(CS229 Lecture notes

Andrew Ng

Part XIII
Reinforcement Learning and

Control

We now begin our study of reinforcement learning and adaptive control.

In supervised learning, we saw algorithms that tried to make their outputs
mimic the labels y given in the training set. In that setting, the labels gave
an unambiguous “right answer” for each of the inputs z. In contrast, for
many sequential decision making and control problems, it is very difficult to
provide this type of explicit supervision to a learning algorithm. For example,
if we have just built a four-legged robot and are trying to program it to walk,
then initially we have no idea what the “correct” actions to take are to make
it walk, and so do not know how to provide explicit supervision for a learning
algorithm to try to mimic.

In the reinforcement learning framework, we will instead provide our al-
gorithms only a reward function, which indicates to the learning agent when
it is doing well, and when it is doing poorly. In the four-legged walking ex-
ample, the reward function might give the robot positive rewards for moving
forwards, and negative rewards for either moving backwards or falling over.
It will then be the learning algorithm’s job to figure out how to choose actions
over time so as to obtain large rewards.

Reinforcement learning has been successful in applications as diverse as
autonomous helicopter flight, robot legged locomotion, cell-phone network
routing, marketing strategy selection, factory control, and efficient web-page
indexing. Our study of reinforcement learning will begin with a definition of
the Markov decision processes (MDP), which provides the formalism in
which RL problems are usually posed.

1 Markov decision processes

A Markov decision process is a tuple (S, A, { Py, },7, R), where:

e S is a set of states. (For example, in autonomous helicopter flight, S
might be the set of all possible positions and orientations of the heli-
copter.)

e Ais a set of actions. (For example, the set of all possible directions in
which you can push the helicopter’s control sticks.)

e P, are the state transition probabilities. For each state s € S and
action a € A, Py, is a distribution over the state space. We’ll say more
about this later, but briefly, Py, gives the distribution over what states
we will transition to if we take action a in state s.

e v €0,1) is called the discount factor.

e R:S5 x A Ris the reward function. (Rewards are sometimes also
written as a function of a state S only, in which case we would have

R:S— R).

The dynamics of an MDP proceeds as follows: We start in some state s,
and get to choose some action ag € A to take in the MDP. As a result of our
choice, the state of the MDP randomly transitions to some successor state
s1, drawn according to s; ~ Ps,,,. Then, we get to pick another action a;.
As a result of this action, the state transitions again, now to some sy ~ Py, ,,.
We then pick as, and so on.... Pictorially, we can represent this process as
follows:

ao al ag as
S —>S1 —> S92 —> S3 — ...

Upon visiting the sequence of states s, s1, ... with actions ag, aq, ..., our
total payoff is given by

R(s0,a0) + YR(s1,a1) + 7’ R(s2, a2) + - --
Or, when we are writing rewards as a function of the states only, this becomes
R(so) +yR(s1) +y*R(s2) + -+ .

For most of our development, we will use the simpler state-rewards R(s),
though the generalization to state-action rewards R(s,a) offers no special
difficulties.

Our goal in reinforcement learning is to choose actions over time so as to
maximize the expected value of the total payoft:

E [R(s0) +YR(s1) + 7 R(s2) + - -]

Note that the reward at timestep ¢ is discounted by a factor of v¢. Thus, to
make this expectation large, we would like to accrue positive rewards as soon
as possible (and postpone negative rewards as long as possible). In economic
applications where R(-) is the amount of money made, v also has a natural
interpretation in terms of the interest rate (where a dollar today is worth
more than a dollar tomorrow).

A policy is any function 7 : S — A mapping from the states to the
actions. We say that we are executing some policy 7 if, whenever we are
in state s, we take action a = m(s). We also define the value function for
a policy 7 according to

V™(s) = E [R(s0) + YR(s1) + v’ R(s2) + -+ - | so = s,7].

