Sampling

Goal: Independent samples $\chi^{(1)}, \chi^{(2)}, \ldots$ from target probability distribution p

Estimating expectation $E[f(X)]$ where X from p
$\hat{f}=\frac{1}{M} \sum_{m=1}^{M} f\left(x^{(m)}\right)$
$E[\hat{f}]=E[f(X)]$ even if samples not independent, but each from p

Markov chain Monte Carlo (MCMC)

- MCMC generates a sequence of samples $X^{(0)}, X^{(1)}, \ldots$
- Distribution of $X^{(n)}$ in limit converges to the target distribution
- But samples not independent

Markov chains

- Sequence of random variables $X^{(0)}, X^{(1)}, \ldots$ such that $\operatorname{Pr}\left(X^{(t)} \mid X^{(0)}, \ldots, X^{(t-1)}\right)=\operatorname{Pr}\left(X^{(t)} \mid X^{(t-1)}\right)$, i.e. value in time t depends only on value in time $t-1$
- For simplicity assume values of $X^{(t)}$ from a finite set (set of states)
- $\operatorname{Pr}\left(X^{(t)}=y \mid X^{(t-1)}=x\right)$ given by $p_{x, y}$ from transition matrix P
- $\operatorname{Pr}\left(\mathrm{X}^{(\mathrm{t})}=\mathrm{y} \mid \mathrm{X}^{(0)}=\mathrm{x}\right)$ obtained from P^{t}
- Distribution π over set of states is stationary for P if for each j we have $\sum_{i} \pi(i) p_{i, j}=\pi(j)$
or in matrix notation $\pi \mathrm{P}=\pi$
- Ergodic matrices P have exactly one stationary distribution π, and for each x and y we have $\lim _{t \rightarrow \infty} p_{x, y}^{t}=\pi(y)$

Ergodicity of Markov chains

Matrix P is ergodic if for some t has P^{t} all entries non-zero

Examples: the first three non-ergodic, last ergodic

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0.5 & 0.5 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0.5 & 0.5 \\
1 & 0
\end{array}\right)
$$

Markov chain Monte Carlo

- Want to sample from a complex distribution π
- Create ergodic Markov chain with π as stationary distribution
- Start from some $X^{(0)}$, repeatedly sample from $\operatorname{Pr}\left(X^{(t)} \mid X^{(t-1)}\right)$
- After sufficiently long $t, X^{(t)}$ from distribution similar to π
- But successive samples not independent!
- Still, they can be used to estimate expected values

$$
\frac{1}{t} \sum_{\mathfrak{i}=1}^{t} f\left(X^{(t)}\right) \text { converges to } E_{\pi}[f(X)]
$$

We will cover two MCMC algorithms:
Gibbs sampling, Metropolis-Hastings algorithm

Gibbs sampling

- Target distribution $\pi(X)$ over vectors $X=\left(x_{1}, \ldots, x_{n}\right)$
- In each step sample one coordinate x_{i} from conditional $\operatorname{Pr}\left(x_{i} \mid x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots x_{n}\right)$
- Other coordinates left from the previous step
- Value i chosen randomly or periodically $i=1,2, \ldots, n, 1, \ldots$

Proof of Gibbs sampling correctness for ergodic chains

- Def.: P and π satisfy detailed balance if for each x and y we have

$$
\pi(x) p_{x, y}=\pi(y) p_{y, x}
$$

- Lemma: If P and π satisfy detailed balance, π is stationary for P .
- Proof: $\sum_{x} \pi(x) p_{x, y}=\sum_{x} \pi(y) p_{y, x}=\pi(y) \sum_{x} p_{y, x}=\pi(y)$.
- Lemma: Gibbs sampling chain satisfies detailed balance for target distribution π (and thus π stationary as needed)
- Proof: let x and y are successive vectors differing in i-th coordinate
- Let χ_{-i} be values of all coordinates except χ_{i}
- $\pi(x) p_{x, y}=\pi(x) \operatorname{Pr}\left(y_{i} \mid x_{-i}\right)=\operatorname{Pr}\left(x_{-i}\right) \operatorname{Pr}\left(x_{i} \mid x_{-i}\right) \operatorname{Pr}\left(y_{i} \mid\right.$

$$
\left.x_{-i}\right)=\pi(y) \operatorname{Pr}\left(x_{i} \mid x_{-i}\right)=\pi(y) \operatorname{Pr}\left(x_{i} \mid y_{-\mathfrak{i}}\right)=\pi(y) p_{y, x}
$$

