CI05: Rozdiel medzi revíziami
(→Aproximácia Jaccardovej miery: MinHash) |
(→Hľadanie podobných sekvencií) |
||
Riadok 203: | Riadok 203: | ||
Druhá možnosť zlepšenia je nechať jednu hashovaciu funkciu, ale porovnávať nie 1, ale k najmenších hashov dvoch množín. Vedie to ku podobnému asymptotickému správaniu. | Druhá možnosť zlepšenia je nechať jednu hashovaciu funkciu, ale porovnávať nie 1, ale k najmenších hashov dvoch množín. Vedie to ku podobnému asymptotickému správaniu. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Verzia zo dňa a času 20:47, 19. október 2022
Obsah
Vzorec na výpočet senzitivity jadra
- Uvažujme jadro dĺžky w (ako v programe BLAST pre nukleotidy)
- Uvažujme pravdepodobnostný model zarovnania, v ktorom má každá pozícia pravdepodobnosť p, že bude zhoda a (1-p), ze bude nezhoda alebo medzera, zarovnanie ma dlzku L
- Nahodna premenna X_i = 1 ak na pozicii i je zhoda, 0 inak
- Nahodna premenna Y_i = 1 ak na pozicii i zacina jadro, t.j. ak
- , nakolko X_i su navzajom nezavisle
- Nech
- Z linearity strednej hodnoty vieme lahko odhadnut
- Nas ale zaujima P(Y>0) = 1-P(Y=0)
- Ako by sme vedeli odhadnut simulaciou? My ale chceme rychlejsi sposob.
- Preco neplati, ?
- Jednotlive Y_i nie su nezavisle, napr.
- V postupnosti Y_i sa jednotky maju tendenciu zhlukovat spolu
- Pravdepodobnost nepritomnosti jadra P(Y=0) ale vieme spocitat dynamickym programovanim
- Nech A[n] je pravdepodobnost nepritomnosti jadra v prvých n stlcoch zarovnania (0<=n<=L)
- Budeme rozlisovat pripady podla toho, kolko je na konci X_1..X_n jednotiek
- Tento pocet moze byt 0..w-1 (ak by bol >=w, mali by sme vyskyt jadra)
V druhom riadku zodpoveda P(X_1...X_n konci presne i jednotkami).
Minimizery: ako usetrit pamat
- k-merom nazveme k za sebou iducich pismen v nejakom retazci (nukleotidov DNA)
- Zakladne pouzite jadier: pri porovnavani dvoch sekvencii (alebo mnozin sekvencii) uloz vsetky k-mery jednej sekvencie do slovnika (napr. hash tabulky), potom prechadzaj vsetky k-mery druhej sekvencie a hladaj ich v slovniku
- Priklad k=5,
- DB vľavo, k-mery a ich pozície uložené do slovníka,
- query vpravo, k-mery hľadané v slovníku, šípkou vyznačené nájdené k-mery (jadrá)
AGTGGCTGCCAGGCTGG cGaGGCTGCCtGGtTGG AGTGG,0 CGAGG GTGGC,1 GAGGC TGGCT,2 AGGCT <- GGCTG,3 GGCTG <- GCTGC,4 GCTGC <- CTGCC,5 CTGCC <- TGCCA,6 TGCCT GCCAG,7 GCCTG CCAGG,8 CCTGG CAGGC,9 CTGGT AGGCT,10 TGGTT GGCTG,11 GGTTG GCTGG,12 GTTGG
- Trik na znizenie potrebnej pamate (napr. program BLAT): ukladaj iba kazdy s-ty k-mer z prvej sekvencie, potom hladaj vsetky k-mery z druhej
- Trochu znizi aj senzitivitu, ale kedze jadra sa zhlukuju, mame sancu aspon jedno jadro zo zhluku najst
- Zarucene najdeme jadro, ak mame aspon s+k-1 zhod za sebou
- Mohli by sme v query tiež hľadať iba každý s-ty k-mer?
