1-BIN-301, 2-AIN-501 Methods in Bioinformatics, 2022/23

Introduction · Rules · Tasks and dates · Materials · Moodle · Discussion
Quizzes can be found in Moodle.
Homework assignments and journal club papers can be found in Tasks and dates.
Groups for journal club have each their own channel in MS Teams.


CB08: Rozdiel medzi revíziami

Z MBI
Prejsť na: navigácia, hľadanie
(Vytvorená stránka „Na týchto cvičeniach sa budeme venovať trom štatistickým témam súvisiacim s komparatívnou genomikou a s analýzou expresie génov. Tieto techniky sa však využ...“)
 
(Multiple testing correction)
 
Riadok 117: Riadok 117:
 
* Preto potrebujeme pri velkom mnozstve testov umelo znizit prah na p-value tak, aby nahodny sum netvoril velke percento nasich vysledkov
 
* Preto potrebujeme pri velkom mnozstve testov umelo znizit prah na p-value tak, aby nahodny sum netvoril velke percento nasich vysledkov
 
* Toto sa vola multiple testing correction, je viac technik, napr. FDR (false discovery rate)
 
* Toto sa vola multiple testing correction, je viac technik, napr. FDR (false discovery rate)
 +
 +
==Nadreprezentácia, Uniprot (cvičenie pri počítači)==
 +
Data o expresii ludskych genov v roznych tkanivach a podobne v '''UCSC genome browseri'''
 +
* Chodte na genome browser http://genome-euro.ucsc.edu/
 +
* Zvolte ''Tools->Gene Sorter'', ''sort by'' nechajme ''Expression (GTEx)'', a do okienka ''search'' zadajme identifikator genu ''PTPRZ1''
 +
** Dostane tabulku genov s podobnym profilom expresie ako PTPRZ1 (červená je vysoká expresia, zelená nízka)
 +
** Zoznam tychto genov v textovom formate najdete [http://compbio.fmph.uniba.sk/vyuka/mbi-data/cb08/zoznam_genov.txt tu]
 +
* http://biit.cs.ut.ee/gprofiler/ mena genov skopirujme do policka ''Query'', stlacte g:Profile!
 +
** Ak by výpočet dlho trval, nájdete ho aj [http://compbio.fmph.uniba.sk/vyuka/mbi-data/cb08/g_Profiler.html tu]
 +
** Vo výslednej tabuľke je každý riadok jedna funkcna kategoria, v ktorej su geny s tymto profilom expresie nadreprezentovane, kazdy stlpec jeden gen.
 +
** V spodnej casti tabuly su aj asociacie k chorobam a k transkripcnym faktorom, ktore by mohli prislusne geny regulovat
 +
* Co by sme na zaklade nadreprezentovanych kategorii usudzovali o gene PTPRZ1?
 +
 +
* Najdite tento gen v Uniprote (http://www.uniprot.org/), potvrdzuje nase domnienky?
 +
** O mnohých údajoch na stránke sme sa rozprávali na prednáške (GO kategórie, domény, sekundárna a 3D štruktúra)
 +
** na veľa miestach na stránke je uvedené aj odkiaľ jednotlivé údaje pochádzajú
 +
** Všimnime si Pfam domény a pozrime si ich stránku
 +
 +
* Vratme sa do genome browsera, najdime si PTPRZ1 gen v genome [http://genome-euro.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr7%3A121873089-122062036]
 +
* V browseri su rozne tracky tykajuce sa expresie, napr. GTEx. Precitajte si, co je v tomto tracku zobrazene, zapnite si ho a pozrite si expresiu okolitych genov okolo PTPRZ1
 +
* Kliknite na gen v tracku UCSC known genes. V tabulke uvidite zase prehlad expresie v roznych tkanivach (podla GTEx)

Aktuálna revízia z 09:21, 12. november 2020

Na týchto cvičeniach sa budeme venovať trom štatistickým témam súvisiacim s komparatívnou genomikou a s analýzou expresie génov. Tieto techniky sa však využívajú aj v iných oblastiach a môžete sa s nimi často stretnúť v genomických článkoch.

