Stavy vyşsích rádov

Rád 0: emisná tabul'ka e určuje $\operatorname{Pr}\left(S_{i} \mid A_{i}\right)$
Rád 1: e určuje $\operatorname{Pr}\left(S_{i} \mid A_{i}, S_{i-1}\right)$

A_{i}	S_{i-1}	a	c	g	t
	a	0.24	0.23	0.34	0.19
	c	0.30	0.31	0.13	0.26
	g	0.27	0.28	0.28	0.17
	t	0.13	0.28	0.38	0.21
	a	0.30	0.18	0.27	0.25
	c	0.32	0.28	0.06	0.35
\square	g	0.27	0.22	0.27	0.24
	t	0.20	0.21	0.26	0.33

Na charakterizovanie exónov, intrónov atd' používame rád 4-5.

Modeling length distributions

What is the length distribution of red segments generated by the model?

$$
\operatorname{Pr}(\text { red segment of length } \ell)=p^{\ell-1}(1-p)
$$

Modeling length distributions

What is the length distribution of red segments?

$\operatorname{Pr}($ red segment of length $\ell)=p^{\ell-1}(1-p)$

- Geometric distributions: bad model of real world; $O(n)$ time [Viterbi 1967]
- Arbitrary distributions: faithful model; $O\left(n^{2}\right)$ time [Rabiner 1989]
- Will show: geometric tails: better model; $O(n t)$ time.

Geometric tail distributions

- head (lengths $<t$): specify explicitly
- tail (lengths $\geq t$): geometrically decaying

Geometric tail is a good approximation

- $O(n t)$ works for exons and introns
- Intergenic regions ($t \approx 10000$):
- Use less accurate approximation
- Better running time: $O(n \sqrt{t})$

Viterbi algorithm: the most probable state path [Viterbi 1967]

(but geometric length distributions only)

- Take - log of weights and compute shortest path in DAG
- Running time: $O(n)$

Viterbi algorithm - O(n) time

Viterbi algorithm $-O(n)$ time

Generalized Viterbi algorithm [Rabiner, 1989]

g
t
a
c
c
a
a c

Combining two algorithms

Assumption: Length distribution - geometric tail starting at $t=3$

Combining two algorithms

Assumption: Length distribution - geometric tail starting at $t=3$

Running time: $O(n t)$

Modeling length distributions - summary

- Change from $O(n)$ to $O\left(n^{2}\right)$ - any length distribution you want
- Instead: trade-off between model faithfulness and running time
- Approximate by geometric tail: $O(n t)$ time
- If t is too large: $O(n \sqrt{t})$ time

Signals in gene finding

- Conserved sequences of fixed length that appear at boundaries of exons and other important places.
- Our interest: replace section of HMM by more realistic generative model giving
- High probability to actual signals
- Low probability to decoys (sites which are not signals)

Example: Position Weight Matrix (PWM)

	0	1	2	3	4	5	6	7	8
A	.38	.62	.12	0	0	.71	.73	.11	.21
C	.31	.10	.04	0	0	.02	.06	.06	.10
G	.18	.12	.77	1	0	.24	.08	.75	.14
T	.13	.16	.07	0	1	.03	.13	.08	.55

Main challenge: dependencies within signal

How much more information,
if we consider pairs instead of individual positions?

(darker is better)

Signals as DAGs

- vertices $=$ signal positions
- edges $=$ "dependencies" between positions

To generate signal by model M

- Generate characters at signal positions in topological order
- Model specifies for each position i :

$$
\operatorname{Pr}\left[S_{i}=x_{i} \mid S_{j_{1}}=x_{j_{1}}, \ldots, S_{j_{k}}=x_{j_{k}}\right]
$$

where j_{1}, \ldots, j_{k} are predecessors of i in the DAG

Examples of generative models for donor signal

$$
\text { PWM: } G \in T G B G T
$$

1st order PWM:

tree model (order 1):

2nd order HOT:

Estimating model parameters (training)

Maximum-likelihood approach: Find model that maximizes joint probability of generating all signals in the training set.

1. determine best topology
2. compute probability tables (count frequencies - easy) Note:

- The amount of data needed to train model given by a graph
- grows exponentially with maximum in-degree
- does not depend on number of vertices or topology
- Limit in-degree to avoid overfitting

Training HOT models

Task: Given a training set S_{1}, \ldots, S_{ℓ}, find model topology with maximum in-degree k that maximizes likelihood of S_{1}, \ldots, S_{ℓ}.

