
Stavy vy²²í
h rádovRád 0: emisná tabu©ka e ur£uje Pr(Si|Ai)Rád 1: e ur£uje Pr(Si|Ai, Si−1)

Ai Si−1 a
 g ta 0.24 0.23 0.34 0.19
 0.30 0.31 0.13 0.26g 0.27 0.28 0.28 0.17t 0.13 0.28 0.38 0.21a 0.30 0.18 0.27 0.25
 0.32 0.28 0.06 0.35g 0.27 0.22 0.27 0.24t 0.20 0.21 0.26 0.33. . .Na
harakterizovanie exónov, intrónov at¤ pouºívame rád 4-5.

24

Modeling length distributions

p

1− p

What is the length distribution of red segments

generated by the model?

Pr(red segment of length ℓ) = pℓ−1(1 − p)

100 200 300 400
Length of internal exon

0.002

0.004

0.006

0.008

0.010

22

Modeling length distributions

p

1− p

What is the length distribution of red segments?

Pr(red segment of length ℓ) = pℓ−1(1 − p)

100 200 300 400
Length of internal exon

0.002

0.004

0.006

0.008

0.010

• Geometric distributions: bad model of real world; O(n) time

[Viterbi 1967]

• Arbitrary distributions: faithful model; O(n2) time [Rabiner 1989]

• Will show: geometric tails: better model; O(nt) time.

23

Geometric tail distributions

• head (lengths < t): specify explicitly

• tail (lengths ≥ t): geometrically decaying

100 200 300 400
Length of internal exon

0.000

0.002

0.004

0.006

0.008

0.010 t=120

24

Geometric tail is a good approximation

100 200 300 400
Length of internal exon

0.000

0.002

0.004

0.006

0.008

0.010 t=120

200 400 600 800 1000
Length of intron

0.000

0.001

0.002

0 20000 40000 60000
Length of intergenic region

0.00000

0.00002

0.00004

• O(nt) works for exons and introns

• Intergenic regions (t ≈ 10000):

– Use less accurate approximation

– Better running time: O(n
√

t)

25

Viterbi algorithm: the most probable state path [Viterbi 1967]

(but geometric length distributions only)

a: 0.2
c: 0.3
g: 0.3
t : 0.2

a: 0.3
c: 0.2
g: 0.2
t : 0.3

0.9

0.99

0.10.01

X =gtac

0.
00

2
0.198

0.
00

3

0.297
0.02

0.18

0.
00

09

0.0594

0.004

0.054

g t a c

• Take − log of weights and compute shortest path in DAG

• Running time: O(n)

26

Viterbi algorithm – O(n) time

g t a c c a a c

27

Viterbi algorithm – O(n) time

g t a c c a a c

28

Viterbi algorithm – O(n) time

g t a c c a a c

Generalized Viterbi algorithm [Rabiner, 1989]

g t a c c a a c

29

Viterbi algorithm – O(n) time

g t a c c a a c

Generalized Viterbi algorithm – O(n2) time

g t a c c a a c

30

Combining two algorithms

Assumption: Length distribution – geometric tail starting at t = 3

t

g t a c c a a c

31

Combining two algorithms

Assumption: Length distribution – geometric tail starting at t = 3

t

g t a c c a a c

Running time: O(nt)

32

Modeling length distributions – summary

• Change from O(n) to O(n2) – any length distribution you want

• Instead: trade-off between model faithfulness and running time

– Approximate by geometric tail: O(nt) time

– If t is too large: O(n
√

t) time

33

Signals in gene finding

• Conserved sequences of fixed length that appear at boundaries of

exons and other important places.

• Our interest: replace section of HMM by more realistic generative

model giving

– High probability to actual signals

– Low probability to decoys (sites which are not signals)

Example: Position Weight Matrix (PWM)

0 1 2 3 4 5 6 7 8

A .38 .62 .12 0 0 .71 .73 .11 .21

C .31 .10 .04 0 0 .02 .06 .06 .10

G .18 .12 .77 1 0 .24 .08 .75 .14

T .13 .16 .07 0 1 .03 .13 .08 .55

10

Main challenge: dependencies within signal

How much more information,

if we consider pairs instead of individual positions?

(darker is better)

11

Signals as DAGs

• vertices = signal positions

• edges = “dependencies” between positions

To generate signal by model M

• Generate characters at signal positions in topological order

• Model specifies for each position i:

Pr[Si = xi |Sj1 = xj1 , . . . , Sjk
= xjk

],

where j1, . . . , jk are predecessors of i in the DAG

12

Examples of generative models for donor signal

RG G T A G T V

RG G T A G T V

RG G T A G T V

RG G T A G T V

RG G T A G T V

PWM:

tree model (order 1):

1st order PWM:

2nd order HOT:

2nd order PWM:

13

Estimating model parameters (training)

Maximum-likelihood approach: Find model that maximizes joint

probability of generating all signals in the training set.