Priklad w=5, s=3, k-mery nalavo sa ulozia, k-mery napravo sa hladaju, najde sa jedno jadro
AGTGGCTGCCAGGCTGG cGaGGCTGCCtGGtTGG AGTGG,0 CGAGG GGCTG,3 GAGGC TGCCA,6 AGGCT CAGGC,9 GGCTG <- GCTGG,12 GCTGC CTGCC TGCCT GCCTG CCTGG CTGGT TGGTT GGTTG GTTGG
- Prefikanejsia idea je minimizer: uvazuj vsetky skupiny s po sebe iducich k-merov (sliding window), v kazdej skupine najdi abecedne najmensi k-mer (minimizer) a uloz do slovnika
- Pri posune okna o jedno doprava casto najmensi k-mer zostava ten isty a netreba ho znovu ukladat, cim sa usetri pamat
- Rozdiel je pri hladani: v slovniku nehladame vsetky k-mery druhej sekvencie, ale tiez len minimizery, co moze usetrit cas
- Zarucene najdeme jadro, ak mame aspon s+k-1 zhod za sebou
- Priklad k=5, s=3, vlavo: do slovnika sa ulozia k-mery s cislom; vpravo: v slovniku sa hladaju k-mery s hviezdickou, najde sa jedna zhoda
AGTGGCTGCCAGGCTGG cGaGGCTGCCtGGtTGG AGTGG,0 CGAGG GTGGC GAGGC TGGCT AGGCT* GGCTG,3 GGCTG GCTGC,4 GCTGC CTGCC,5 CTGCC* <-- TGCCA TGCCT GCCAG GCCTG CCAGG,8 CCTGG* CAGGC,9 CTGGT* AGGCT,10 TGGTT GGCTG GGTTG* GCTGG GTTGG
- Obzvlast vyhodne ak prva a druha mnozina sekvencii su ta ista, napr. pri hladani prekryvov v citaniach pri skladani genomu. Kazde citanie ma mnozinu minimizerov, ktore sa pouziju ako kluce v slovniku, hodnoty su zoznamy citani. Dvojice citani zdielajuce nejaky minimizer (binning) sa dostanu do jedneho zoznamu a budu uvazovane pri vypocte vzajomneho prekryvu
- V praxi sa do slovnika neuklada lexikograficky najmensi k-mer, ale kazdy k-mer sa prehasuje nejakou funkciou f a zoberie sa ten s minimalnou hodnotou
- Dovod je, ze sa chceme vyhnut, aby minimizermi boli casto sekvencie typu AAAAA, ktore su v biologickych sekvenciach nadreprezentovane a casto nie su funkcne zaujimave
- Priemerna hustota minimizerov v sekvencii pri nahodnom hashovani je cca 2/(s+1) (v BLATe bola nizsia, 1/s)
- Minimizery vyuziva napr. aj minimap2, velmi popularny nastroj na zarovnavanie citani navzajom a ku genomom
- na zarovnanie nanoporovych citani ku genomu pouziva k=15, s=10, prekryvy v nanoporovych citaniach k=15, s=5, porovnanie genomov s identitou nad 80% k=19, s=10
- Li, Heng. "Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences." Bioinformatics 32.14 (2016): 2103-2110. [1]
- Roberts M, Hayes W, Hunt BR, Mount SM, Yorke JA. Reducing storage requirements for biological sequence comparison. Bioinformatics. 2004 Dec 12;20(18):3363-9. [2]
- Marçais, G., Pellow, D., Bork, D., Orenstein, Y., Shamir, R., & Kingsford, C. (2017). Improving the performance of minimizers and winnowing schemes. Bioinformatics, 33(14), i110-i117. [3]
MinHash
Odbočka do analýzy web-stránok: Podobnosť textov
Majme množinu webových stránok (webová stránka je postupnosť slov). Chceme nájsť medzi nimi dvojice podobných. Ako môžeme definovať podobnosť dvoch textov?
Jeden zo spôsobov ako to spraviť je pozrieť sa na množstvo slov, spoločných pre jednotlivé dvojice stránok. Očakávame, že čím viac spoločných slov majú, tým sú podobnejšie. Túto mieru podobnosti formalizuje matematický pojem Jaccardovej miery podobnosti.
Nech je univerzum slov a nech sú jeho podmnožinami (t.j. množiny slov dvoch textov). Potom Jaccardova miera podobnosti je definovaná nasledovne:
Táto miera nadobúda hodnotu 0 iba v prípade, ak množiny sú disjunktné, a hodnotu 1 iba v prípade, že množiny sú totožné. Inak sa jej hodnota nachádza na otvorenom intervale , a čím viac spoločných slov majú, tým je jej hodnota vyššia.
Potom otázku "Ktoré dvojice textov sú podobné?" môžeme preformulovať napríklad ako "Ktoré dvojice textov majú Jaccardovu mieru podobnosti vyššiu ako ?", kde je nejaká prahová hodnota.
Exaktný výpočet Jaccardovej miery podobnosti nie je vždy dostatočne rýchly pre účely konkrétnej aplikácie, takže logickým riešením je pokúsiť sa jej hodnotu vypočítať iba približne (t.j. aproximovať).
