
Handout: A Quick Introduction to Gradient Boosting

Machine Learning Class Notes

November 8, 2025

Abstract

This document outlines the core concepts of Gradient Boosting. We start with the simple
case of fitting residuals in regression, show how this is a special case of a more general ”gradient”
boosting algorithm, and then extend the framework to other loss functions (like L1) and to binary
classification.

1 The Boosting Ensemble

The core idea of boosting is to build a strong predictive model by sequentially adding weak learners
(underfitted models with high bias and low variance). Each new weak learner (typically a small
decision tree) is trained to correct the errors made by all the previous learners.

A boosted model FM (x) is an additive model of the form:

FM (x) = F0(x) +
M∑

m=1

hm(x)

Where:

• F0(x) is an initial ”base” prediction (e.g., the mean of all y values).

• hm(x) is the m-th weak learner (a regression tree).

2 Simple Case: Boosting for Regression with L2 Loss

Let’s start with the most intuitive case: regression with a Squared Error (L2) loss function. Our
goal is to minimize the total loss:

LTotal =

N∑
i=1

L(yi, F (xi)) =

N∑
i=1

1

2
(yi − F (xi))

2

The simplest version of boosting for this problem is often called ”Residual Fitting”:

1. Initialize: Start with an initial prediction. A good one is the mean of the target values.

F0(x) =
1

N

N∑
i=1

yi

2. Iterate for m = 1 to M trees:

(a) Compute Residuals: Find the error for each data point based on the *current* model
Fm−1(x).

rim = yi − Fm−1(xi)

1

(b) Fit a Weak Learner: Train a new regression tree hm(x) to predict these residuals rim.
The tree is learning to predict the *error* of the current model.

(c) Update the Model: Add the new tree’s prediction to the overall model.

Fm(x) = Fm−1(x) + hm(x)

3. Final Model: The final model is FM (x).

3 The Gradient Connection

It turns out that residual fitting is a special case of a more powerful idea: gradient descent.
Let’s look at the loss for a single data point: L(yi, F (xi)) =

1
2(yi − F (xi))

2.
What if we took the negative gradient of this loss function with respect to the model’s output

F (xi)?

− ∂L

∂F (xi)
= − ∂

∂F (xi)

[
1

2
(yi − F (xi))

2

]
= − [(yi − F (xi)) · (−1)] = yi − F (xi)

This means: For the Squared Error (L2) loss, the residual is exactly the negative gradient
of the loss function.

rim = yi − Fm−1(xi) = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

This means our ”Residual Fitting” algorithm was, secretly, a form of gradient descent. It was fitting
a new tree to the negative gradient of the loss, trying to ”step” the function F (x) in the direction
that most rapidly decreases the loss. Note that in Gradient Boosting, we calculate the gradient of the
output for each training sample (as opposed to the gradient of the weights in other algorithms).

4 The General Gradient Boosting Algorithm

This insight allows us to generalize boosting to any differentiable loss function. We just replace the
”residual” with the ”negative gradient.” We simply use this negative gradient as the new target for
our weak learners.

1. Initialize: Start with an initial prediction F0(x) that minimizes the total loss.

F0(x) = argmin
γ

N∑
i=1

L(yi, γ)

(For L2 loss, this is the mean. For L1 loss, this is the median.)

2. Iterate for m = 1 to M trees:

(a) Compute Negative Gradients: For each data point, compute the negative gradient of
the loss function, evaluated at the current model’s prediction.

rim = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

(b) Fit a Weak Learner: Train a new regression tree hm(x) to predict these negative gradients
rim.

2

(c) Find Optimal Step Length: We need to find the best step length γm for this new tree.
Note that for L2 regression, the gradient coincided with the residual, and thus the optimal
step length was one. But for other functions, this does not have to be the case. The Step
length is chosen to minimize the total loss. This is a 1D optimization problem:

γm = argmin
γ

N∑
i=1

L(yi, Fm−1(xi) + γ · hm(xi))

This step is typically solved using a line search.

(d) Update the Model: Add the new tree’s contribution, scaled by the step length.

Fm(x) = Fm−1(x) + γm · hm(x)

3. Final Model: The final model is FM (x).

5 Example: Gradient Boosting with L1 (Absolute) Loss

What if we want a model that is more robust to outliers? We can replace the L2 loss with the
Absolute Error (L1) loss.

1. Loss Function: L(yi, F (xi)) = |yi − F (xi)|

2. Gradient (Sub-gradient):

∂L

∂F (xi)
=

∂

∂F (xi)
|yi − F (xi)| = sign(F (xi)− yi)

Where sign(z) is -1 if z < 0 and +1 if z > 0.

3. The Negative Gradient (New Target):

rim = −
[

∂L

∂F (xi)

]
F=Fm−1

= −sign(Fm−1(xi)− yi) = sign(yi − Fm−1(xi))

Insight: When using L1 loss, the negative gradient is just the sign of the error (i.e., +1 or -1) and
does not care about error magnitude. Here, it is quite clear why we need a step length.

6 Example: Gradient Boosting for Binary Classification

How do we adapt this for a binary y ∈ {0, 1} classification problem?