Zhlukovanie

  • Máme vstupné dáta, väčšinou ako vektory dĺžky n
  • Snažíme sa ich rozdeliť do skupín tak, aby dáta v rámci skupiny boli podobné a medzi skupinami rôzne

Využitie:

  • hľadanie génov s podobným profilom expresie
  • hľadanie skupín pacientov s podobným profilom expresie génov (objavovanie podtypov nejakej choroby)
  • hľadanie rodín podobných proteínov
  • automatická segmentácia obrázkov (napríklad rozlíšiť jednotlivé políčka microarray alebo gelu od pozadia)

Na prednáške sme videli hierarchické zhlukovanie, ktoré z dát vytvorilo strom. Teraz si ukážeme zhlukovanie, ktoré sa snaží dáta rozdeliť na k skupín, kde k je vopred daný parameter.

K-Means

Príklad vstupu pre zhlukovanie
Príklad 3 zhlukov a ich centier nájdených k-means algoritmom
  • pozri tiež prezentáciu pdf
Vstup: n-rozmerné vektory x_{1},x_{2},...,x_{t} a počet zhlukov k
Výstup: Rozdelenie vektorov do k zhlukov takéto:
c_{1},c_{2},...,c_{t}\;(1\leq c_{i}\leq k) - priradenie vektoru k zhluku
n-rozmerné vektory \mu _{1},\mu _{2},...,\mu _{k} - centrá každého zhluku
Úloha: minimalizovať súčet štvorcov vzdialeností od každého vektoru k centru jeho zhluku:

J(\mu ,c)=\sum _{{i=1}}^{t}{\big \|}x_{i}-\mu _{{c_{i}}}{\big \|}_{2}^{2}

{\big \|}x_{i}-\mu _{{c_{i}}}{\big \|}_{2}^{2} je druhá mocnina vzdialenosti vektora xi od centra jeho zhluku

Algoritmus

Heuristika, ktorá nenájde vždy najlepšie zhlukovanie. Začne z nejakého zhlukovania a postupne ho zlepšuje. Pozri aj clanok na Wikipedii

  1. inicializácia: náhodne vyber k centier \ \mu _{1},\mu _{2},...,\mu _{k}
  2. opakuj kým sa niečo mení:
    priraď každý bod najbližšiemu centru: c_{i}=\arg \min _{j}{\big \|}x_{i}-\mu _{j}{\big \|}_{2}
    vypočítaj nové centroidy: \mu _{j}=\operatorname {avg_{{i:c_{i}=j}}}x_{i} (spriemerujeme všetky body v jednom zhluku)

Nadreprezentacia, obohatenie (enrichment)