Example of Gibbs sampling: motif finding in DNA

Matrix W (size $|\Sigma| \times \mathrm{L}$) of frequencies in the motif
Background frequencies q outside the motif
Position o_{i} of motif in sequence S_{i}

```
A 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
C 0.01 0.01 0.01 0.39 0.19 0.97 0.01 0.01 0.89
G 0.01 0.01 0.01 0.59 0.79 0.01 0.97 0.97 0.09
T 0.97 0.97 0.97 0.01 0.01 0.01 0.01 0.01 0.01
q[A] =0.3,q[C]=0.2,q[G]=0.2,q[T]=0.3
```


Model for motif finding in DNA

Matrix W (size $|\Sigma| \times \mathrm{L}$) of frequencies in the motif
Background frequencies q outside the motif
Position o_{i} of motif in sequence S_{i}
Model defines probability distribution $\operatorname{Pr}(\mathrm{S} \mid \mathrm{W}, \mathrm{q}, \mathrm{O})$

$$
\begin{gathered}
\operatorname{Pr}\left(S_{i} \mid W, q, o_{i}\right)=\prod_{j=1}^{L} W\left[S_{i}\left[j+o_{i}-1\right], j\right] \prod_{j=1}^{o_{i}-1} q\left[S_{i}[j]\right] \prod_{j=o_{i}+L}^{m} q\left[S_{i}[j]\right] \\
\operatorname{Pr}(S \mid W, q, O)=\prod_{i=1}^{n} \operatorname{Pr}\left(S_{i} \mid W, q, o_{i}\right)
\end{gathered}
$$

+ added priors on W and O to get $\operatorname{Pr}(\mathrm{S}, \mathrm{W}, \mathrm{O} \mid \mathrm{q})$

Gibbs sampling for motifs PhyloGibbs (Siddharthan et al. 2005)
Model defines probability distribution $\operatorname{Pr}(\mathrm{S}, \mathrm{W}, \mathrm{O})$
$S=\left(S_{1}, \ldots S_{n}\right)$: DNA sequences, each of length m
W: matrix of frequencies in the motif (size $|\Sigma| \times \mathrm{L}$)
$\mathrm{O}=\left(\mathrm{o}_{1}, \ldots, \mathrm{o}_{\mathrm{n}}\right)$: positions of motif occurrences

Algorithm

Sample from $\operatorname{Pr}(\mathrm{O} \mid \mathrm{S})$, marginalize out W
In step $t+1$ select one sequence S_{i}
For each position $o_{\mathfrak{i}}^{\prime}$ compute $\operatorname{Pr}\left(\mathrm{o}_{\mathfrak{i}}^{\prime} \mid \mathrm{O}_{-\mathfrak{i}}^{(\mathrm{t})}, \mathrm{S}\right)$
Sample a particular o_{i}^{\prime} proportional to these probabilities
$\mathrm{O}^{(\mathrm{t}+1)}$ obtained from $\mathrm{O}^{(\mathrm{t})}$ by substituting $\mathrm{o}_{\mathfrak{i}}^{\prime}$ for o_{i}

