Announcements

- Homework 1 is due Tuesday November 9 22:00 discussion regarding questions in MS Teams
- Work on the journal club (read the paper, plan the meeting no later than Nov. 23)

Evolution and Phylogenetic Trees

Broña Brejová

October 28, 2021

OR

Phylogenetic tree reconstruction (fylogenetický strom)

Input:
m aligned sequences, each of length n

human	C	A	G	T	T	A
elf	A	A	T	A	G	A
Gollum	C	C	G	A	G	A
hobbit	C	C	G	T	T	C
orc	A	A	T	T	T	A

Output:

tree representing
their evolutionary history

Newick format:
(((gollum,hobbit),human),(elf,orc))

Rooted and unrooted trees

Unrooted tree (nezakorenený strom)

Two out of seven possible rooted versions of the tree

Most methods reconstruct unrooted trees

Rooting a tree using an outgroup

Add outgroup (dog) to the unrooted tree

Parsimony principle and maximum parsimony (úspornost')

Input: (aligned) sequences of several extant species.
Task: Find a phylogenetic tree that explains the data by using the minimum number of evolutionary events.

Here: Evolutionary event $=$ single base mutation
Subtask: For a given phylogenetic tree, find ancestral sequences that require the minimum number of events (score of the tree)

gollum	AGA
hobbit	TAA
human	TCC
elf	ACA
orc	TCA

Computing cost of a given phylogenetic tree

Use dynamic programming (separately for each alignment column).
For each internal vertex u and symbol x :
$N_{u, x}$: how many events are required in the subtree of u, assuming that the symbol in u is x ?

$$
N_{u, x}=\min _{y}\left\{N_{v, y}+[x \neq y]\right\}+\min _{z}\left\{N_{w, z}+[x \neq z]\right\}
$$

Time: $O(m)$
Repeat for each alignment column: $O(m n)$

What we have: compute the cost of a particular tree

gollum	AGA
hobbit	TAA
human	TCC
elf	ACA
orc	TCA

5 changes

What we want: Find the tree with the smallest cost gollum AGA

hobbit	TAA
human	TCC
elf	ACA
orc	TCA

Finding the most parsimonious tree

NP-hard problem

Trivial algorithm: try all possible trees.
For m species $1 \cdot 3 \cdot 5 \cdots(2 m-5)=(2 m-5)!$!
E.g. for 10 species cca 2 mil., for 20 species $2 \cdot 10^{20}$

Heuristic search:

- Start with some "sensible" tree
- Explore similar trees by using e.g. "subtree pruning and regraft":

Break a branch, remove a subtree

Add it in, attaching it to one (*) of the other branches

Neighbour joining (metóda spájania susedov)

- We throw away "details" of which mutations happened
- Summarize by a distance matrix $D_{i j}$

Example:

								hu	e	h	ho	-
							human	0	4	3	2	2
elf	A	A	T	A	G	A	elf	4	0	3	6	2
gollum	C	C	G	A	G	A						
hobbit	C	C	G	T	T	C	gollum	3	3	0	3	5
							hobbit	2	6	3	0	4
orc	A	A	T			A	orc	2	2	5	4	0

Idea of neighbour joining

Assume that the distances $D_{i, j}$ correspond to the real distances in the tree (they are additive)

$D_{\text {hobbit,human }}=2+1+5=8$

Idea of neighbour joining

- Assume that the distances $D_{i, j}$ correspond to the real distances in the tree (they are additive)
- Find two leaves i and j, for which we can say with certainty, that they have the same parent in the tree
- Join i and j and replace them with a parent node k with new distances to each other node ℓ :

$$
D_{k, \ell}=\frac{D_{i, \ell}+D_{j, \ell}-D_{i, j}}{2}
$$

How to find out which two leaves should be joined?
Why not two closest ones?

	A	B	C	D
A	-	3	5	6
B	3	-	6	5
C	5	6	-	9
D	6	5	9	-

Choose leaves i, j minimizing:

$$
L_{i, j}=(m-2) D_{i, j}-\underbrace{\sum_{k \neq i} D_{i, k}}_{r_{i}}-\underbrace{\sum_{k \neq j} D_{j, k}}_{r_{j}}
$$

m : the number of leaves

Connect leaves i, j, which minimize the following quantity:

Running time of neighbor joining: $O\left(m^{3}\right) \quad$ (m : number of leaves) In 2009 a $O\left(m^{2}\right)$ version was developed (Elias and Lagergren)

Neighbour joining: summary

- If the distance matrix is additive and corresponds to the real evolutionary distances then neighbour joining finds the correct tree
- Longer sequences \Rightarrow better distance estimates \Rightarrow correct trees
- How to compute "real" evolutionary distances?

