
Sampling

Goal: Independent samples x(1), x(2), . . . from target probability

distribution p

Estimating expectation E[f(X)] where X from p

f̂ = 1
M

∑M
m=1 f(x

(m))

E[f̂] = E[f(X)] even if samples not independent, but each from p

Markov chain Monte Carlo (MCMC)

• MCMC generates a sequence of samples X(0), X(1), . . .

• Distribution of X(n) in limit converges to the target distribution

• But samples not independent

Markov chains

• Sequence of random variables X(0), X(1), . . . such that

Pr(X(t) | X(0), . . . , X(t−1)) = Pr(X(t) | X(t−1)), i.e. value in time t

depends only on value in time t− 1

• For simplicity assume values of X(t) from a finite set (set of states)

• Pr(X(t) = y | X(t−1) = x) given by px,y from transition matrix P

• Pr(X(t) = y | X(0) = x) obtained from Pt

• Distribution π over set of states is stationary for P if for each j we

have
∑

i π(i)pi,j = π(j)

or in matrix notation πP = π

• Ergodic matrices P have exactly one stationary distribution π, and for

each x and y we have limt→∞ pt
x,y = π(y)

Ergodicity of Markov chains

Matrix P is ergodic if for some t has Pt all entries non-zero

Examples: the first three non-ergodic, last ergodic

1 0

0 1

0.5 0.5

0 1

0 1

1 0

0.5 0.5

1 0

Markov chain Monte Carlo

• Want to sample from a complex distribution π

• Create ergodic Markov chain with π as stationary distribution

• Start from some X(0), repeatedly sample from Pr(X(t) | X(t−1))

• After sufficiently long t, X(t) from distribution similar to π

• But successive samples not independent!

• Still, they can be used to estimate expected values

1
t

∑t
i=1 f(X

(t)) converges to Eπ[f(X)]

We will cover two MCMC algorithms:

Gibbs sampling, Metropolis–Hastings algorithm

Gibbs sampling

• Target distribution π(X) over vectors X = (x1, . . . , xn)

• In each step sample one coordinate xi from conditional

Pr(xi | x1, . . . , xi−1, xi+1, . . . xn)

• Other coordinates left from the previous step

• Value i chosen randomly or periodically i = 1, 2, . . . , n, 1, . . .

Proof of Gibbs sampling correctness for ergodic chains

• Def.: P and π satisfy detailed balance if for each x and y we have

π(x)px,y = π(y)py,x

• Lemma: If P and π satisfy detailed balance, π is stationary for P.

• Proof:
∑

x π(x)px,y =
∑

x π(y)py,x = π(y)
∑

x py,x = π(y).

• Lemma: Gibbs sampling chain satisfies detailed balance for target

distribution π (and thus π stationary as needed)

• Proof: let x and y are successive vectors differing in i-th coordinate

• Let x−i be values of all coordinates except xi

• π(x)px,y = π(x) Pr(yi | x−i) = Pr(x−i) Pr(xi | x−i) Pr(yi |

x−i) = π(y) Pr(xi | x−i) = π(y) Pr(xi | y−i) = π(y)py,x

Example of Gibbs sampling: motif finding in DNA

Matrix W (size |Σ|× L) of frequencies in the motif

Background frequencies q outside the motif

Position oi of motif in sequence Si

A 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

C 0.01 0.01 0.01 0.39 0.19 0.97 0.01 0.01 0.89

G 0.01 0.01 0.01 0.59 0.79 0.01 0.97 0.97 0.09

T 0.97 0.97 0.97 0.01 0.01 0.01 0.01 0.01 0.01

q[A] = 0.3, q[C] = 0.2, q[G] = 0.2, q[T] = 0.3

Model for motif finding in DNA

Matrix W (size |Σ|× L) of frequencies in the motif

Background frequencies q outside the motif

Position oi of motif in sequence Si

Model defines probability distribution Pr(S | W,q,O)

Pr(Si | W,q, oi) =

L∏

j=1

W[Si[j+oi−1], j]

oi−1∏

j=1

q[Si[j]]

m∏

j=oi+L

q[Si[j]]

Pr(S | W,q,O) =

n∏

i=1

Pr(Si | W,q, oi)

+ added priors on W and O to get Pr(S,W,O | q)

Gibbs sampling for motifs PhyloGibbs (Siddharthan et al. 2005)

Model defines probability distribution Pr(S,W,O)

S = (S1, . . . Sn): DNA sequences, each of length m

W: matrix of frequencies in the motif (size |Σ|× L)

O = (o1, . . . , on): positions of motif occurrences

Algorithm

Sample from Pr(O | S), marginalize out W

In step t+ 1 select one sequence Si

For each position o ′

i compute Pr(o ′

i | O
(t)
−i , S)

Sample a particular o ′

i proportional to these probabilities

O(t+1) obtained from O(t) by substituting o ′

i for oi

Computation of Pr(oi | O−i, S)

Pr(oi | O−i, S) = Pr(O | S)/ Pr(O−i | S) ∝ Pr(O | S)

Pr(O | S) = Pr(S | O) Pr(O)/ Pr(S) ∝ Pr(S | O) (if Pr(O) uniform)

Pr(S | W,O) is easy to compute, but we need Pr(O | S)

Let S(W) be parts of sequences generated from W, S(q) the rest

Pr(S | O) = Pr(S(W) | O) Pr(S(q) | O)

Pr(S(q) | O) = Pr(S(q)) easy to compute

Computation of Pr(oi | O−i, S) (cont.)

Need Pr(S(W) | O):

Pr(S(W) | O) =
∫

Pr(S(W) | O,W) Pr(W)dW,

integral over W where wa,j ≥ 0 and
∑

awa,j = 1

Pr(W) is a constant for uniform prior

Pr(S(W) | O,W) =
∏L

i=1

∏
a(wa,j)

na,j

na,j is the number of occurrences of a at position j in windows O

Pr(S(W) | O) =
∏L

j=1 3!/(n+ 3)!
∏

a na,j! ∝
∏L

j=1 nSi[oi+j−1],j

Metropolis–Hastings algorithm

• Proposal distribution q(x | x(t))

• Sample x from q(x | x(t))

• Compute q(x | x(t)), q(x(t) | x), p(x(t)), p(x) (up to a constant

factor)

• Accept x as x(t+1) with probability min

(

1,
p(x)q(x(t)|x)

p(x(t))q(x|x(t))

)

• If rejected, set x(t+1) = x(t)

MCMC notes

• Typically discard start of each chain (burn-in)

• If “independent” samples desired, use every kth sample for a large k

• Possible problems: slow convergence (slow mixing), high rejection rate

• Many tricks for improving / monitoring convergence

Gibbs sampling in graphical models

Sample a node conditioning on its Markov blanket

Potentially sample groups of nodes with tracktable structure

