Oznamy

- Submit your preferences for journal club papers using the form at the website until next Wednesday, Oct. 20 22:00
- Homework 1 will be published on the website, submit until Tuesday November 9 22:00 (pdf via Moodle, guests by e-mail)
- You are are allowed to discuss homework questions with classmates, but do not take notes during discussions and do not show your solutions to others. Everybody should write their homework submission independently, do not copy from classmates or other sources.
- Please use MS Teams for questions regarding homeworks, quizzes and the course in general.
- However, any questions involving your ideas about solving the questions should be sent privately to instructors by email.

Sequence alignment 2/2

Tomáš Vinar
 October 142021

Summary from the last lecture

- Global and local alignment problem Input: sequences $X=x_{1} x_{2} \ldots x_{n}$ and $Y=y_{1} y_{2} \ldots y_{m}$. Output: alignment of X and Y with the highest score or alignment of substrings $x_{i} \ldots x_{j}$ a $y_{k} \ldots y_{\ell}$ with the highest score
- Correct algorithms using dynamic programming
- Realistic scoring schemes

We have dynamic programming, what else do we need?

Running time: $O\left(n^{2}\right)$ on two sequences of length n
How much is that in practice?
(simple implementation, random sequences, desktop computer)

n	time
100	0.0008 s
1,000	0.08 s
10,000	8 s
100,000	$13 \mathrm{~m}\left(^{*}\right)$
$1,000,000$	$22 \mathrm{~h}\left(^{*}\right)$
$10,000,000$	3 months $\left({ }^{*}\right)$
$100,000,000$	25 years $\left(^{*}\right)$

We need a more efficient algorithm, particularly for comparative genomics

Memory: basic implementation $O\left(n^{2}\right)$, but can be done in $O(n)$

Heuristic alignment

- Trade sensitivity for speed (some alignments not found)
- Reduce the search to "promising" parts of the matrix

Heuristic local alignment
BLASTN [Altschul et al 1990], FASTA [Pearson 1988]

- Find short exact matches of length w (seeds)
- Extend hits along diagonals to ungapped alignments
- Connect alignments on nearby diagonals to gapped alignment
- Possibly optimize by dynamic programming

How to find short exact matches?

- Create a dictionary of short substrings of length w from the first sequence.
- Search for all substring from the second sequence in the dictionary

Exmple: CAGTCCTAGA vs CATGTCATA

Dictionary:

AG 2, 8
CA 1
CC 5
CT 6
GA 9
GT 3
TA 7
TC 4

Search for:

$\mathrm{CA} \rightarrow 1$
$\mathrm{AT} \rightarrow-$
TG $\rightarrow-$
GT $\rightarrow 3$
TC $\rightarrow 4$
$\mathrm{CA} \rightarrow 1$
AT $\rightarrow-$
$\mathrm{TA} \rightarrow 7$

Heuristic local alignment

Example: start from seeds of length $w=2$
(in practice we would use $w=11$ or more)

Running time of heuristic local alignment

Algorithm

- Find seeds (short exact matches of length w)
- Expensive step: extend/connect seeds to longer alignments

Random seeds of length w : not part of any high-scoring alignment.
These are filtered in the extension step, but they slow down the program

How many random hits?

Two unrelated nucleotides match with probability $1 / 4$
We have w matches in a row with probability 4^{-w}
Expected number of false positives roughly $n m 4^{-w}$
Increase of w by 1 means cca 4-fold decrease of spurious seeds

Sensitivity of heuristic local alignment

Algorithm

- Find seeds (short exact matches of length w)
- Expensive step: extend/connect seeds to longer alignments

Some alignments not found: high score but no seed of length w

Example: CA-GTCCTA no seed of length $w \geq 4$ CATGTCATA

Sensitivity: fraction of real alignments containing a seed of length w

Sensitivity vs. running time

Small w
many spurious seeds, slow

Large w
many alignments not found

Can we estimate the sensitivity?

Assume random ungapped alignment of length L
Every position match with probability p
Sensitivity $f(L, p)=\operatorname{Pr}($ alignment contains w consecutive matches)

(human-mouse: $p \approx 0.7$)

Protein BLAST

BLOSUM62 scoring matrix for proteins

| | A | R | N | D | C | Q | E | G | H | I |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |\ldots.

Instead of exact match of length w, protein BLAST requires 3 amino acids with score at least 13

Hit: N I R
N L R
$6+2+5=13$

Not a hit:	A	I
A		

$4+4+4=12$

Examples of software tools for various tasks

NCBI BLAST: blastn for DNA/RNA, blastp for proteins, tblastx translates DNA to proteins and uses blastp

UCSC Blat: very fast search for very similar sequences, i.e. aligning sequencing reads to the genome

- uses very large values of w
- can split alignments with big gaps (aligning transcripts with introns)

Whole-genome alignments

For each section of human genome find closest section from mouse, dog, chicken, etc. (see e.g. UCSC genome browser)

- Local alignments will cover protein coding exons and other conserved parts
- Sections that diverged too much cannot be aligned
- If there was a duplication, we need to decide which pairs belong together
- Synteny principle: if two similar sections (local alignments) are present in the same order and orientation in two genomes, they likely evolved from the same common ancestor (orthologs)

