1-BIN-301, 2-AIN-501 Methods in Bioinformatics, 2022/23

Introduction · Rules · Tasks and dates · Materials · Moodle · Discussion
Quizzes can be found in Moodle.
Homework assignments and journal club papers can be found in Tasks and dates.
Groups for journal club have each their own channel in MS Teams.


CB05: Rozdiel medzi revíziami

Z MBI
Prejsť na: navigácia, hľadanie
(Brona premiestnil stránku CB05 na CI05)
 
(2 intermediate revisions by the same user not shown)
Riadok 1: Riadok 1:
#presmeruj [[CI05]]
+
==Príklady stavových automatov pre HMM==
 +
Uvazujme HMM so specialnym zaciatocnym stavom b a koncovym stavom e, ktore nic negeneruju.
 +
* Nakreslite HMM (stavovy diagram), ktory generuje sekvencie, ktore zacinaju niekolkymi cervenymi pismenami a potom obsahuju niekolko modrych
 +
* Ako treba zmenit HMM, aby dovoloval ako "niekolko" aj nula?
 +
* Ako treba zmenit HMM, aby pocet cervenych aj modrych bol vzdy parne cislo?
 +
* Ako zmenit HMM, aby sa striedali cervene a modre kusy parnej dlzky?
 +
 
 +
V dalsich prikladoch uvazujeme aj to, ktore pismena su v ktorom stave povolene (pravdepodobnost emisie > 0) a ktore su zakazane
 +
* cervena sekvencia dlzky dva, ktora zacina na A
 +
* cervena sekvencia dlzky dva, ktora je hocico okrem AA
 +
* toto sa da rozsirit na HMM, ktory reprezentuje ORF, teda nieco, co zacina start kodonom, potom niekolko beznych kodonov, ktore nie su stop kodonom a na koniec stop kodon
 +
 
 +
Dalsi biologicky priklad HMM: topologia transmembranovych proteinov.
 +
 
 +
==E-hodnota (E-value) zarovnania==
 +
* Priklady k tejto casti v prezentacii {{pdf|Cb-evalue}}
 +
* Mame dotaz dlzky m, databazu dlzky n, skore najlepsieho lokálneho zarovnania S
 +
* E-value je ocakavany pocet zarovnani so skore aspon S ak dotaz aj databaza su nahodne
 +
* Hrackarsky priklad: dotaz dlzky m=10, databaza dlzky n=300, S=6
 +
* Zoberme nas nahodny model s obsahom GC 50%
 +
* Mame vrece s gulockami oznacenymi A,C,G,T, z kazdej 25%
 +
* Vytiahneme gulicku, zapiseme si pismeno, hodime ju naspat, zamiesame a opakujeme s dalsim pismenom atd az kym nevygenerujeme m pismen pre dotaz a n pismen pre databazu
 +
* Pre nase vygenerovane sekvencie spocitame, kolkokrat sa dotaz vyskytuje v databaze
 +
* Cely experiment opakujeme vela krat a spocitame priemerny pocet vyskytov, co bude odhad E-value
 +
 
 +
Vypocet strednej hodnoty vzorcom namiesto simulacie (rychlejsie)
 +
* zlozita matematicka teoria [https://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html]
 +
* E-value sa priblizne da odhadnut vzorcom:
 +
:: <math>E = Kmn e^{-\lambda S}</math>
 +
* n a m su dlzky porovnavanych sekvencii, S je skore, K a lambda su parametre, ktore zavisia od skorovacej schemy a od frekvencii vyskytu jednotlivych baz v nasom modeli nahodnej sekvencie.
 +
* Napr blastn pre skorovaci system zhoda 1, nezhoda -1, medzera -2 používa lambda=0.800, K=0.0640
 +
* <math>E = 0.0640 nm 0.45^S</math>.
 +
* Zdvojnásobenie dĺžky databázy alebo dĺžky dotazu zdvojnásobí E-value
 +
* Zníženie skóre o 1 tiež zhruba zdvojnásobí E-value (delenie 0.45, t.j. nasobenie 2.2)
 +
** Cislo, ktorym nasobime, zalezi od lambda a teda od skorovacej schemy a frekvencii vyskytu baz

Verzia zo dňa a času 07:24, 20. október 2021

Príklady stavových automatov pre HMM

Uvazujme HMM so specialnym zaciatocnym stavom b a koncovym stavom e, ktore nic negeneruju.

  • Nakreslite HMM (stavovy diagram), ktory generuje sekvencie, ktore zacinaju niekolkymi cervenymi pismenami a potom obsahuju niekolko modrych
  • Ako treba zmenit HMM, aby dovoloval ako "niekolko" aj nula?
  • Ako treba zmenit HMM, aby pocet cervenych aj modrych bol vzdy parne cislo?
  • Ako zmenit HMM, aby sa striedali cervene a modre kusy parnej dlzky?

V dalsich prikladoch uvazujeme aj to, ktore pismena su v ktorom stave povolene (pravdepodobnost emisie > 0) a ktore su zakazane

  • cervena sekvencia dlzky dva, ktora zacina na A
  • cervena sekvencia dlzky dva, ktora je hocico okrem AA
  • toto sa da rozsirit na HMM, ktory reprezentuje ORF, teda nieco, co zacina start kodonom, potom niekolko beznych kodonov, ktore nie su stop kodonom a na koniec stop kodon

Dalsi biologicky priklad HMM: topologia transmembranovych proteinov.

E-hodnota (E-value) zarovnania

  • Priklady k tejto casti v prezentacii pdf
  • Mame dotaz dlzky m, databazu dlzky n, skore najlepsieho lokálneho zarovnania S
  • E-value je ocakavany pocet zarovnani so skore aspon S ak dotaz aj databaza su nahodne
  • Hrackarsky priklad: dotaz dlzky m=10, databaza dlzky n=300, S=6
  • Zoberme nas nahodny model s obsahom GC 50%
  • Mame vrece s gulockami oznacenymi A,C,G,T, z kazdej 25%
  • Vytiahneme gulicku, zapiseme si pismeno, hodime ju naspat, zamiesame a opakujeme s dalsim pismenom atd az kym nevygenerujeme m pismen pre dotaz a n pismen pre databazu
  • Pre nase vygenerovane sekvencie spocitame, kolkokrat sa dotaz vyskytuje v databaze
  • Cely experiment opakujeme vela krat a spocitame priemerny pocet vyskytov, co bude odhad E-value

Vypocet strednej hodnoty vzorcom namiesto simulacie (rychlejsie)

  • zlozita matematicka teoria [1]
  • E-value sa priblizne da odhadnut vzorcom:
E=Kmne^{{-\lambda S}}
  • n a m su dlzky porovnavanych sekvencii, S je skore, K a lambda su parametre, ktore zavisia od skorovacej schemy a od frekvencii vyskytu jednotlivych baz v nasom modeli nahodnej sekvencie.
  • Napr blastn pre skorovaci system zhoda 1, nezhoda -1, medzera -2 používa lambda=0.800, K=0.0640
  • E=0.0640nm0.45^{S}.
  • Zdvojnásobenie dĺžky databázy alebo dĺžky dotazu zdvojnásobí E-value
  • Zníženie skóre o 1 tiež zhruba zdvojnásobí E-value (delenie 0.45, t.j. nasobenie 2.2)
    • Cislo, ktorym nasobime, zalezi od lambda a teda od skorovacej schemy a frekvencii vyskytu baz