Computation of $\operatorname{Pr}\left(\mathrm{o}_{\mathrm{i}} \mid \mathrm{O}_{-\mathrm{i}}, \mathrm{S}\right)$
$\operatorname{Pr}\left(\mathrm{o}_{\mathrm{i}} \mid \mathrm{O}_{-\mathrm{i}}, \mathrm{S}\right)=\operatorname{Pr}(\mathrm{O} \mid \mathrm{S}) / \operatorname{Pr}\left(\mathrm{O}_{-\mathfrak{i}} \mid \mathrm{S}\right) \propto \operatorname{Pr}(\mathrm{O} \mid \mathrm{S})$
$\operatorname{Pr}(\mathrm{O} \mid \mathrm{S})=\operatorname{Pr}(\mathrm{S} \mid \mathrm{O}) \operatorname{Pr}(\mathrm{O}) / \operatorname{Pr}(\mathrm{S}) \propto \operatorname{Pr}(\mathrm{S} \mid \mathrm{O})$ (if $\operatorname{Pr}(\mathrm{O})$ uniform)
$\operatorname{Pr}(S \mid W, O)$ is easy to compute, but we need $\operatorname{Pr}(O \mid S)$
Let $S_{(W)}$ be parts of sequences generated from $W, S_{(q)}$ the rest
$\operatorname{Pr}(\mathrm{S} \mid \mathrm{O})=\operatorname{Pr}\left(\mathrm{S}_{(\mathrm{W})} \mid \mathrm{O}\right) \operatorname{Pr}\left(\mathrm{S}_{(\mathrm{q})} \mid \mathrm{O}\right)$
$\operatorname{Pr}\left(S_{(q)} \mid O\right)=\operatorname{Pr}\left(S_{(q)}\right)$ easy to compute

Computation of $\operatorname{Pr}\left(\mathrm{o}_{\mathfrak{i}} \mid \mathrm{O}_{-i}, \mathrm{~S}\right)$ (cont.)

Need $\operatorname{Pr}\left(S_{(W)} \mid O\right)$:
$\operatorname{Pr}\left(S_{(W)} \mid O\right)=\int \operatorname{Pr}\left(S_{(W)} \mid O, W\right) \operatorname{Pr}(W) d W$, integral over W where $\mathcal{w}_{a, j} \geq 0$ and $\sum_{a} \mathcal{w}_{a, j}=1$
$\operatorname{Pr}(W)$ is a constant for uniform prior
$\operatorname{Pr}\left(S_{(W)} \mid O, W\right)=\prod_{i=1}^{L} \prod_{a}\left(w_{a, j}\right)^{n_{a, j}}$
$n_{a, j}$ is the number of occurrences of a at position j in windows O
$\operatorname{Pr}\left(S_{(W)} \mid O\right)=\prod_{j=1}^{L} 3!/(n+3)!\prod_{a} n_{a, j}!\propto \prod_{j=1}^{L} n_{S_{i}\left[o_{i}+j-1\right], j}$

Metropolis-Hastings algorithm

- Proposal distribution $\mathrm{q}\left(x \mid \chi^{(\mathrm{t})}\right)$
- Sample x from $q\left(x \mid x^{(t)}\right)$
- Compute $\mathrm{q}\left(x \mid x^{(\mathrm{t})}\right), \mathrm{q}\left(x^{(\mathrm{t})} \mid x\right), \mathrm{p}\left(x^{(\mathrm{t})}\right), \mathrm{p}(\mathrm{x})$ (up to a constant factor)
- Accept x as $x^{(t+1)}$ with probability $\min \left(1, \frac{p(x) q\left(x^{(t)} \mid x\right)}{p\left(x^{(t)}\right) q\left(x \mid x^{(t)}\right)}\right)$
- If rejected, set $\chi^{(t+1)}=x^{(t)}$

MCMC notes

- Typically discard start of each chain (burn-in)
- If "independent" samples desired, use every kth sample for a large k
- Possible problems: slow convergence (slow mixing), high rejection rate
- Many tricks for improving / monitoring convergence

Gibbs sampling in graphical models

Sample a node conditioning on its Markov blanket

(a)

(b)

Potentially sample groups of nodes with tracktable structure