Optimization problem:

1. Create a hypergraph \mathcal{H} :

- vertices $=$ signal sites
- hyperedge (T, h) for each h, T, s.t. $0 \leq|T| \leq k$

2. Compute cost of hyperedge (T, h) as $w_{T, h}=H(T \cup\{h\})-H(T)$, where $H(X)$ is entropy over signal positions X
3. Find minimum directed spanning hypertree \mathcal{M}

- For $k=1$: Chow-Liu trees [Chow, Liu 1968]
- For $k \geq 2$: NP-hard

4. Underlying graph of \mathcal{M} is the optimal topology of HOT- k model

Training HOT models by integer programming

$b_{i, j}$ - ordering of sites in generative process
$a_{T, h}$ - was hyperedge (T, h) chosen?

$$
\begin{aligned}
\min \sum_{E=(T, h)} w_{T, h} a_{T, h}, & \text { subject to: } \\
b_{i, j}+b_{j, i} & =1, \text { for all pairs } i \text { and } j, \\
b_{i, j}+b_{j, k}+b_{k, i} & \leq 2, \text { for all triplets } i, j \text { and } k, \\
a_{T, h} & \leq b_{x, h}, \text { for all hyper edges } E=(T, h) \text { and nodes } x \text { in } \\
\sum_{E: E=(T, h)} a_{T, h} & =1, \text { for all nodes } h, \\
a_{T, h} & \in\{0,1\}, \text { for all hyperedges } E=(T, h) \\
b_{i, j} & \in\{0,1\}, \text { for pairs of nodes } i \text { and } j .
\end{aligned}
$$

Using signal models for discrimination

- Choose a threshold score for "true" predicted donor site
- Changing the threshold balances sensitivity vs. specificity

Reliability of the score

- If used in HMMs, the models are NOT used for discrimination
- Rather the scores are used in HMM inference
\Rightarrow need to use different measure to evaluate signal models
- Score: given sequence S, estimate probability that S is a signal
- Can we rely on the value of the score?

Example:

- $Q_{0.066}=$ set of positions with score ≈ 0.066 in HOT2 (258 samples)
- 20 true donors in $Q_{0.066}$
- This is $7.8 \%(20 / 258)$

Model	Correlation
PWM0	0.827
PWM1	0.890
PWM2	0.911
HOT2	0.955

Signals in gene finding - summary

- Main problem: how to capture dependencies between non-adjacent signal positions
- Traditional tradeoff: how many dependencies we can capture without running into overfitting (limited in-degree of vertex in the model)
- Many models can be represented as hypertrees (or Bayesian networks with fixed in-degree)
- Training HOT models is hard in general; however integer programming does reasonable job
- Both discrimination power and reliability of score are important measure of model performance

Viterbi algorithm

Dynamic programming:

- $P[i, j]$ - probability of generating x_{1}, \ldots, x_{i} and ending in state j
- $P[i, j]=\max _{k} P[i-1, k] \cdot t(k, j) \cdot e\left(x_{i}, j\right)$ $t(k, j)$: probability of transition $k \rightarrow j$ $e\left(x_{i}, j\right)$: probability of emission of x_{i} in state j
- For each $P[i, j]$ need to remember best previous state k (back pointers)

Viterbi algorithm

Dynamic programming:

- $P[i, j]$ - probability of generating x_{1}, \ldots, x_{i} and ending in state j
- $P[i, j]=\max _{k} P[i-1, k] \cdot t(k, j) \cdot e\left(x_{i}, j\right)$ $t(k, j)$: probability of transition $k \rightarrow j$ $e\left(x_{i}, j\right)$: probability of emission of x_{i} in state j
- For each $P[i, j]$ need to remember best previous state k (back pointers)

Space requirements of the Viterbi algorithm

- Need to remember back pointers for the whole sequence.
- Example: gene finding on 250 MB sequence with 100 state $\mathrm{HMM} \Rightarrow \mathbf{2 5}$ GB of internal memory

Some solutions:

- Split the sequence up into smaller chunks
- How to resolve "mismatches" on boundaries?
- Cannot always give the optimal solution
- Check pointing [Grice et al. 1997]
- $O(\sqrt[L]{n} m)$, factor L slow down
- PLUS: Need to store the complete sequence all the time
- This paper: on-line algorithm, needs variable-size buffer, small most of the time

On-line Viterbi algorithm

- Detect coalescence points efficiently
- Output the path left of the coalescence point
- Remove all the data left of the coalescence point

Efficient detection of coalescance points:
Maintain compressed backpointer tree

In each step, add newly created back pointers...