1. determine best topology

2. compute probability tables (count frequencies – easy)

Note:

• The amount of data needed to train model given by a graph

– grows exponentially with maximum in-degree

– does not depend on number of vertices or topology

• Limit in-degree to avoid overfitting

14

Training HOT models

Task: Given a training set S1, . . . , Sℓ, find model topology with

maximum in-degree k that maximizes likelihood of S1, . . . , Sℓ.

Optimization problem:

1. Create a hypergraph H:

– vertices = signal sites

– hyperedge (T, h) for each h, T , s.t. 0 ≤ |T | ≤ k

2. Compute cost of hyperedge (T, h) as wT,h = H(T ∪ {h})−H(T),

where H(X) is entropy over signal positions X

3. Find minimum directed spanning hypertree M
• For k = 1: Chow-Liu trees [Chow, Liu 1968]

• For k ≥ 2: NP-hard

4. Underlying graph of M is the optimal topology of HOT-k model

15

Training HOT models by integer programming

bi,j – ordering of sites in generative process

aT,h – was hyperedge (T, h) chosen?

min
∑

E=(T,h)

wT,haT,h, subject to:

bi,j + bj,i = 1, for all pairs i and j,

bi,j + bj,k + bk,i ≤ 2, for all triplets i, j and k,

aT,h ≤ bx,h, for all hyper edges E = (T, h) and nodes x in T
∑

E:E=(T,h)

aT,h = 1, for all nodes h,

aT,h ∈ {0, 1}, for all hyperedges E = (T, h),

bi,j ∈ {0, 1}, for pairs of nodes i and j.

16

Using signal models for discrimination

• Choose a threshold score for “true” predicted donor site

• Changing the threshold balances sensitivity vs. specificity

0.0 0.2 0.4 0.6
Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

it
iv

it
y PWM0

PWM2
TREE
HOT2

17

Reliability of the score

• If used in HMMs, the models are NOT used for discrimination

• Rather the scores are used in HMM inference

⇒ need to use different measure to evaluate signal models

• Score: given sequence S, estimate probability that S is a signal

• Can we rely on the value of the score?

18

0.0 0.1 0.2 0.3
Model score

0.0

0.1

0.2

0.3

F
ra

ct
io

n
of

 t
ru

e
si

te
s

Ideal
PWM0
PWM1
PWM2
HOT2

Example:

• Q0.066 = set of positions

with score ≈ 0.066 in HOT2

(258 samples)

• 20 true donors in Q0.066

• This is 7.8% (20/258)

Model Correlation

PWM0 0.827

PWM1 0.890

PWM2 0.911

HOT2 0.955

19

Signals in gene finding – summary

• Main problem: how to capture dependencies between

non-adjacent signal positions

• Traditional tradeoff: how many dependencies we can capture

without running into overfitting

(limited in-degree of vertex in the model)

• Many models can be represented as hypertrees (or Bayesian

networks with fixed in-degree)

• Training HOT models is hard in general; however integer

programming does reasonable job

• Both discrimination power and reliability of score are important

measure of model performance

20

Viterbi algorithm

Dynamic programming:

• P [i, j] — probability of generating x1, . . . , xi and ending in state j

• P [i, j] = maxk P [i− 1, k] · t(k, j) · e(xi, j)

t(k, j) : probability of transition k → j

e(xi, j) : probability of emission of xi in state j

• For each P [i, j] need to remember best previous state k

(back pointers)

c a c g a c g c g a c

A

B

C

D

0.2

0

0

0

0.06

0.02

0

0

0.01

6e-4

0.01

0

3e-3

1e-4

6e-5

9e-3

6e-4

5e-3

1e-5

6e-6

1e-4

6e-6

4e-3

1e-6

3e-5

1e-6

6e-7

3e-3

7e-5

2e-4

1e-6

6e-8

1e-5

7e-7

2e-5

7e-7

3e-6

1e-6

7e-8

2e-6

8e-7

2e-7

7e-7

7e-9

A

B C D

5

Viterbi algorithm

Dynamic programming:

• P [i, j] — probability of generating x1, . . . , xi and ending in state j

• P [i, j] = maxk P [i− 1, k] · t(k, j) · e(xi, j)

t(k, j) : probability of transition k → j

e(xi, j) : probability of emission of xi in state j

• For each P [i, j] need to remember best previous state k

(back pointers)

c a c g a c g c g a c

A

B

C

D

0.2

0

0

0

0.06

0.02

0

0

0.01

6e-4

0.01

0

3e-3

1e-4

6e-5

9e-3

6e-4

5e-3

1e-5

6e-6

1e-4

6e-6

4e-3

1e-6

3e-5

1e-6

6e-7

3e-3

7e-5

2e-4

1e-6

6e-8

1e-5

7e-7

2e-5

7e-7

3e-6

1e-6

7e-8

2e-6

8e-7

2e-7

7e-7

7e-9

A

B C D

6

Space requirements of the Viterbi algorithm

• Need to remember back pointers for the whole sequence.

