1-BIN-301, 2-AIN-501 Methods in Bioinformatics, 2023/24

Introduction · Rules · Tasks and dates · Materials · Moodle
Quizzes can be found in Moodle.
Homework assignments and journal club papers can be found in Tasks and dates.
Exam rules, example questions and syllabus
Groups for journal club have each their own group in Moodle.


CB10: Rozdiel medzi revíziami

Z MBI
Prejsť na: navigácia, hľadanie
(7 intermediate revisions by the same user not shown)
Riadok 1: Riadok 1:
==Nussinovovej algoritmus==
+
==Gény, evolúcia a komparatívna genomika v UCSC genome browseri (cvičenie pri počítači)==
 +
 
 +
K hladaniu genov pozri aj prezentaciu {{pdf|Cb-gene}}
 +
 
 +
Histónové modifikácie
 +
* A. Barski, S. Cuddapah, K. Cui, T. Roh, D. Schones, Z. Wang, G. Wei, I. Chepelev, K. Zhao (2007) High-Resolution Profiling of Histone Methylations in the Human Genome Cell, Volume 129, Issue 4, Pages 823-837 [http://www.columbia.edu/cu/biology/courses/w3034/LACpapers/barskiMethylSolexCell07.pdf pdf]
 +
 
 +
 
 +
* Zobrazme si gén CLCA4 [http://genome-euro.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr1%3A86538658-86589173]
 +
* Zapnite si štandardnú sadu track-ov
 +
* Po kliknutí na gén si môžete prečítať o jeho funkcii, po kliknutí na ľavú lištu alebo na názov tracku v zozname na spodku stránky si môžete prečítať viac o tracku a meniť nastavenia
 +
* V tracku RefSeq genes si všimnite, že v tejto databáze má tento gén dve formy zostrihu, jedna z nich sa považuje za nekódujúcu, pretína sa aj s necharakterizovanou nekódujúcou RNA na opačnom vlákne
 +
** Track RefSeq a jeho subtrack RefSeq Curated treba zapnut na pack
 +
* Nižšie vidíte track H3K27Ac Mark (Often Found Near Regulatory Elements) on 7 cell lines from ENCODE, kde bola táto histónová modifikácia v okolí génu detegovaná?
 +
* Všimnite si aj track DNase I Hypersensitivity, ktorý zobrazuje otvorený chromatin, prístupný pre viazanie transkripčných faktorov. Všimnite si jeho súvis s H3K27Ac trackom
 +
* Obidva tracky sú súčasťou tracku ENCODE regulation, v ktorom si môžete zapnúť aj ďalšie pod-tracky
 +
* Takisto v tracku GTEx vidíme, v ktorých tkanivách je gén exprimovaný, porovnajte s okolitými génmi
 +
 