Multiple sequence alignment

Running time: $O\left(2^{k} n^{k}\right)$ for k sequences of length n
For general k NP-hard.

```
    Human ctccatagcaatgt-cagagatagggcagagcggat------ggtggtgac
    Rhesus ctccatggcaatgt-cagagatagggcagagcggat------gctggtgac
    Mouse ttt--tgacaaca--tagagac-tgagatagaaaat-------atgctgac
            Dog -tccccgctaatgtacaaagatggggcag-gaaga--a----tgtgctgaa
    Horse -tccacggcaatac-tggagatggggcagagcaga--agat-ggtgatgaa
Armadillo ctgcatagaaatct-cagagatgggggaaagcaga------agacattcat
    Opossum atccatggaaacat-cagaagtgggagaaatagaaga----tggcaatga-
Platypus acccggggaagggg-aagaggaagggccggccg-------------------
```

Heuristic algorithms, e.g. CLUSTAL-W [Higgins et al., 1996], MUSCLE [Edgar, 2004] and TBA [Blanchette et al., 2004].

Most Visited v Bmart Bookmarks v Getting Started Latest BBC Head... \vee MGmail ふEntrez PubM

Sequences producing	significant alignments:	$\begin{aligned} & \text { Score } \\ & \text { (Bits) } \end{aligned}$	Value	
ref\|xp_002345317.1		PREDICTED: similar to protein tyrosine ph.	$\underline{28.2}$	108
ref\|XP -001726210.1		PREDICTED: similar to protein tyrosine ph	28.2	108
ref ZP -03264973.11	isocitrate dehydrogenase, NADP-dependent	$\underline{27.4}$	194	
reflxp 001225150. Il	hypothetical protein CHGG_07494 [Chaetomi	27.4	194	
ref YP -002967336.	hypothetical protein MexAM1 META2p1254 [M.	26.9	261	
ref \|ZP_03013307.11	hypothetical protein BACINT_00864 [Bacter	$\underline{26.9}$	261	
ef YP 001834672.	phospholipid/glycerol acyltransferase [Be	26.9	261	
ref $/ \mathrm{ZP}$-04426281.1	NADH dehydrogenase subunit L [Planctomyces	26.1	469	
f YP 003129642	putative exonuclease RecJ [Halorhabdus	26.	469	
ref ZP-02926313.1	multidrug efflux pump, AcrB/AcrD/AcrF fami	26.	469	
ref ZP_02044690.1	hypothetical protein ACTODO_01565 [Actinom	26.1	469	
reflxp 001153320.11	PREDICTED: similar to tyrosine phosphatas	26.1	469	
reflyp_001958968.11	inner-membrane translocator [Chlorobium	26.1	469	
ref\|Yp_003133865.11	hypothetical, protein Svir_20200 [Sacchar	25.7	630	

```
* 人) & http://blast.ncbi.nlm.nih.gov/Blast.cgi
23 * G* Goog
國Most Visited v Smart Bookmarks v Getting Started B Latest BBC Head...v MGmail EEntrezPubMed
    | Alignments प Select All Get selected sequences Distance tree of results Multiple alignment NEW
> ref|XP 002345317.1| UG PREDICTED: similar to protein tyrosine phosphatase 4al isoform
2 [Homo sapiens]
Length=139
GENE ID: 730167 L0C730167 | similar to protein tyrosine phosphatase 4al
[Homo sapiens]
Score = 28.2 bits (59), Expect = 108
Identities = 9/10(90%), Positives = 10/10 (100%), Gaps = 0/10 (0%)
Query 1 VIVALASVEG 10
sbjct }79\mathrm{ VLVALASVEG 88
> ref|XP_001726210.11 G PREDICTED: similar to protein tyrosine phosphatase 4al isoform
1 [Homo sapiens]
Length=170
GENE ID:730167 LOC730167 | similar to protein tyrosine phosphatase 4al
[Homo sapiens]
    Score = 28.2 bits (59), Expect = 108
Identities = 9/10(90%), Positives = 10/10 (10%%), Gaps = 0/10(0%)
Query 1 VIVALASVEG 10
V+VALASVEG
sbjct }110\mathrm{ VLVALASVEG }11
```


How to distinguish when the alignment is "real"?

Query length m. Database length n.
Alignment with score S.
P-value: Probability that a random query of length m in a random
database of length n yields alignment of score at least S
E-value: Expected number of alignments with the score of at least S when searching for a random query of length m in a random database of length n

Note: $P=1-e^{-E} \Rightarrow$ for very small values of $E, P \approx E$
[Karlin and Altschul, 1990, Dembo et al., 1994]

Computing P-values by simulation

- Generate a random query and a random database of length n
- Compute best local alignment ($+1 /-1$ scheme)
- Record the resulting score
- Repeat many times

Computing P-values by simulation (cont)

P-value for score 25 :
How many alignments have score 25 or higher?
(In practice, simulations are slow, but we have mathematical estimates of how these distributions look like.)

Summary

- Sequence alignment is the essential bioinformatics tool
- Problem formulation: defining a scoring scheme
- Problem solution: either slow and exact algorithms, or fast heuristics that can miss some alignments
- There are specialized tools for various tasks related to the sequence alignment
- Estimation of statistical significance (P-values) is an important tool in distinguishing real alignments from those that occur just by chance