• Example: gene finding on 250 MB sequence

with 100 state HMM ⇒ 25 GB of internal memory

Some solutions:

• Split the sequence up into smaller chunks

– How to resolve “mismatches” on boundaries?

– Cannot always give the optimal solution

• Check pointing [Grice et al. 1997]

– O(L
√
nm), factor L slow down

– PLUS: Need to store the complete sequence all the time

• This paper: on-line algorithm,

needs variable-size buffer, small most of the time

7

On-line Viterbi algorithm

a t g c c g c t g c t a

A

B

C

D

• Detect coalescence points efficiently

• Output the path left of the coalescence point

• Remove all the data left of the coalescence point

8

Efficient detection of

coalescance points:

Maintain compressed

backpointer tree

a t g c c g

A

B

C

D

In each step, add newly

created back pointers. . .

a t g c c g

A

B

C

D

. . . remove unused

branches, compress

non-branching vertices.

Overhead: O(m) space,

O(m) time in each step,

≈ 5% slowdown

a t g c c g

A

B

C

D

9

How much memory do we need?

Gene finding experiment:

• 256 state HMM

• 20 MB human sequences

• Average buffer size: ≈ 11 kB

• Maximum buffer size: ≈ 222 kB

• Average maximum buffer size:

≈ 100 kB
15.2M 15.3M 15.4M 15.5M

Section of chromosome 1

0

10K

20K

30K

40K

A
ct

ua
l b

uf
fe

r
si

ze

Estimating expected maximum buffer size:

• Talk: 2-state symmetric HMM, i.i.d. sequence, O(log n)

• Paper: 2-state general HMM, HMM generated sequence

10

2-state symmetric HMM:

A

0: 1−e
1: e

0: e
1: 1−e

B e,t<0.5
t

t

1−t 1−t
Possible backpointer configurations:

xi−1 xi

A

B

xi−1 xi

A

B

xi−1 xi

A

B

xi−1 xi

A

B

Which configuration?

depends on ratio of P [i− 1, A] and P [i− 1, B]

11

Configurations of back-pointers

Pi−1 = logP [i−1,A]−logP [i−1,B]
log(1−e)−log e

L =
⌈

log(1−t)−log t

log(1−e)−log e

⌉

−L < Pi−1 < L

xi−1 xi

A

B

Pi := Pi−1 ± 1,

+1 if xi = 0,

−1 if xi = 1

Pi−1 ≥ L

xi−1 xi

A

B

coalescence!

Pi := L± 1

depending on xi

Pi−1 ≤ −L

xi−1 xi

A

B

coalescence!

Pi := −L± 1

depending on xi

Consider uniform i.i.d. generated random sequence x1, . . . , xn:

⇒ variable Pi is a random walk on interval (−L,L)

⇒ run: time between two coalescence points

12

How long are runs?

A

0: 1−e
1: e

0: e
1: 1−e

B e,t<0.5
t

t

1−t 1−t

• Expected length:
⌈

2 log(1−t)−log t

log(1−e)−log e

⌉

− 1

• Run length distribution:

Rℓ: occurence of run of length 2ℓ+ 1 or 2ℓ+ 2

b · α2ℓ ≤ Pr(Rℓ) ≤ c · α2ℓ , for some b, c > 0, α < 1

geometrically decaying function

(from random walk theory [Feller 1968])

13

Expected maximum buffer size

• Lengths of runs sum up to sequence length n

• Runs geometrically decaying and independent

• Expected buffer size = length of the longest run

• Extreme value theory for coin head runs

[Guibas, Odlyzko 1980; Gordon, Schilling, Waterman 1986]

• Modified for geometrically decaying functions

• Result: Θ(log n)

14

Annotation issues in jumping HMMs

D
M

D

I
M

D

I
M

D
M

D

I
M

D

I
M

s I tI

State path: alignment of sequence to subtype profiles

Annotation: segments of inputs emitted by subtype profiles

Problems with most probable annotation:

— probably hard to decode

— many annotations with slightly shifted boundaries

Change the objective function for decoding

13

Gain function [Hamada et al. 2009]

G(A,A′) measures accuracy of A wrt. correct annotation A′

Examples:

Identity: score 1 iff A completely correct, 0 otherwise

Pointwise: score +1 for every correct label in A

Boundary: score +1 for every correct boundary, −γ for incorrect boundary

Identity Pointwise Boundary
A = �����

A′ = �����
1 5 4

A = �����

A′ = �����
0 4 3 − γ

14

Optimizing expected gain

Goal: find annotation A that maximizes

EA′|X[G(A,A′)] =
∑

A′

G(A,A′)P(A′|X)

Identity gain function: Viterbi algorithm

Pointwise gain function: Posterior decoding (forward-backward)

Boundary gain function: [Gross et al. 2007]

The choice of gain function is application-dependent

15

