Stavy vyssich radov
Rad 0: emisna tabulka e urcuje Pr(S;|A;)
Rad 1: e urcuje Pr(S;|A;, S;_1)

A, S,_1 | a C g t

a 0.24 0.23 034 0.19
0.30 0.31 0.13 0.26
0.27 0.28 0.28 0.17
0.13 0.28 0.38 0.21
0.30 0.18 0.27 0.25
0.32 0.28 0.06 0.35
0.27 022 0.27 0.24
0.20 0.21 0.26 0.33

c¢ 0 O QP | 08 O

Na charakterizovanie exénov, intrénov atd pouzivame rad 4-5.

24

Modeling length distributions

What is the length distribution of red segments
generated by the model?

p Pr(red segment of length /) = pg_l(l —p)
0.010,
0.008]
0.006]
0.004]

0.002+

100 200 300 400
Length of internal exon

22

Modeling length distributions

What is the length distribution of red segments?

Pr(red segment of length ¢) = p*~1(1 — p)
0.010-
0.008-
0.006-
0.004

0.002-

100 200 300 400
Length of internal exon

e Geometric distributions: bad model of real world; O(n) time
[Viterbi 1967]

e Arbitrary distributions: faithful model; O(n?) time [Rabiner 1989]

e Will show: geometric tails: better model; O(nt) time.

23

Geometric tail distributions

e head (lengths < t): specify explicitly

e tail (lengths > t): geometrically decaying

0.0104

0.008+

0.006+

0.004+

0.002+

0.000

=120

10 200 300
L ength of internal exon

24

400

Geometric tail is a good approximation

0.00004

0.010+ 1t=120 0.002-
0.008
0.006+ '\
A\ 0.0011
0.004 \
\\
\
A\
0.002 o
\\
0.000 - ; =3 0.000-4—i— . : ;
100 200 300 400 200 400 600 800

Length of internal exon

Length of intron

e O(nt) works for exons and introns

e Intergenic regions (¢ ~ 10000):
— Use less accurate approximation

— Better running time: O(n+/t)

25

10000-00000

0

20000 40000
Length of intergenic region

60000

Viterbi algorithm: the most probable state path [Viterbi 1967]

(but geometric length distributions only)

a:8.§
c: 0.
0.9 9:0.3
t:0.2
0.01 0.1

0.99

Qo
o000
wPPNhW

X =gtac

e Take — log of weights and compute shortest path in DAG

e Running time: O(n)

26

Viterbi algorithm — O(n) time

© © 0 00 0 00
© O 0000 O0O0

27

Viterbi algorithm — O(n)

tlme

O
of

pavedid

d

28

Q00
110

O
_

C

Viterbi algorithm — O(n) time

’\o/ 0-0-0-0 ©

C

Generalized Viterbi algorithm [Rabiner, 1989]

O 000
i 1 &0 0N
. 0000000

o O 00 00O0O0

29

Viterbi algorithm — O(n) time

Generalized Viterbi algorithm — O(n?)

30

Combining two algorithms

Assumption: Length distribution — geometric tail starting at t = 3

| 00000 0ae
A® 000000O0O0
| o000 00@0O0

31

Combining two algorithms

Assumption: Length distribution — geometric tail starting at t = 3

Running time: O(nt)

32

Modeling length distributions — summary

e Change from O(n) to O(n?) — any length distribution you want

e Instead: trade-off between model faithfulness and running time
— Approximate by geometric tail: O(nt) time
— If t is too large: O(n+\/t) time

33

Signals in gene finding

e Conserved sequences of fixed length that appear at boundaries of
exons and other important places.

e Our interest: replace section of HMM by more realistic generative
model giving
— High probability to actual signals

— Low probability to decoys (sites which are not signals)

Example: Position Weight Matrix (PWM)

0 1 2 3 4 b5 6 I 3
A 38 .62 .12 o .71 73 .11 21
c 31 .10 04 0 O .02 .06 .06 .10
G .18 12 77 1 0 .24 08 .75 .14
Tr .13 .16 0r 0 1 .03 .13 .08 .55

10

Main challenge: dependencies within signal

How much more information,
if we consider pairs instead of individual positions?

Q-
7

6 -

5 0.066
4 0.053
3.4 0.04
N | 0.026
1 0.013
0 0

(darker is better)

11

Signals as DAGs

e vertices = signal positions
e edges = “dependencies’ between positions
To generate signal by model M
e Generate characters at signal positions in topological order
e Model specifies for each position i:
Pr[S; =x;|S;, =zj,,..., 5, =],

where j1,..., 7, are predecessors of 7 in the DAG

12

Examples of generative models for donor signal

PwM: (e) (o) (1) (r) (a) (o) (1) (v)
1st order PWM: (‘6 j=('6)= T J=(R j=(A)=)=(7) @

tree model (order 1): +® @
2nd order PWM: e‘cw&ﬂ °

2nd order HOT: e ° G'eec

13

Estimating model parameters (training)

Maximume-likelihood approach: Find model that maximizes joint

probability of generating all signals in the training set.
1. determine best topology

2. compute probability tables (count frequencies — easy)

Note:

e The amount of data needed to train model given by a graph
— grows exponentially with maximum in-degree
— does not depend on number of vertices or topology

e Limit in-degree to avoid overfitting

14

Training HOT models

Task: Given a training set S1,...,.Sy, find model topology with
maximum in-degree k£ that maximizes likelihood of S1,...,.5).