Prvá idea: aproximácia vzorkovaním
- Ak by sme vedeli vzorkovať z prvky u1, u2, ..., u_n (rovnomerne, nezavisle), a pre kazdy prvok u_i by sme vedeli rychlo zistit, ci patri do prieniku, mohli by sme odhadnut J(A, B) pomocou nahodnej premennej X
kde X_i=1 ak u_i patri do prieniku a nula inak
- Toto sa podoba na zistovanie oblubenosti politika prieskumom verejnej mienky, u1, u2, ..., u_n su "respondenti"
Pre kazde X_i
- .
Z linearity strednej hodnoty
- .
Z toho vyplýva, že náhodná premenná je nevychýleným odhadom Jaccardovej miery.
V štatistike základnou mierou kvality nevychýleného odhadu slúži jeho disperzia, odvodenie pozri nižšie
Pri zvyšujúcej veľkosti vzorky n teda klesá disperzia. Podobná situácia ako pri prieskumoch verenej mierky, kde pri väčšom súbore respondentov dosteneme lepšie výsledky.
Problémy:
- nie je ľahké rovnomerne vzorkovať z
- na zisťovanie, či u_i je v prieniku potrebujeme mat reprezentaciu A a B v pamati, co moze byt problem pri velkej kolekcii dokumentov
- idea: chceme dostat nejake ine premenne X_i, ktore budu nezavisle a ich a ktore s abudu lahsie pocitat
Aproximácia Jaccardovej miery: MinHash
Budeme mať náhodné hašovacie funkcie . O každej si predstavíme, že predstavuje náhodnú permutáciu množiny .
Pre množinu a hašovaciu funkciu h je je definovaný nasledovne:
Keďže je náhodná hašovacia funkcia, tak sa na hodnotu môžeme pozerať ako na náhodnú premennú, ktorá reprezentuje rovnomerne náhodný výber prvku z množiny .
Nech je náhodná premenná, ktorá nadobúda hodnotu 1, ak , a inak hodnotu 0. Potom
Takýmito hodnotami X_i teda nahradíme náhodné vzorky.
Algoritmus:
- Pre kazdy dokument hasuj kazde slovo k funkciami, najdi minHash pre kazdu funkciu a uloz vektor tychto hodnot ako "sketch" dokumentu
- Pre dva dokumenty vieme odhadnut Jaccardov index porovnanim vektorov po zlozkach v case O(k)
- Vieme si tiez pre kazdu hasovaciu funkciu spravit hasovaciu funkciu, ktora mapuje minHash do zoznamu dokumentov a budeme porovnavat iba dvojice dokumentov, ktore sa niekde dostali do toho isteho zoznamu
Alternativa: namiesto k roznych funkcii pouzijeme iba jednu a vezmeme nielen minimu, ale k najmensich prvkov. To usetri cas pri vypocte sketchu
- Broder AZ. On the resemblance and containment of documents. InProceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171) 1997 Jun 13 (pp. 21-29). IEEE. [4]
Statisticke detaily
Z toho vyplýva, že náhodná premenná je nevychýleným odhadom Jaccardovej miery. Je to však veľmi nepohodlný odhad, lebo namiesto celej škály hodnôt od 0 po 1 vracia len dve možnosti.
V štatistike základnou mierou kvality nevychýleného odhadu slúži jeho variancia . Spočítajme si postupne obe hodnoty.
Čiže . Aká je maximálna možná hodnota variancie?
Táto otázka je ekvivalentná otázke "Aké je maximum funkcie na intervale ?". Pre určenie extrémov hladkých funkcií treba nájsť korene jej prvej derivácie. Derivácia tejto funkcie je , jej koreň je hodnota . Hodnota funkcie v tomto bode je rovná . Čiže .
Ako môžeme tento odhad zlepšiť?
Jedna z možností je zobrať viacero nezávislých hashovacích funkcií , a spočítať pre obidve množiny. Označme si príslušné náhodné premenné ako . Každá z nich má strednú hodnotu a rovnakú varianciu .
Nech náhodná premenná je ich priemer. Potom jej stredná hodnota je rovná . Čiže aj je nevychýleným odhadom Jaccardovej miery.
Pozrieme sa na jej varianciu:
(*) tento prechod je možný len kvôli tomu, že premenné sú nezávislé.
Vidíme teda, že varianciu (resp. kvalitu) môžeme potlačiť na ľubovoľne malú postupným zvýšením počtu hashov.
Všimnite si, že premenná (t.j. nie priemer, ale súčet jednotlivých ) je súčtom nezávislých indikátorov s rovnakou distribúciou, a teda má binomické rozdelenie s parametrami a .
Druhá možnosť zlepšenia je nechať jednu hashovaciu funkciu, ale porovnávať nie 1, ale k najmenších hashov dvoch množín. Vedie to ku podobnému asymptotickému správaniu.