Sampling

Goal: Independent samples $x^{(1)}, x^{(2)}, \ldots$ from target probability distribution p

Estimating expectation E[f(X)] where X from p $\hat{f} = \frac{1}{M} \sum_{m=1}^{M} f(x^{(m)})$ $E[\hat{f}] = E[f(Y)]$ even if complex not independent, but each f

 $E[\widehat{f}] = E[f(X)]$ even if samples not independent, but each from p

Sampling from basic distributions, transformation method

- Pseudorandom number generators: uniform samples from $\{0,\ldots,N-1\}$
- Divide by N to get "uniform" samples from [0, 1)
- Other simple distributions by transformation $y = h^{-1}(x)$ x is from U(0, 1), h is CDF of the target distribution p

Sampling from categorical (finite discrete) distribution

- Vector of probabilities $p(0), \ldots, p(m-1)$
- CDF prefix sums, transformational method by binary search in $O(\log m)$ per sample, O(m) preprocessing
- Alias method by Kronmal and Peterson (1979) needs O(1) per sample, O(m) preprocessing (alternatively many samples at once by multinomial distrib.)
- Split probability space to m slices, each size 1/m, with ≤ 2 different elements from $\{0,\ldots m-1\}$
- Uniformly choose slice, then sample from items within the slice
- To create slices, split elements into two lists: with prob. ≤ 1/m and with prob. > 1/m. Always use one from the first list completely and a part of one from the second list.

Sampling from graphical models

Easy in acyclic directed models if no variables observed

Sampling state paths in HMMs (stochastic traceback)

Goal: sample a state path given observations

Alternative formulation:

- $\bullet\,$ Given DAG with a single source s and single sink t
- Edges weighted by positive numbers
- Weight of a path product of edge weights
- Sample a path proportionally to path weights

Can be generalized to a junction tree?

Rejection sampling

- Assume we cannot sample from p, but we can evaluate p(x) up to a constant $p(x) = \frac{1}{7}\widetilde{p}(x)$
- Proposal distribution q(x) and constant k s.t. $kq(x) \ge \widetilde{p}(x)$
- Sample x_0 from q, then u_0 from $U(0, kq(x_0))$
- If $u_0 \ge \widetilde{p}(x_0)$, keep sample $x = x_0$, otherwise reject

Rejection sampling

- $p(x) = \frac{1}{Z}\widetilde{p}(x), kq(x) \ge \widetilde{p}(x)$
- Sample x_0 from q, then u_0 from $U(0, kq(x_0))$
- If $u_0 \leq \widetilde{p}(x_0)$, keep sample $x = x_0$, otherwise sample again
- $\Pr(X = x) \propto \Pr(x_0 = x) \Pr(u_0 \le \widetilde{p}(x) \mid x_0 = x) = \frac{q(x)\widetilde{p}(x)}{kq(x)} = \frac{\widetilde{p}(x)}{k} \propto p(x)$

Rejection sampling (cont.)

- \bullet Needs good q and k
- Rejection probability tends to increase exponentially with the number of dimensions

Importance sampling

• Sample from proposal q, then estimate $E_p[f(X)]$

•
$$\hat{f} = \frac{1}{M} \sum_{m=1}^{M} f(x^{(m)}) \frac{p(x^{(m)})}{q(x^{(m)})}$$

•
$$E_q\left[f(X)\frac{p(X)}{q(X)}\right] = \sum_x f(x)\frac{p(x)}{q(x)}q(x) = \sum_x f(x)p(x) = E_p[f(X)]$$

Importance sampling (cont.)

- If p and q can be evaluate only up to constant: $p(x) = \widetilde{p}(x)/Z_p, \, q(x) = \widetilde{q}(x)/Z_q$
- Let $r_{\mathfrak{m}} = \widetilde{p}(x^{(\mathfrak{m})})/\widetilde{q}(x^{(\mathfrak{m})})$

•
$$\hat{\mathbf{f}} = \frac{\sum_{m=1}^{M} r_m f(\mathbf{x}^{(m)})}{\sum_m r_m}$$

•
$$E_q(r_m) = \sum_x \frac{\widetilde{p}(x)}{\widetilde{q}(x)} q(x) = \sum_x \frac{Z_p \cdot p(x)}{Z_q \cdot q(x)} q(x) = \frac{Z_p}{Z_q}$$

•
$$E_q[r_m(X)f(X)] = \sum_x \frac{Z_p \cdot p(x)}{Z_q \cdot q(x)} f(x)q(x) = \frac{Z_p}{Z_q} E_p[f(X)]$$

Importance sampling (cont.)

- If p and q differ too much, small weights
- If q(x) very low where f(x)p(x) high,
 no sample might come from this region,
 then estimate might be very bad, but we do not see it

Particle filter (sequential Monte Carlo)

Given observations $y_{(t)} = (y_1, \dots y_t)$, sample from $p(x_t | y_{(t)})$ to evaluate $E_{p(x_t|y_{(t)})}[f(x_t)]$

Can be done exactly for HMMs, but what if $p(y_t | x_t)$ complicated, and x_t continuous or from a huge space?