 +
 
 +
* Vsimnime si track Vertebrate Multiz Alignment & Conservation (100 Species)
 +
** v spodnej casti tracku vidime zarovnania s roznymi inymi genomami
 +
** v nastaveniach tracku zapnite Element Conservation (phastCons) na full a Conserved Elements na dense
 +
** v tomto tracku vidíme PhyloP, co zobrazuje uroven konzerovanosti danej bazy len na zaklade jedneho stlpca zarovnania a dva vysledky z phyloHMM phastCons, ktory berie do uvahy aj okolite stlpce
 +
* Konkretne cast Conserved elements zobrazuje konkretne useky, ktore su najvac konzervovane
 +
** Ak chceme zistit, kolko percent genomu tieto useky pokryvaju, ideme na modrej liste do casti Tools->Table browser, zvolime group Comparative genomics, track Conservation, table 100 Vert. El, region zvolime genome (v celom genome)  a stlacime tlacidlo Summary/statistics, dostaneme nieco taketo:
 +
<TABLE border=1>
 +
<TR><TD>item count</TD><TD ALIGN=RIGHT>10,350,729</TD></TR>
 +
<TR><TD>item bases</TD><TD ALIGN=RIGHT>162,179,256 (5.32%)</TD></TR>
 +
<TR><TD>item total</TD><TD ALIGN=RIGHT>162,179,256 (5.32%)</TD></TR>
 +
<TR><TD>smallest item</TD><TD ALIGN=RIGHT>1</TD></TR>
 +
<TR><TD>average item</TD><TD ALIGN=RIGHT>16</TD></TR>
 +
<TR><TD>biggest item</TD><TD ALIGN=RIGHT>3,732</TD></TR>
 +
<TR><TD>smallest score</TD><TD ALIGN=RIGHT>186</TD></TR>
 +
<TR><TD>average score</TD><TD ALIGN=RIGHT>333</TD></TR>
 +
<TR><TD>biggest score</TD><TD ALIGN=RIGHT>1,000</TD></TR>
 +
</TABLE>
 +
** Ak by nas zaujimali iba velmi dlhe "conserved elements", v Table browser stlacime tlacidlo Filter a na dalsej obrazovke do policka Free-form query dame '''chromEnd-chromStart>=1500'''
 +
** Potom mozeme skusit Summary/Statistics alebo vystup typu Hyperlinks to genome browser a Get output - dostaneme zoznam tychto elementov a kazdy si mozeme jednym klikom pozriet v browseri, napr. taketo
 +
*** [http://genome-euro.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr1:50201403-50203312 lod=24051 at chr1:50201403-50203312]
 +
*** [http://genome-euro.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr1:55663689-55667047 lod=1899 at chr1:55663689-55667047] atd
 +
 
 +
* Pozrime si teraz ten isty gen CLCA4 v starsej verzii genomu hg18 [http://genome-euro.ucsc.edu/cgi-bin/hgTracks?db=hg18&position=chr1%3A86776929-86827444]
 +
** V casti Genes and Gene Prediction Tracks zapnite track Pos Sel Genes, ktory obsahuje geny s '''pozitivnym vyberom''' (cervenou, pripadne slabsie fialovou a modrou)
 +
** Ked kliknete na cerveny obdlznik pre tento gen, uvidite, v ktorych castiach fylogenetickeho stromu bol detegovany pozitivny vyber
 +
** Po priblizeni do jedneho z exonov [http://genome-euro.ucsc.edu/cgi-bin/hgTracks?db=hg18&position=chr1%3A86805823-86805917] vidite dosledky nesynonymnych mutacii
 +
 
 +
Poznamka: Existuju aj webservery na predikciu pozitivneho vyberu, napriklad tieto dva:
 +
* [http://selecton.tau.ac.il/ Selecton], [http://www.tau.ac.il/~talp/publications/selecton2007.pdf clanok]
 +
* [http://www.datamonkey.org/ Data monkey] [http://mbe.oxfordjournals.org/cgi/content/abstract/22/5/1208 clanok]
 +
* Skusili sme na Selecton poslat CLCA4 zo 7 cicavcov, subor tu: [http://compbio.fmph.uniba.sk/vyuka/mbi-data/cb07/clca4.mfa]
 +
** vysledky [http://compbio.fmph.uniba.sk/vyuka/mbi-data/cb07/clca4-selecton.html] a [http://compbio.fmph.uniba.sk/vyuka/mbi-data/cb07/clca4-omega.txt] (metoda ale odporuca aspon 10 homologov)
 +
 
 +
==Objavenie génu HAR1 pomocou komparatívnej genomiky==
 +
* {{cite journal |author=Pollard KS, Salama SR, Lambert N, ''et al.'' |title=An RNA gene expressed during cortical development evolved rapidly in humans |journal=Nature |volume=443 |issue=7108 |pages=167–72 |year=2006 |month=September |pmid=16915236 |doi=10.1038/nature05113 |url=}} [http://ribonode.ucsc.edu/Pubs/Pollard_etal06.pdf pdf]
 +
* Zobrali všetky regióny dĺžky aspoň 100bp s > 96% podobnosťou medzi šimpanzom a myšou/potkanom (35,000)
 +
* Porovnali s ostatnými cicavcami, zistili, ktoré majú veľa mutáci v človeku, ale málo inde (pravdepodobnostný model)
 +
* 49 štatisticky významných regiónov, 96% nekódujúcich oblastiach
 +
* Najvýznamnejší HAR1: 118nt, 18 substitúcii u človeka, očakávali by sme 0.27. Iba 2 zmeny medzi šimpanzom a sliepkou (310 miliónov rokov), ale nebol nájdený v rybách a žabe.
 +
* Nezdá sa byť polymorfný u človeka
 +
* Prekrývajúce sa RNA gény HAR1A a HAR1B
 +
* HAR1A je exprimovaný v neokortexe u 7 a 9 týždenných embrií, neskôr aj v iných častiach mozgu (u človeka aj iných primátov)
 +
* Všetky substitúcie v človeku A/T->C/G, stabilnejšia RNA štruktúra (ale tiež sú blízko k telomére, kde je viacej takýchto mutácii kvôli rekombinácii a biased gene conversion)
 +
 