Optimization problem:

1. Create a hypergraph H:
— vertices = signal sites
— hyperedge (T, h) for each h, T, s.t. 0 < |T| <k

2. Compute cost of hyperedge (T, h) as wr = H(T'U{h}) — H(T),
where H(X) is entropy over signal positions X

3. Find minimum directed spanning hypertree M
e For k = 1: Chow-Liu trees [Chow, Liu 1968]
e For k > 2: NP-hard

4. Underlying graph of M is the optimal topology of HOT-k model

15

Training HOT models by integer programming

b; ; — ordering of sites in generative process
ar, — was hyperedge (1, h) chosen?

min Z WT LAT ks subject to:
E=(T,h)
bi; +b;; = 1, for all pairs i and j,
bij + bk +br: < 2, forall triplets 7, j and £,
arn < by, forall hyper edges E = (T, h) and nodes z in
Z arn, = 1, for all nodes h,
E:E=(T,h)
arn € 40,1}, for all hyperedges £ = (T, h),

b; ; € {0,1}, for pairs of nodes ¢ and j.

16

Using signal models for discrimination

e Choose a threshold score for “true” predicted donor site

e Changing the threshold balances sensitivity vs. specificity

1.0+

0.8+

o
T

Sensitivity
o
T

0.0 —
0.0 0.2 0.4 0.6

Specificity

17

Reliability of the score

e |f used in HMMs, the models are NOT used for discrimination
e Rather the scores are used in HMM inference

= need to use different measure to evaluate signal models
e Score: given sequence S, estimate probability that S is a signal

e Can we rely on the value of the score?

18

Fraction of true sites

" // Example:
0_2_5 // T o e (Quoss = set of positions
: L/ ---PWM1
/_{4.}-*’" e PWM2 with score ~ 0.066 in HOT?2
01- /:;7% | (258 samples)
é/';/ e 20 true donors in Q. 066
>0 o1 02 03 o
M odel score e Thisis 78% (20/258)
Model | Correlation
PWMO 0.827
PWM1 0.890
PWM?2 0.911
HOT?2 0.955

19

Signals in gene finding — summary

e Main problem: how to capture dependencies between
non-adjacent signal positions

e Traditional tradeoff: how many dependencies we can capture
without running into overfitting
(limited in-degree of vertex in the model)

e Many models can be represented as hypertrees (or Bayesian
networks with fixed in-degree)

e Training HOT models is hard in general; however integer
programming does reasonable job

e Both discrimination power and reliability of score are important
measure of model performance

20

Viterbi algorithm

Dynamic programming:
e Pli,j] — probability of generating x1,...,x; and ending in state j
o Pli,j|l =maxy Pli — 1,k]-t(k,j) - e(x;,J)

t(k,7) : probability of transition k — j
e(x;,j) : probability of emission of x; in state j

e For each P|i, j| need to remember best previous state k
(back pointers)

c a C g a C g c g a c
A 02.{__0.02_ 0.0L_3e.—3_ 6e-4 | le-4 _3e.-5 7;;5_ 1e—2_ 3e-6 _8e.-7
AN N (’_ (_ N
g o \ng\@\e.-‘i\%‘i Se-3 \@.f\\kgi /ie-4 \§e.‘7\\ke.‘6\ 2e-7
NI NEMNWaN ><\ {INWs
C 0 0 .01 e-5 e-5 e-3 e—;z e-0 e-5 e-3 e-7
SRR AL VAR L ALY
gl 0|2 \E{e.;é -6 Nle-6 \{e.% -8 Ne-7 \ge.,é \(e.-g

Viterbi algorithm

Dynamic programming:
e Pli,j] — probability of generating x1,...,x; and ending in state j
o Pli,j|l =maxy Pli — 1,k]-t(k,j) - e(x;,J)

t(k,7) : probability of transition k — j
e(x;,j) : probability of emission of x; in state j

e For each P|i, j| need to remember best previous state k
(back pointers)

c a C g a C g C g a C

A 0.2 10.06 [0.01|3e3]|6e-4 | 1le-4 | 3e-5| 7e-5 | 1e-5 | 3e-6 | 8e-7

S e N e Bl I A e s

5 g‘\o%oz\@\e.-i\ke.-‘i 5e-3 \ng\\ke.‘i e-4 \(e.;\ke.i 2e-7

Vx\\ (WA X ANEN W

C 0 0 .01 e-5 e-b e-3 e—yz e-6 e-5 \(e.—i/ e-7
il \\4 N ,\‘\6‘\ N

| ¢ | 8| & [P P NI NG PR g

Space requirements of the Viterbi algorithm
e Need to remember back pointers for the whole sequence.

e Example: gene finding on 250 MB sequence
with 100 state HMM = 25 GB of internal memory

Some solutions:

e Split the sequence up into smaller chunks
— How to resolve “mismatches” on boundaries?