Particle filter (cont.)

 \bullet Assume we have M samples $x_t^{(m)}$ from $p(x_t \mid y_{(t-1)})$

•
$$w_t^{(m)} = \frac{p(y_t \mid x_t^{(m)})}{\sum_{m'} p(y_t \mid x_t^{(m')})}$$

•
$$\hat{\mathbf{f}} = \sum_{m} w_t^{(m)} \mathbf{f}(\mathbf{x}_t^{(m)})$$

Particle filter (update)

- Assume we have M samples $x_t^{(m)}$ from $p(x_t \mid y_{(t-1)})$
- Want: samples from $p(x_{t+1} \mid y_{(t)})$
- $p(x_{t+1} | y_{(t)}) \approx \sum_{m} w_t^{(m)} p(x_{t+1} | x_t^{(m)})$ mixture distribution, easy to sample from

Particle filter (update summary)

Particle filter (proofs)

• Assume we have M samples $x_t^{(m)}$ from $p(x_t \mid y_{(t-1)})$

•
$$w_t^{(m)} = \frac{p(y_t \mid x_t^{(m)})}{\sum_{m'} p(y_t \mid x_t^{(m')})}$$

• $\sum_{m'} p(y_t \mid x_t^{(m')}) \approx Mp(y_t \mid y_{(t-1)})$ because $E_{p(x_t \mid y_{(t-1)})}[p(y_t \mid x_t)] = \sum_{x_t} p(y_t \mid x_t)p(x_t \mid y_{(t-1)}) =$ $\sum_{x_t} p(y_t \mid x_t, y_{(t-1)})p(x_t \mid y_{(t-1)}) = \sum_{x_t} p(y_t, x_t \mid y_{(t-1)}) =$ $\sum_{x_t} p(x_t \mid y_t, y_{(t-1)})p(y_t \mid y_{(t-1)}) = p(y_t \mid y_{(t-1)})$

Particle filter (proofs cont.)

• Assume we have M samples $x_t^{(m)}$ from $p(x_t \mid y_{(t-1)})$

•
$$w_t^{(m)} = \frac{p(y_t \mid x_t^{(m)})}{\sum_{m'} p(y_t \mid x_t^{(m')})}$$

• $\sum_{\mathfrak{m}'} p(y_t \mid x_t^{(\mathfrak{m}')}) \approx Mp(y_t \mid y_{(t-1)})$

•
$$\hat{\mathbf{f}} = \sum_{\mathbf{m}} w_t^{(\mathbf{m})} \mathbf{f}(\mathbf{x}_t^{(\mathbf{m})})$$

• $E_{p(x_t|y_{(t-1)})}[w_t(x_t)f(x_t)] = \sum_{x_t} w_t(x_t)f(x_t)p(x_t | y_{(t-1)}) \approx$ $\sum_{x_t} \frac{p(y_t|x_t)p(x_t|y_{(t-1)})}{Mp(y_t|y_{(t-1)})}f(x_t) = (1/M)\sum_{x_t} p(x_t | y_{(t)})f(x) =$ $(1/M)E_{p(x_t|y_{(t)})}[f(x_t)]$

because

$$\frac{p(y_t|x_t)p(x_t|y_{(t-1)})}{p(y_t|y_{(t-1)})} = \frac{p(y_t|x_t,y_{(t-1)})p(x_t|y_{(t-1)})}{p(y_t|y_{(t-1)})} = \frac{p(y_t,x_t|y_{(t-1)})}{p(y_t|y_{(t-1)})} = p(x_t \mid y_{(t)})$$

Particle filter (update proof)

 \bullet Assume we have M samples $x_t^{(m)}$ from $p(x_t \mid y_{(t-1)})$

•
$$w_t^{(m)} = \frac{p(y_t \mid x_t^{(m)})}{\sum_{m'} p(y_t \mid x_t^{(m')})}$$

•
$$\sum_{\mathfrak{m}'} p(y_t \mid x_t^{(\mathfrak{m}')}) \approx Mp(y_t \mid y_{(t-1)})$$

• Proved
$$\frac{p(y_t|x_t)p(x_t|y_{(t-1)})}{p(y_t|y_{(t-1)})} = p(x_t \mid y_{(t)})$$

•
$$p(x_{t+1} | y_{(t)}) = \sum_{x_t} p(x_{t+1}, x_t | y_{(t)})$$

 $= \sum_{x_t} p(x_{t+1} | x_t, y_{(t)}) p(x_t | y_{(t)})$
 $= \sum_{x_t} p(x_{t+1} | x_t) \frac{p(y_t | x_t) p(x_t | y_{(t-1)})}{p(y_t | y_{(t-1)})}$
 $\approx \frac{1}{M} \sum_m p(x_{t+1} | x_t^{(m)}) \frac{p(y_t | x_t^{(m)})}{p(y_t | y_{(t-1)})} \approx \sum_m w_t^{(m)} p(x_{t+1} | x_t^{(m)})$