Counting differences is not enough

								hu	e	g	ho	-
							human	0	4	3	2	2
elf	A	A	T	A	G	A						
gollum	C	C	G	A	G	A	elf	4	0	3	6	2
							gollum	3	3	0	3	5
hobbit	C	C	G	T	T	C	hobbit	2	6	3	0	4
orc	A	A	T	T	T	A	orc	2	2	5	4	0

Problems with estimating distances

- One base may mutate multiple times during evolution (possibly even back to original base)
- When counting differences we see at most one change at each position \Rightarrow we underestimate the real distance
- We want a correction to estimate the real number of mutations that have occurred

Jukes-Cantor substitution model

Probability that base \mathbf{A} changes to \mathbf{C} in time t :
$\operatorname{Pr}\left(X_{t_{0}+t}=C \mid X_{t_{0}}=A\right) \frac{1}{4}\left(1-e^{-\frac{4}{3} \alpha t}\right)$
α : mutation rate (the number of substitutions per unit of time)
Expected number of mutations per base in time t :
$D(t)=\operatorname{Pr}\left(X_{t_{0}+t} \neq X_{t_{0}}\right)=\frac{3}{4}\left(1-e^{-\frac{4}{3} \alpha t}\right)$

Back to distances in neighbor joining

- Using this model, we can correct observed distances

$$
D=\frac{3}{4}\left(1-e^{-\frac{4}{3} \alpha t}\right) \quad \Rightarrow \quad \alpha t=-\frac{3}{4} \ln \left(1-\frac{4}{3} D\right)
$$

- Next week: more complex models of evolution

Maximum likelihood trees (najvierohodnejsie stromy)

A phylogenetic tree with branch lengths can be viewed as a simple generative model

Probability that it generates particular bases in nodes:
$\operatorname{Pr}\left(X_{g}=A, X_{b}=A, X_{m}=G, X_{e}=C, X_{o}=C, X_{g b}=A\right.$,
$\left.X_{g b m}=A, X_{e o}=C, X_{\text {root }}=A\right)$
$=\operatorname{Pr}\left(X_{\text {root }}=A\right) \cdot \operatorname{Pr}\left(A \mid A, t_{1}\right) \cdot \operatorname{Pr}\left(C \mid A, t_{2}\right) \cdot \operatorname{Pr}\left(A \mid A, t_{3}\right)$.
$\operatorname{Pr}\left(G \mid A, t_{4}\right) \cdot \operatorname{Pr}\left(A \mid A, t_{5}\right) \cdot \operatorname{Pr}\left(A \mid A, t_{6}\right) \cdot \operatorname{Pr}\left(C \mid C, t_{7}\right) \cdot \operatorname{Pr}\left(C \mid C, t_{8}\right)$
$\operatorname{Pr}\left(C \mid A, t_{2}\right)$ is a abbreviation of $\operatorname{Pr}\left(X_{e o}=C \mid X_{\text {root }}=A\right)$, J.-C. model

We can compute (product):

We want to compute tree likelihood:

Likelihood of a tree (vierohodnost' stromu):
$\operatorname{Pr}\left(X_{g}=A, X_{b}=A, X_{m}=G, X_{e}=C, X_{o}=C\right)$
Add up probabilities of all letter combinations in ancestors $X_{g b}, X_{g b m}$, $X_{\text {eo }}, X_{\text {root }}$

Compute using Felsenstein algorithm (simple dynamic programming similar to the parsimony)

For a given alignment, tree and branch lengths we can compute likelihood in $O(n m)$ time

How to find the tree with the highest likelihood?

- Again NP-hard problem ; complicated because we also need branch lengths
- Typical heuristic algorithm:
- Start with a "reasonable" tree
- Compute its likelihood
* Start with "reasonable" branch lengths
* Compute likelihood using these branch lengths
* Iteratively improve branch lengths to improve the likelihood (e.g. gradient descent)
- Explore "similar" trees to improve likelihood (as with parsimony).

Consistency of algorithms for phylogeny

- "Well-behaved" algorithms: if the length of the sequences n increases, the answer should get closer to the correct answer.
- The algorithm for phylogeny is consistent, if the probability of obtaining the correct tree converges to 1 with $n \rightarrow \infty$.

Algorithm comparison

	Complexity	Consistency	Data utilization
Parsimony	NP-hard	NO	complete sequences
Neighbor Joining	$O\left(m^{3}\right)$	YES	distances only
Likelihood	NP-hard	YES	complete

Sources of data for phylogenetic trees

Some special sequences are often used (e.g. ribosomal RNA genes, mitochondrial genome)

What about using DNA sequences of other genes?

- Choose a suitable gene
- Find its homologs in other species
- Use these to construct the tree (DNA sequences or proteins)

Problem: genes can be duplicated and lost in evolution

History of a duplicated gene

Example: species a, b, c, genes $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, c_{1}, c_{2}$

- Homologs: similar sequences evolved from a common ancestor
- Orthologs: closest common ancestor is a speciation (e.g. pairs of genes $a_{1}-b_{1}, a_{2}-b_{1}$)
- Paralogs: closest common ancestor is a duplication (e.g. pairs of genes $a_{1}-a_{2}, a_{1}-b_{2}$)

A more complex example of gene duplication:

Summary

Substitution models allow us to:

- estimate real evolutionary distance (the number of substitutions) from the observed difference count between two sequences
- compute the probability that we observe a particular nucleotide change over time t

Three methods for phylogeny inference:

- Parsimony
- Neighbour joining
- Maximum likelihood

Gene trees and species trees, complications in phylogeny reconstruction