  • Mnohe celogenomove analyzy nam daju zoznam genov, ktore sa v nejakom ukazovateli vyrazne lisia od priemeru.
  • Napriklad geny s pozitivnym vyberom v komparativnej genomike, geny vyrazne nadexprimovane alebo podexprimovane v microrarray experimentoch, geny regulovane urcitym transkripcnym faktorom a pod.
  • Niektore z nich budu preskumanejsie (znama funkcia a pod.), niektore mozu mat nejake udaje o funkcii prenesene z homologov a dalsie mozu byt uplne nezname
  • Co s takym zoznamom "zaujimavych genov"?
  • moznost 1: vybrat si z neho niekolko malo zaujimavych kandidatov a preskumat ich podrobnejsie (experimentalne alebo informaticky)
  • moznost 2: zistit, ci tato cela skupina je obohatena o geny urcitych skupin
    • napr. v pripade pozitivneho vyberu nam casto vychadzaju geny suvisiace s imunitou, lebo su pod velkym evolucnym tlakom od patogenov
    • takato analyza nam teda da informaciu o suvislostiach medzi roznymi procesmi
  • Priklad (Kosiol et al)
    • 16529 genov celkovo, 70 genov v GO kategorii innate immune response (0.4% zo vsetkych genov)
    • 400 genov s pozivnym vyberom, mame 8 genov s innate immune response (2% zo vsetky genov s poz. vyb.)
  • Celkovy pocet genov n, imunitnych ni, pozitivny vyber np, imunitnych s poz. vyb. nip.
  • Kontingencna tabulka
Pozitivny vyber Bez poz. vyberu Sucet
Imunitne 8 (nip) 62 70 (ni)
Ostatne 392 16067 16459
Sucet 400 (np) 16129 16529 (n)
  • Nulova hypoteza: geny v nasom zozname boli nahodne vybrane z celeho genomu, t.j. ak v celom genome je frekvencia imunitnych genov ni/n (cca 0.4%), vo vzorke velkosti np (geny s pozitivnym vyberom) ocakavame cca np * (ni / n) imunitnych genov.
    • aj v nulovej hypoteze vsak vzorka velkosti ni cisto nahodou moze obsahovat viac alebo menej takych genov.
    • presnejsie mame urnu so ni (70) bielymi a n-ni (16459) ciernymi gulickami, vytiahneme nahodne np (400) guliciek, kolko bude medzi nimi bielych, nazvime tuto nahodnu premennu Xip
    • v nasom priklade by sme ocakavali 1.7 genu s innate immune response, ale mame 8 (4.7xviac)
  • Rozdelenie pravdepodobnosti Xip je hypergeometricke, t.j. \Pr(X_{{ip}}=n_{{ip}})={n_{i} \choose n_{{ip}}}{n-n_{i} \choose n_{p}-n_{{ip}}}/{n \choose n_{p}}
  • Aka je pravdepodobnost, ze v nulovej hypoteze bude Xip tolko, kolko sme namerali alebo viac? (Chvost rozdelenia). V nasom pripade p-value 2.8e-4.
  • Hypergeometric or Fisher's exact test, pripadne ich aproximacie pre velke hodnoty v tabulke (chi^2 test) zisti, ci sa nasa tabulka velmi lisi od toho, co by sme ocakavali v nulovej hypoteze
  • Suvisiace clanky
    • Rivals I, Personnaz L, Taing L, Potier MC (February 2007). "Enrichment or depletion of a GO category within a class of genes: which test?". Bioinformatics (Oxford, England) 23 (4): 401–7. doi:10.1093/bioinformatics/btl633. PMID 17182697.
    • Huang da W, Sherman BT, Lempicki RA (January 2009). "Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists". Nucleic Acids Research 37 (1): 1–13. doi:10.1093/nar/gkn923. PMID 19033363.
    • Reimand, Jüri, et al. "Pathway enrichment analysis and visualization of omics data using g: Profiler, GSEA, Cytoscape and EnrichmentMap." Nature protocols 14.2 (2019): 482. [1]
  • Kod v statistickom systeme R na pocitanie hypergeometrickeho rozdelenia
> dhyper(0:70, 70, 16529-70, 400);
 [1]  1.793421e-01  3.126761e-01  2.679872e-01  1.505169e-01  6.231088e-02
 [6]  2.027586e-02  5.400796e-03  1.210955e-03  2.332580e-04  3.920215e-05
[11]  5.818723e-06  7.702558e-07  9.166688e-08  9.873221e-09  9.678760e-10
[16]  8.677204e-11  7.143849e-12  5.420388e-13  3.802134e-14  2.472342e-15
[21]  1.493876e-16  8.405488e-18  4.412274e-19  2.164351e-20  9.935473e-22
[26]  4.273662e-23  1.724446e-24  6.533742e-26  2.326517e-27  7.791092e-29
[31]  2.455307e-30  7.285339e-32  2.036140e-33  5.361856e-35  1.330660e-36
[36]  3.112566e-38  6.862558e-40  1.426089e-41  2.792792e-43  5.153006e-45
[41]  8.955105e-47  1.465159e-48  2.255667e-50  3.265636e-52  4.442631e-54
[46]  5.674366e-56  6.797781e-58  7.629501e-60  8.012033e-62  7.860866e-64
[51]  7.193798e-66  6.129013e-68  4.851139e-70  3.558526e-72  2.412561e-74
[56]  1.506983e-76  8.641725e-79  4.530590e-81  2.161126e-83  9.326620e-86
[61]  3.617279e-88  1.250737e-90  3.817900e-93  1.016417e-95  2.323667e-98
[66] 4.469699e-101 7.034762e-104 8.698702e-107 7.924236e-110 4.728201e-113
[71] 1.386176e-116
phyper(7, 70, 16529-70, 400, lower.tail=FALSE);
# pr pocet bielych>7 (t.j. >=8) ak taham 400 z vreca so 70 bielymi a 16529-70 ciernymi
# sucet cisiel z tabulky od 2.332580e-04 az po koniec

