
Sampling

Goal: Independent samples x(1), x(2), . . . from target probability

distribution p

Estimating expectation E[f(X)] where X from p

f̂ = 1
M

∑M
m=1 f(x

(m))

E[f̂] = E[f(X)] even if samples not independent, but each from p



Sampling from basic distributions, transformation method

• Pseudorandom number generators: uniform samples from

{0, . . . ,N− 1}

• Divide by N to get “uniform” samples from [0, 1)

• Other simple distributions by transformation y = h−1(x)

x is from U(0, 1), h is CDF of the target distribution p



Sampling from categorical (finite discrete) distribution

• Vector of probabilities p(0), . . . , p(m− 1)

• CDF - prefix sums, transformational method by binary search in

O(logm) per sample, O(m) preprocessing

• Alias method by Kronmal and Peterson (1979) needs O(1) per

sample, O(m) preprocessing

(alternatively many samples at once by multinomial distrib.)

• Split probability space to m slices,

each size 1/m, with ≤ 2 different elements from {0, . . .m− 1}

• Uniformly choose slice, then sample from items within the slice

• To create slices, split elements into two lists: with prob. ≤ 1/m and

with prob. > 1/m. Always use one from the first list completely and a

part of one from the second list.



Sampling from graphical models

Easy in acyclic directed models if no variables observed



Sampling state paths in HMMs (stochastic traceback)

Goal: sample a state path given observations

Alternative formulation:

• Given DAG with a single source s and single sink t

• Edges weighted by positive numbers

• Weight of a path product of edge weights

• Sample a path proportionally to path weights

Can be generalized to a junction tree?



Rejection sampling

• Assume we cannot sample from p,

but we can evaluate p(x) up to a constant p(x) = 1
Z p̃(x)

• Proposal distribution q(x) and constant k s.t. kq(x) ≥ p̃(x)

• Sample x0 from q, then u0 from U(0, kq(x0))

• If u0 ≥ p̃(x0), keep sample x = x0, otherwise reject



Rejection sampling

• p(x) = 1
Z p̃(x), kq(x) ≥ p̃(x)

• Sample x0 from q, then u0 from U(0, kq(x0))

• If u0 ≤ p̃(x0), keep sample x = x0, otherwise sample again

• Pr(X = x) ∝ Pr(x0 = x) Pr(u0 ≤ p̃(x) | x0 = x) =
q(x)p̃(x)
kq(x)

=

p̃(x)
k ∝ p(x)



Rejection sampling (cont.)

• Needs good q and k

• Rejection probability tends to increase exponentially with the number

of dimensions



Importance sampling

• Sample from proposal q, then estimate Ep[f(X)]

• f̂ = 1
M

∑M
m=1 f(x

(m))
p(x(m))

q(x(m))

• Eq

[
f(X)

p(X)
q(X)

]
=

∑
x f(x)

p(x)
q(x)

q(x) =
∑

x f(x)p(x) = Ep[f(X)]



Importance sampling (cont.)

• If p and q can be evaluate only up to constant:

p(x) = p̃(x)/Zp, q(x) = q̃(x)/Zq

• Let rm = p̃(x(m))/q̃(x(m))

• f̂ =

∑M
m=1 rmf(x

(m))∑
m rm

• Eq(rm) =
∑

x

p̃(x)

q̃(x)
q(x) =

∑

x

Zp · p(x)

Zq · q(x)
q(x) =

Zp

Zq

• Eq [rm(X)f(X)] =
∑

x

Zp · p(x)

Zq · q(x)
f(x)q(x) =

Zp

Zq
Ep[f(X)]



Importance sampling (cont.)

• If p and q differ too much, small weights

• If q(x) very low where f(x)p(x) high,

no sample might come from this region,

then estimate might be very bad, but we do not see it



Particle filter (sequential Monte Carlo)

Given observations y(t) = (y1, . . . yt),

sample from p(xt | y(t)) to evaluate Ep(xt|y(t))
[f(xt)]

Can be done exactly for HMMs, but what if p(yt | xt) complicated,

and xt continuous or from a huge space?



Particle filter (cont.)

• Assume we have M samples x
(m)
t from p(xt | y(t−1))

• w
(m)
t =

p(yt | x
(m)
t )

∑
m ′ p(yt | x

(m ′)
t )

• f̂ =
∑

mw
(m)
t f(x

(m)
t )



Particle filter (update)

• Assume we have M samples x
(m)
t from p(xt | y(t−1))

• Want: samples from p(xt+1 | y(t))

• p(xt+1 | y(t)) ≈
∑

mw
(m)
t p(xt+1 | x

(m)
t )

mixture distribution, easy to sample from



Particle filter (update summary)



Particle filter (proofs)

• Assume we have M samples x
(m)
t from p(xt | y(t−1))

• w
(m)
t =

p(yt | x
(m)
t )

∑
m ′ p(yt | x

(m ′)
t )

•
∑

m ′ p(yt | x
(m ′)
t ) ≈ Mp(yt | y(t−1)) because

Ep(xt|y(t−1))
[p(yt | xt)] =

∑
xt
p(yt | xt)p(xt | y(t−1)) =∑

xt
p(yt | xt, y(t−1))p(xt | y(t−1)) =

∑
xt
p(yt, xt | y(t−1)) =∑

xt
p(xt | yt, y(t−1))p(yt | y(t−1)) = p(yt | y(t−1))



Particle filter (proofs cont.)

• Assume we have M samples x
(m)
t from p(xt | y(t−1))

• w
(m)
t =

p(yt | x
(m)
t )

∑
m ′ p(yt | x

(m ′)
t )

•
∑

m ′ p(yt | x
(m ′)
t ) ≈ Mp(yt | y(t−1))

• f̂ =
∑

mw
(m)
t f(x

(m)
t )

• Ep(xt|y(t−1))
[wt(xt)f(xt)] =

∑
xt
wt(xt)f(xt)p(xt | y(t−1)) ≈

∑
xt

p(yt|xt)p(xt|y(t−1))

Mp(yt|y(t−1))
f(xt) = (1/M)

∑
xt
p(xt | y(t))f(x) =

(1/M)Ep(xt|y(t))
[f(xt)]

because
p(yt|xt)p(xt|y(t−1))

p(yt|y(t−1))
=

p(yt|xt,y(t−1))p(xt|y(t−1))

p(yt|y(t−1))
=

p(yt,xt|y(t−1))

p(yt|y(t−1))
=

p(xt | yt, y(t−1)) = p(xt | y(t))



Particle filter (update proof)

• Assume we have M samples x
(m)
t from p(xt | y(t−1))

• w
(m)
t =

p(yt | x
(m)
t )

∑
m ′ p(yt | x

(m ′)
t )

•
∑

m ′ p(yt | x
(m ′)
t ) ≈ Mp(yt | y(t−1))

• Proved
p(yt|xt)p(xt|y(t−1))

p(yt|y(t−1))
= p(xt | y(t))

• p(xt+1 | y(t)) =
∑

xt
p(xt+1, xt | y(t))

=
∑

xt
p(xt+1 | xt, y(t))p(xt | y(t))

=
∑

xt
p(xt+1 | xt)

p(yt|xt)p(xt|y(t−1))

p(yt|y(t−1))

≈
1
M

∑
m p(xt+1 | x

(m)
t )

p(yt|x
(m)
t

)

p(yt|y(t−1))
≈

∑
mw

(m)
t p(xt+1 | x

(m)
t )


