1-DAV-202 Data Management 2023/24
Previously 2-INF-185 Data Source Integration

Materials · Introduction · Rules · Contact
· Grades from marked homeworks are on the server in file /grades/userid.txt
· Please submit project proposals until Friday April 12. Topics from potential bachelor topic supervisors can be found in /tasks/temy.txt (in Slovak).
· Due to Student Research Conference, Javascript and Bioinf3 homeworks are due on April 25, 9:00am.


Lbioinf3

From MAD
Jump to navigation Jump to search

HWbioinf3

Polymorphisms

  • Individuals within species differ slightly in their genomes.
  • Polymorphisms are genome variants which are relatively frequent in a population (e.g. at least 1%).
  • SNP: single-nucleotide polymorphism (a polymorphism which is a substitution of a single nucleotide).
  • Recall that most human cells are diploid, with one set of chromosomes inherited from the mother and the other from the father.
  • At a particular chromosomal location, a single human can thus have two different alleles (heterozygot) or two copies of the same allele (homozygot).

Finding polymorphisms / genome variants

  • We compare sequencing reads coming from an individual to a reference genome of the species.
  • First we align them, as in the exercises on genome assembly.
  • Then we look for positions where a substantial fraction of the reads does not agree with the reference (this process is called variant calling).

Programs and file formats

Human variants

  • For many human SNPs we already know something about their influence on phenotype and their prevalence in different parts of the world.
  • There are various databases, e.g. dbSNP, OMIM, or user-editable SNPedia.

UCSC genome browser

A short video for this section: [1]

  • The UCSC genome browser is an on-line tool similar to IGV.
  • It has nice interface for browsing genomes, lot of data for some genomes (particularly human), but not all sequenced genomes represented.

Basics

  • On the front page, choose Genomes in the top blue menu bar.
  • Select a genome and its version, optionally enter a position or a keyword, press submit.
  • On the browser screen, the top image shows chromosome map, the selected region is in red.
  • Below there is a view of the selected region and various tracks with information about this region.
  • For example some of the top tracks display genes (boxes are exons, lines are introns).
  • Tracks can be switched on and off and configured in the bottom part of the page (browser supports different display levels, full contains all information but takes a lot of vertical space).
  • Buttons for navigation are at the top (move, zoom, etc.).
  • Clicking at the browser figure allows you to get more information about a gene or other displayed item.
  • In this lecture, we will need tracks GENCODE and dbSNP - check e.g. gene ACTN3 and within it SNP rs1815739 in exon 15.

Blat

  • For sequence alignments, UCSC genome browser offers a fast but less sensitive BLAT (good for the same or very closely related species).
  • Choose Tools->Blat in the top blue menu bar, enter DNA sequence below, search in the human genome.
    • What is the identity level for the top found match? What is its span in the genome? (Notice that other matches are much shorter).
    • Using Details link in the left column you can see the alignment itself, Browser link takes you to the browser at the matching region.
AACCATGGGTATATACGACTCACTATAGGGGGATATCAGCTGGGATGGCAAATAATGATTTTATTTTGAC
TGATAGTGACCTGTTCGTTGCAACAAATTGATAAGCAATGCTTTCTTATAATGCCAACTTTGTACAAGAA
AGTTGGGCAGGTGTGTTTTTTGTCCTTCAGGTAGCCGAAGAGCATCTCCAGGCCCCCCTCCACCAGCTCC
GGCAGAGGCTTGGATAAAGGGTTGTGGGAAATGTGGAGCCCTTTGTCCATGGGATTCCAGGCGATCCTCA
CCAGTCTACACAGCAGGTGGAGTTCGCTCGGGAGGGTCTGGATGTCATTGTTGTTGAGGTTCAGCAGCTC
CAGGCTGGTGACCAGGCAAAGCGACCTCGGGAAGGAGTGGATGTTGTTGCCCTCTGCGATGAAGATCTGC
AGGCTGGCCAGGTGCTGGATGCTCTCAGCGATGTTTTCCAGGCGATTCGAGCCCACGTGCAAGAAAATCA
GTTCCTTCAGGGAGAACACACACATGGGGATGTGCGCGAAGAAGTTGTTGCTGAGGTTTAGCTTCCTCAG
TCTAGAGAGGTCGGCGAAGCATGCAGGGAGCTGGGACAGGCAGTTGTGCGACAAGCTCAGGACCTCCAGC
TTTCGGCACAAGCTCAGCTCGGCCGGCACCTCTGTCAGGCAGTTCATGTTGACAAACAGGACCTTGAGGC
ACTGTAGGAGGCTCACTTCTCTGGGCAGGCTCTTCAGGCGGTTCCCGCACAAGTTCAGGACCACGATCCG
GGTCAGTTTCCCCACCTCGGGGAGGGAGAACCCCGGAGCTGGTTGTGAGACAAATTGAGTTTCTGGACCC
CCGAAAAGCCCCCACAAAAAGCCG