— Cannot always give the optimal solution

e Check pointing [Grice et al. 1997]
— O(¥/nm), factor L slow down

— PLUS: Need to store the complete sequence all the time

e This paper: on-line algorithm,
needs variable-size buffer, small most of the time

On-line Viterbi algorithm

a t & ¢ ¢ & ¢ t & ¢ t
A%‘io*—o%io*—o*—o
Bl e | | /o
DRI VSR
- X Y ¥ ¥
Dl e | @ | @

e Detect coalescence points efficiently
e Output the path left of the coalescence point

e Remove all the data left of the coalescence point

Efficient detection of
coalescance points:
Maintain compressed
backpointer tree

In each step, add newly

created back pointers. ..

... remove unused
branches, compress
non-branching vertices.
Overhead: O(m) space,
O(m) time in each step,

~ 5% slowdown

O oo W >r O oo W r

O oo W™ >

(@]

0O

How much memory do we need?

Gene finding experiment:

256 state HMM

20 MB human sequences
Average buffer size: ~ 11 kB
Maximum buffer size: ~ 222 kB

Average maximum buffer size:
~ 100 kB

40K ~

30K 3

N

o

~
|

Actual buffer size

=

o

A
]

oMW
15.'2|v| 15.3M 15.4M 15.5M
Section of chromosome 1

Estimating expected maximum buffer size:

e Talk: 2-state symmetric HMM, i.i.d. sequence, O(logn)

e Paper: 2-state general HMM, HMM generated sequence

10

2-state symmetric HMM: Possible backpointer configurations:

1-t 1-t Ti—1 X Ti—1 Xy
Al e<«—e A Y
Bl e<—e B| e

Which configuration?
depends on ratio of P[i — 1, A] and P[i — 1, B

11

Configurations of back-pointers

P, = log P[i—1,A]—log P[i—1,B] I — {log(l—t)—logt_‘

log(l—e)—loge log(l—e)—loge

—L<P,_1 <L P,_1>1L P,_1 < —L
Ti—1 X; i1 X Ti-1 ZT;

Al e<«—e A ‘fi. Al e
Bl e<«—e B| e B -</—0

P, =P_1+1, coalescence! coalescence!
+1ifx; =0, P, =L+1 P,:=—-L+1
—1lifz; =1 depending on x; depending on x;

Consider uniform i.i.d. generated random sequence x1,...,Ty:

= variable P; is a random walk on interval (—L, L)
= run: time between two coalescence points

12

How long are runs?

1-t 1-t
t
e,t<0.5
t
0:1-e O: e
1:e 1: 1-e

9 log(l—t)—logt—‘ _1

e Expected length: { Tog (1=

e Run length distribution:

e)—loge

Ry: occurence of run of length 2¢ + 1 or 20 + 2

b-a? <Pr(Ry) <c-a?

, for some b,c > 0,a < 1

geometrically decaying function

(from random walk theory [Feller 1968])

13

Expected maximum buffer size
e Lengths of runs sum up to sequence length n
e Runs geometrically decaying and independent
e Expected buffer size = length of the longest run

e Extreme value theory for coin head runs
[Guibas, Odlyzko 1980; Gordon, Schilling, Waterman 1986]

e Modified for geometrically decaying functions

e Result: O(logn)

14

Annotation issues in jumping HMMs
K@\ ‘o

(\ Q/ﬂ Q//ym
DN KD /C

M M M
OF— =00

State path: alignment of sequence to subtype profiles

Annotation: segments of inputs emitted by subtype profiles

Problems with most probable annotation:
— probably hard to decode

— many annotations with slightly shifted boundaries

Change the objective function for decoding

13

Gain function [Hamada et al. 2009]
G(A, A’) measures accuracy of A wrt. correct annotation A’
Examples:

Identity: score 1 iff A completely correct, O otherwise
Pointwise: score +1 for every correct label in A

Boundary: score +1 for every correct boundary, —Y for incorrect boundary

ldentity Pointwise Boundary

A = LEELL]
A’ = DOE@Ec0

1 S 4

A = HECOO]
A’ = D@E@En0

14

Optimizing expected gain

Goal: find annotation A that maximizes

Eax[G(A, A)] ZG (A, A" P(A'X)

ldentity gain function: Viterbi algorithm
Pointwise gain function: Posterior decoding (forward-backward)

Boundary gain function: [Gross et al. 2007]

The choice of gain function is application-dependent

15