d = dhyper(0:15, 70, 16529-70, 400);
plot(0:15,d)

# test pre danu tabulku
a=matrix(c(8,62,392,16067),nrow=2, ncol=2)
fisher.test(a,alternative = "greater")

Multiple testing correction

  • V mnohych situaciach robime vela testov toho isteho typu, kazdy ma urcitu p-value
  • Napr. testujeme 1000 genov v genome na pozitivny vyber, zvolime tie, kde p-value <= 0.05
  • Alebo testujeme obohatenie 1000 funkcnych kategorii v nejakej vzorke genov, zvolime tie, kde p-value <= 0.05
  • Problem: ak kazda z 1000 kategorii ma 5% sancu tam byt len nahodou, ocakavali by sme 50 cisto nahodnych pozitivnych vysledkov. Ak sme napr. nasli 100 pozitivnych vysledkov (obohatenych kategorii), cca polovica z nich je zle
  • Preto potrebujeme pri velkom mnozstve testov umelo znizit prah na p-value tak, aby nahodny sum netvoril velke percento nasich vysledkov
  • Toto sa vola multiple testing correction, je viac technik, napr. FDR (false discovery rate)

Nadreprezentácia, Uniprot (cvičenie pri počítači)

Data o expresii ludskych genov v roznych tkanivach a podobne v UCSC genome browseri

  • Chodte na genome browser http://genome-euro.ucsc.edu/
  • Zvolte Tools->Gene Sorter, sort by nechajme Expression (GTEx), a do okienka search zadajme identifikator genu PTPRZ1
    • Dostane tabulku genov s podobnym profilom expresie ako PTPRZ1 (červená je vysoká expresia, zelená nízka)
    • Zoznam tychto genov v textovom formate najdete tu
  • http://biit.cs.ut.ee/gprofiler/ mena genov skopirujme do policka Query, stlacte g:Profile!
    • Ak by výpočet dlho trval, nájdete ho aj tu
    • Vo výslednej tabuľke je každý riadok jedna funkcna kategoria, v ktorej su geny s tymto profilom expresie nadreprezentovane, kazdy stlpec jeden gen.
    • V spodnej casti tabuly su aj asociacie k chorobam a k transkripcnym faktorom, ktore by mohli prislusne geny regulovat
  • Co by sme na zaklade nadreprezentovanych kategorii usudzovali o gene PTPRZ1?
  • Najdite tento gen v Uniprote (http://www.uniprot.org/), potvrdzuje nase domnienky?
    • O mnohých údajoch na stránke sme sa rozprávali na prednáške (GO kategórie, domény, sekundárna a 3D štruktúra)
    • na veľa miestach na stránke je uvedené aj odkiaľ jednotlivé údaje pochádzajú
    • Všimnime si Pfam domény a pozrime si ich stránku
  • Vratme sa do genome browsera, najdime si PTPRZ1 gen v genome [2]
  • V browseri su rozne tracky tykajuce sa expresie, napr. GTEx. Precitajte si, co je v tomto tracku zobrazene, zapnite si ho a pozrite si expresiu okolitych genov okolo PTPRZ1
  • Kliknite na gen v tracku UCSC known genes. V tabulke uvidite zase prehlad expresie v roznych tkanivach (podla GTEx)