 +
===Cvičenie pri počítači===
 +
* Môžete si pozrieť tento region v browseri: [http://genome-euro.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr20%3A63102114-63102274 '''chr20:63102114-63102274''' (hg38)], pricom ak sa este priblizite, uvidite zarovnanie aj s bazami a mozete vidiet, ze vela zmien je specifickych pre cloveka
 +
 
 +
==Uniprot==
 +
* Prehladnejsi pohlad na proteiny, vela linkov na ine databazy, cast vytvarana rucne
 +
** Pozrieme sa na známy koronavírusový proteín Spike
 +
** Nájdime ho na stránke http://www.uniprot.org/ pod názvom SPIKE_SARS2
 +
** Pozrime si podrobne jeho stránku, ktoré časti boli predpovedané bioinformatickými metódami z prednášky?
 +
** Všimnime si niektorú Pfam doménu a pozrime si jej stránku
 +
 
 +
==Nussinovovej algoritmus (nerobili sme)==
  
 
Z cvičných príkladov na skúšku
 
Z cvičných príkladov na skúšku
 
* Vyplňte maticu dynamického programovania (Nussinovovej algoritmus) pre nájdenie najväčšieho počtu dobre uzátvorkovaných spárovaných báz v RNA sekvencii GAACUUCACUGA (dovoľujeme len komplementárne páry A-U, C-G) a nakreslite sekundárnu štruktúru, ktorú algoritmus našiel.
 
* Vyplňte maticu dynamického programovania (Nussinovovej algoritmus) pre nájdenie najväčšieho počtu dobre uzátvorkovaných spárovaných báz v RNA sekvencii GAACUUCACUGA (dovoľujeme len komplementárne páry A-U, C-G) a nakreslite sekundárnu štruktúru, ktorú algoritmus našiel.
<!--
 
 
<pre>
 
<pre>
 
  G A A C U U C A C U G A
 
  G A A C U U C A C U G A
Riadok 19: Riadok 91:
 
                       0  A
 
                       0  A
 
</pre>
 
</pre>
-->
 
  
 
* Ako by sme algoritmus upravili, aby dlzka slucky na konci helixu bola vzdy aspon 3?
 
* Ako by sme algoritmus upravili, aby dlzka slucky na konci helixu bola vzdy aspon 3?
 
==RNA štruktúra==
 
* Znama databaza rodin RNA genov je Rfam: http://rfam.xfam.org/
 
* Najdite si v nej rodinu RF00015 (U4 spliceosomal RNA)
 
* V casti Secondary structure si mozete pozriet obrazky farebne kodovane podla roznych kriterii
 
** Skuste pochopit, co jednotlive obrazky a ich farby znamenaju
 
* Jedna z mnohych ludskych kopii je tato:
 
<pre>
 
AGCTTTGCGCAGTGGCAGTATCGTAGCCAATGAGGTTTATCCGAGGCGCG
 
ATTATTGCTAATTGAAAACTTTTCCCAATACCCCGCCATGACGACTTGAA
 
ATATAGTCGGCATTGGCAATTTTTGACAGTCTCTACGGAGA
 
</pre>
 
* Skuste ju najst v ludskom genome nastrojom BLAT v [http://genome-euro.ucsc.edu UCSC genome browseri]
 
