spotting

The PowerGesture system executes on a 200 MHz Pentium
Pro PC with Windows 95. It has been developed to browse
the slides of PowerPoint2 with hand gestures in real-time.
Thus, the speed of gesture spotting is of practical
importance. By the state reduction of the threshold model,
3.11 percent speed-up was observed at the cost of
0.26 percent reduced reliability.

The average spotting speed with the state reduction is
218 ms/frame, whereas the original is 225 ms/frame.
Here, guessing the speed with a real-time processing
environment2 would help the real-world applicability of the
Power Gesture system. The frame grabbing time occupies
65.6 percent (143 ms/frame) in the spotting time. If we
adopt the real-time frame grabber that captures 33 ms/
frame, the rate would be decreased to 30.6 percent and the
spotting speed would be 108 ms/frame. In summary, the
spotting speed corresponds to 0.15 real-time processing
speed with our frame grabber and to 0.30 real-time
processing with the real-time frame grabber.

5 CONCLUDING REMARKS

This paper describes an HMM-based gesture spotting
system with a threshold model that calculates the threshold
likelihood given an input pattern. The threshold model
approves or rejects the pattern as a gesture. For gesture
segmentation, it detects the reliable end point of a gesture
and finds the start point by backtracking the Viterbi path
from the end point. The model performs gesture spotting
with 93.14 percent reliability and the processing time was
218 ms/frame. When we reduced the number of states in
the threshold model, we achieved 3.11 percent speed-up at
a negligible cost of reliability. In summary, the threshold
model is simple and easy to design, but highly effective in
providing a confirmation mechanism for the provisionally
matched gesture patterns.

However, the proposed method has a problem in that the
system cannot report the detection of a gesture immediately
after the system reaches its end point. It is because the end-
point detection process postpones the decision until the
detection of the next gesture in order to avoid premature
decision. The delayed response may cause one to wonder
whether one's gesture has been recognized correctly or not.
For this, we used heuristic information to catch one's
intentions, such as moving the hand out of the camera range
or freezing the hand for a while. Since such a heuristic is not
very natural to humans, the problem of preserving
naturalness of the gesture interface is left for future study.
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