6.1 The Output: Log-Odds

First, we can’t have our trees output a probability p ∈ [0, 1] directly. The sum of trees can output any
real number from (−∞,∞). Instead, we define the model F (x) to be the log-odds (or logit) of the
probability:

F (x) = log

(
p(x)

1− p(x)

)
where p(x) = P (y = 1|x)

We can always recover the probability p(x) from the model’s raw output F (x) by using the sigmoid
(logistic) function:

p(x) = σ(F (x)) =
eF (x)

1 + eF (x)
=

1

1 + e−F (x)

3

6.2 The Loss Function: Log Loss

The standard loss function for binary classification is the Binary Cross Entropy. We write it in
terms of the raw model output F (xi) and the sigmoid function σ(·):

L(yi, F (xi)) = − [yi log(σ(F (xi))) + (1− yi) log(1− σ(F (xi)))]

Where σ(F (xi)) is the sigmoid function defined in the previous section.

6.3 The Gradient (New Target)

We need to find the gradient of this loss with respect to our model’s output, F (xi).
It can be shown (recall the gradient of logistic regression from the past lecture) that:

∂L

∂F (xi)
= p(xi)− yi

Therefore, the new target (the negative gradient) for binary classification is:

rim = −
[

∂L

∂F (xi)

]
F=Fm−1

= −(pm−1(xi)− yi) = yi − pm−1(xi)

Where pm−1(xi) = σ(Fm−1(xi)).

6.4 The Algorithm and Interpreting the Output

The algorithm is the same as the general one, but with this specific gradient target.

1. Initialize: F0(x) = log
(

ȳ
1−ȳ

)
(the log-odds of the base rate).

2. Iterate for m = 1 to M trees:

(a) Compute Probabilities: pi = σ(Fm−1(xi))

(b) Compute Gradients (Targets): rim = yi − pi

(c) Fit a Regression Tree: Train hm(x) to predict rim.

(d) Find Optimal Step Length γm: Find the step length that minimizes the log-loss:

γm = argmin
γ

N∑
i=1

L(yi, Fm−1(xi) + γ · hm(xi))

(This is also solved with a line search.)

(e) Update the Model: Fm(x) = Fm−1(x) + γm · hm(x)

3. Final Model: FM (x)

How to use the final model FM (x):

• To get a probability: Pass the raw output through the sigmoid function.

P (y = 1|x) = σ(FM (x)) =
1

1 + e−FM (x)

• To get a hard class prediction: Check the sign of the log-odds (or if the probability is ¿ 0.5).

Class =

{
1 if FM (x) > 0

0 if FM (x) ≤ 0

4

7 Regularization & Hyperparameters

Gradient Boosting models can be very powerful, but they can also overfit the training data. To
improve their generalization performance on unseen data, several regularization techniques are used,
which are controlled by key hyperparameters.

7.1 Number of Trees (M)

This is the total number of boosting iterations, i.e., the number of weak learners in the final ensemble.
This is the primary parameter to tune. A very large M will eventually lead to overfitting. The best
value for M is typically found using early stopping with a validation set: you train the model for a
large number of trees and stop when the performance on the validation set stops improving.

7.2 Learning Rate (Shrinkage) (ν)

In our general algorithm, we found an optimal step length γm for each new tree using a line search.
A very common and effective regularization strategy is to take a smaller than optimal step, where we
multiply the optimal step size by a factor called shrinkage (ν), with a typical value 0.1:

The model update step then becomes:

Fm(x) = Fm−1(x) + νγm · hm(x)

This slows down the learning process, forcing the model to take smaller steps. This requires a larger
number of trees (M) to be trained, but it often leads to a much better and more robust final model.
There is a direct trade-off between ν and M (a smaller ν requires a larger M).

7.3 Limiting Tree Depth

The weak learners (hm(x)) are meant to be simple. We can control their complexity by limiting them.
The most common method is to set a maximum depth (e.g., max depth = 4).

• A depth of 1 creates an ”additive model” where trees are just ”stumps”.

• A depth of 2-8 is common. Deeper trees can capture more complex feature interactions but are
more computationally expensive and more likely to overfit.

Other constraints, like setting a minimum number of samples per leaf, are also used.

7.4 Subsampling

This technique introduces randomness and reduces overfitting. At each iteration m, a fraction of the
training data (e.g., 80%) is randomly sampled without replacement.

• The negative gradients rim are computed only for this subsample.

• The new tree hm(x) is trained only on this subsample.

5

	The Boosting Ensemble
	Simple Case: Boosting for Regression with L2 Loss
	The Gradient Connection
	The General Gradient Boosting Algorithm
	Example: Gradient Boosting with L1 (Absolute) Loss
	Example: Gradient Boosting for Binary Classification
	The Output: Log-Odds
	The Loss Function: Log Loss
	The Gradient (New Target)
	The Algorithm and Interpreting the Output

	Regularization & Hyperparameters
	Number of Trees (M)
	Learning Rate (Shrinkage) ()
	Limiting Tree Depth
	Subsampling