* Pozrite si tracky GENCODE genes, conservation, RepeatMasker v jej okoli
 
* Vo verzii hg19 (kam sa viete z inej verzii dostat cez horne menu View->In Other Genomes) je track "CSHL Sm RNA-seq" ktory obsahuje RNASeq kratkych RNA z roznych casti buniek, zapnite si v jeho nastaveniach aj zobrazenie RNA z jadra (nucleus)
 
* Zadajte sekvenciu na RNAfold serveri [http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi]
 
* Ak vypocet dlho trva, pozrite si vysledok [http://rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/RNAfold.cgi?PAGE=3&ID=fdr_TwjicB tu]
 
* Podoba sa na strukturu zobrazenu v Rfame? v com sa lisi?
 
 
* RNA dizajn: mozete sa skusit zahrat na stranke http://www.eternagame.org/web/
 

Verzia zo dňa a času 12:36, 9. december 2021

Gény, evolúcia a komparatívna genomika v UCSC genome browseri (cvičenie pri počítači)

K hladaniu genov pozri aj prezentaciu pdf

Histónové modifikácie

  • A. Barski, S. Cuddapah, K. Cui, T. Roh, D. Schones, Z. Wang, G. Wei, I. Chepelev, K. Zhao (2007) High-Resolution Profiling of Histone Methylations in the Human Genome Cell, Volume 129, Issue 4, Pages 823-837 pdf


  • Zobrazme si gén CLCA4 [1]
  • Zapnite si štandardnú sadu track-ov
  • Po kliknutí na gén si môžete prečítať o jeho funkcii, po kliknutí na ľavú lištu alebo na názov tracku v zozname na spodku stránky si môžete prečítať viac o tracku a meniť nastavenia
  • V tracku RefSeq genes si všimnite, že v tejto databáze má tento gén dve formy zostrihu, jedna z nich sa považuje za nekódujúcu, pretína sa aj s necharakterizovanou nekódujúcou RNA na opačnom vlákne
    • Track RefSeq a jeho subtrack RefSeq Curated treba zapnut na pack
  • Nižšie vidíte track H3K27Ac Mark (Often Found Near Regulatory Elements) on 7 cell lines from ENCODE, kde bola táto histónová modifikácia v okolí génu detegovaná?
  • Všimnite si aj track DNase I Hypersensitivity, ktorý zobrazuje otvorený chromatin, prístupný pre viazanie transkripčných faktorov. Všimnite si jeho súvis s H3K27Ac trackom
  • Obidva tracky sú súčasťou tracku ENCODE regulation, v ktorom si môžete zapnúť aj ďalšie pod-tracky
  • Takisto v tracku GTEx vidíme, v ktorých tkanivách je gén exprimovaný, porovnajte s okolitými génmi


  • Vsimnime si track Vertebrate Multiz Alignment & Conservation (100 Species)
    • v spodnej casti tracku vidime zarovnania s roznymi inymi genomami
    • v nastaveniach tracku zapnite Element Conservation (phastCons) na full a Conserved Elements na dense
    • v tomto tracku vidíme PhyloP, co zobrazuje uroven konzerovanosti danej bazy len na zaklade jedneho stlpca zarovnania a dva vysledky z phyloHMM phastCons, ktory berie do uvahy aj okolite stlpce
  • Konkretne cast Conserved elements zobrazuje konkretne useky, ktore su najvac konzervovane
    • Ak chceme zistit, kolko percent genomu tieto useky pokryvaju, ideme na modrej liste do casti Tools->Table browser, zvolime group Comparative genomics, track Conservation, table 100 Vert. El, region zvolime genome (v celom genome) a stlacime tlacidlo Summary/statistics, dostaneme nieco taketo:
item count10,350,729
item bases162,179,256 (5.32%)
item total162,179,256 (5.32%)
smallest item1
average item16
biggest item3,732
smallest score186
average score333
biggest score1,000
    • Ak by nas zaujimali iba velmi dlhe "conserved elements", v Table browser stlacime tlacidlo Filter a na dalsej obrazovke do policka Free-form query dame chromEnd-chromStart>=1500
    • Potom mozeme skusit Summary/Statistics alebo vystup typu Hyperlinks to genome browser a Get output - dostaneme zoznam tychto elementov a kazdy si mozeme jednym klikom pozriet v browseri, napr. taketo
  • Pozrime si teraz ten isty gen CLCA4 v starsej verzii genomu hg18 [2]
    • V casti Genes and Gene Prediction Tracks zapnite track Pos Sel Genes, ktory obsahuje geny s pozitivnym vyberom (cervenou, pripadne slabsie fialovou a modrou)
    • Ked kliknete na cerveny obdlznik pre tento gen, uvidite, v ktorych castiach fylogenetickeho stromu bol detegovany pozitivny vyber
    • Po priblizeni do jedneho z exonov [3] vidite dosledky nesynonymnych mutacii