... remove unused branches, compress non-branching vertices. Overhead: $O(m)$ space, $O(m)$ time in each step, $\approx 5 \%$ slowdown

How much memory do we need?

Gene finding experiment:

- 256 state HMM
- 20 MB human sequences
- Average buffer size: $\approx 11 \mathrm{kB}$
- Maximum buffer size: ≈ 222 kB
- Average maximum buffer size: $\approx 100 \mathrm{kB}$

Estimating expected maximum buffer size:

- Talk: 2 -state symmetric HMM, i.i.d. sequence, $O(\log n)$
- Paper: 2-state general HMM, HMM generated sequence

2-state symmetric HMM: Possible backpointer configurations:

Which configuration?
depends on ratio of $P[i-1, A]$ and $P[i-1, B]$

Configurations of back-pointers

$$
P_{i-1}=\frac{\log P[i-1, A]-\log P[i-1, B]}{\log (1-e)-\log e} \quad L=\left\lceil\frac{\log (1-t)-\log t}{\log (1-e)-\log e}\right\rceil
$$

$$
-L<P_{i-1}<L
$$

$P_{i}:=P_{i-1} \pm 1$,
+1 if $x_{i}=0$,
-1 if $x_{i}=1$

$$
P_{i-1} \geq L
$$

coalescence!

$$
P_{i}:=L \pm 1
$$

depending on x_{i}

$$
P_{i-1} \leq-L
$$

coalescence!
$P_{i}:=-L \pm 1$
depending on x_{i}

Consider uniform i.i.d. generated random sequence x_{1}, \ldots, x_{n} :
\Rightarrow variable P_{i} is a random walk on interval $(-L, L)$
\Rightarrow run: time between two coalescence points

How long are runs?

- Expected length: $\left\lceil 2 \frac{\log (1-t)-\log t}{\log (1-e)-\log e}\right\rceil-1$
- Run length distribution:
R_{ℓ} : occurence of run of length $2 \ell+1$ or $2 \ell+2$
$b \cdot \alpha^{2 \ell} \leq \operatorname{Pr}\left(R_{\ell}\right) \leq c \cdot \alpha^{2 \ell}$, for some $b, c>0, \alpha<1$
geometrically decaying function
(from random walk theory [Feller 1968])

Expected maximum buffer size

- Lengths of runs sum up to sequence length n
- Runs geometrically decaying and independent
- Expected buffer size $=$ length of the longest run
- Extreme value theory for coin head runs [Guibas, Odlyzko 1980; Gordon, Schilling, Waterman 1986]
- Modified for geometrically decaying functions
- Result: $\Theta(\log n)$

Annotation issues in jumping HMMs

State path: alignment of sequence to subtype profiles
Annotation: segments of inputs emitted by subtype profiles
Problems with most probable annotation:

- probably hard to decode
- many annotations with slightly shifted boundaries

Change the objective function for decoding

Gain function [Hamada et al. 2009]
$G\left(A, A^{\prime}\right)$ measures accuracy of A wrt. correct annotation A^{\prime}

Examples:

Identity: score 1 iff A completely correct, 0 otherwise
Pointwise: score +1 for every correct label in A
Boundary: score +1 for every correct boundary, $-\gamma$ for incorrect boundary

$$
\begin{array}{rlccc}
& \text { Identity } & \text { Pointwise } & \text { Boundary } \\
A^{\prime} & =\square \square \square \square \square \square \square & 1 & 5 & 4 \\
A & & & \\
A \square \square \square \square \square & & & & \\
A^{\prime} & =\square \square \square \square \square & 0 & 4 & 3-\gamma
\end{array}
$$

Optimizing expected gain

Goal: find annotation A that maximizes

$$
E_{A^{\prime} \mid X}\left[G\left(A, A^{\prime}\right)\right]=\sum_{A^{\prime}} G\left(A, A^{\prime}\right) P\left(A^{\prime} \mid X\right)
$$

Identity gain function: Viterbi algorithm
Pointwise gain function: Posterior decoding (forward-backward)
Boundary gain function: [Gross et al. 2007]
The choice of gain function is application-dependent