Poznamka: Existuju aj webservery na predikciu pozitivneho vyberu, napriklad tieto dva:

Objavenie génu HAR1 pomocou komparatívnej genomiky

  • Pollard KS, Salama SR, Lambert N, et al. (September 2006). "An RNA gene expressed during cortical development evolved rapidly in humans". Nature 443 (7108): 167–72. doi:10.1038/nature05113. PMID 16915236. pdf
  • Zobrali všetky regióny dĺžky aspoň 100bp s > 96% podobnosťou medzi šimpanzom a myšou/potkanom (35,000)
  • Porovnali s ostatnými cicavcami, zistili, ktoré majú veľa mutáci v človeku, ale málo inde (pravdepodobnostný model)
  • 49 štatisticky významných regiónov, 96% nekódujúcich oblastiach
  • Najvýznamnejší HAR1: 118nt, 18 substitúcii u človeka, očakávali by sme 0.27. Iba 2 zmeny medzi šimpanzom a sliepkou (310 miliónov rokov), ale nebol nájdený v rybách a žabe.
  • Nezdá sa byť polymorfný u človeka
  • Prekrývajúce sa RNA gény HAR1A a HAR1B
  • HAR1A je exprimovaný v neokortexe u 7 a 9 týždenných embrií, neskôr aj v iných častiach mozgu (u človeka aj iných primátov)
  • Všetky substitúcie v človeku A/T->C/G, stabilnejšia RNA štruktúra (ale tiež sú blízko k telomére, kde je viacej takýchto mutácii kvôli rekombinácii a biased gene conversion)

Cvičenie pri počítači

  • Môžete si pozrieť tento region v browseri: chr20:63102114-63102274 (hg38), pricom ak sa este priblizite, uvidite zarovnanie aj s bazami a mozete vidiet, ze vela zmien je specifickych pre cloveka

Uniprot

  • Prehladnejsi pohlad na proteiny, vela linkov na ine databazy, cast vytvarana rucne
    • Pozrieme sa na známy koronavírusový proteín Spike
    • Nájdime ho na stránke http://www.uniprot.org/ pod názvom SPIKE_SARS2
    • Pozrime si podrobne jeho stránku, ktoré časti boli predpovedané bioinformatickými metódami z prednášky?
    • Všimnime si niektorú Pfam doménu a pozrime si jej stránku

Nussinovovej algoritmus (nerobili sme)

Z cvičných príkladov na skúšku

  • Vyplňte maticu dynamického programovania (Nussinovovej algoritmus) pre nájdenie najväčšieho počtu dobre uzátvorkovaných spárovaných báz v RNA sekvencii GAACUUCACUGA (dovoľujeme len komplementárne páry A-U, C-G) a nakreslite sekundárnu štruktúru, ktorú algoritmus našiel.
 G A A C U U C A C U G A
 0 0 0 1 1 2 3 3 3 4 4 4  G
   0 0 0 1 2 2 2 2 3 4 4  A
     0 0 1 1 1 2 2 2 3 4  A
       0 0 0 0 1 1 1 2 3  C
         0 0 0 1 1 1 2 3  U
           0 0 1 1 1 2 3  U
             0 0 0 1 2 2  C
               0 0 1 1 1  A
                 0 0 1 1  C
                   0 0 1  U
                     0 0  G
                       0  A
  • Ako by sme algoritmus upravili, aby dlzka slucky na konci helixu bola vzdy aspon 3?