V7™ (s) is simply the expected sum of discounted rewards upon starting in
state s, and taking actions according to .1

Given a fixed policy m, its value function V™ satisfies the Bellman equa-

tions:

V™(s) = R(s) +~ Z Pars)(8)V(5).
s'eS

This says that the expected sum of discounted rewards V7™ (s) for starting
in s consists of two terms: First, the immediate reward R(s) that we get
rightaway simply for starting in state s, and second, the expected sum of
future discounted rewards. Examining the second term in more detail, we
see that the summation term above can be rewritten Eg.p,_, [V7(s")]. This
is the expected sum of discounted rewards for starting in state s’, where s
is distributed according Pir(s), which is the distribution over where we will
end up after taking the first action 7(s) in the MDP from state s. Thus, the
second term above gives the expected sum of discounted rewards obtained
after the first step in the MDP.

Bellman’s equations can be used to efficiently solve for V™. Specifically,
in a finite-state MDP (|S| < o), we can write down one such equation for
V7™ (s) for every state s. This gives us a set of |S| linear equations in |S]
variables (the unknown V7 (s)’s, one for each state), which can be efficiently
solved for the V™ (s)’s.

!This notation in which we condition on 7 isn’t technically correct because 7 isn’t a
random variable, but this is quite standard in the literature.

We also define the optimal value function according to
V*(s) = max V" (s). (1)

In other words, this is the best possible expected sum of discounted rewards
that can be attained using any policy. There is also a version of Bellman’s
equations for the optimal value function:

* / * /
V*(s) = R(s) + réleaﬁgspm(s V(). (2)
The first term above is the immediate reward as before. The second term
is the maximum over all actions a of the expected future sum of discounted
rewards we’ll get upon after action a. You should make sure you understand
this equation and see why it makes sense.
We also define a policy 7* : S — A as follows:

* — / * ()
(s) = arg max Z P (sHV(s). (3)
s’'eS
Note that 7*(s) gives the action a that attains the maximum in the “max”
in Equation (2).
It is a fact that for every state s and every policy 7, we have

Vi(s) = V™ (s) 2 V7(s).

The first equality says that the V™", the value function for 7*, is equal to the
optimal value function V* for every state s. Further, the inequality above
says that m*’s value is at least a large as the value of any other other policy.
In other words, 7* as defined in Equation (3) is the optimal policy.

Note that 7* has the interesting property that it is the optimal policy
for all states s. Specifically, it is not the case that if we were starting in
some state s then there’d be some optimal policy for that state, and if we
were starting in some other state s’ then there’d be some other policy that’s
optimal policy for s’. Specifically, the same policy 7* attains the maximum
in Equation (1) for all states s. This means that we can use the same policy
7* no matter what the initial state of our MDP is.

2 Value iteration and policy iteration

We now describe two efficient algorithms for solving finite-state MDPs. For
now, we will consider only MDPs with finite state and action spaces (|S| <
00, |A| < 00).

The first algorithm, value iteration, is as follows:

1. For each state s, initialize V' (s) := 0.
2. Repeat until convergence {
For every state, update V(s) := R(s) + maxaea v Y, Psa(s)V ().

}

This algorithm can be thought of as repeatedly trying to update the esti-
mated value function using Bellman Equations (2).

There are two possible ways of performing the updates in the inner loop of
the algorithm. In the first, we can first compute the new values for V (s) for
every state s, and then overwrite all the old values with the new values. This
is called a synchronous update. In this case, the algorithm can be viewed as
implementing a “Bellman backup operator” that takes a current estimate of
the value function, and maps it to a new estimate. (See homework problem
for details.) Alternatively, we can also perform asynchronous updates.
Here, we would loop over the states (in some order), updating the values one
at a time.

Under either synchronous or asynchronous updates, it can be shown that
value iteration will cause V' to converge to V*. Having found V*, we can
then use Equation (3) to find the optimal policy.

Apart from value iteration, there is a second standard algorithm for find-
ing an optimal policy for an MDP. The policy iteration algorithm proceeds
as follows:

1. Initialize 7 randomly.
2. Repeat until convergence {

(a) Let V:=VT.
(b) For each state s, let m(s) := argmax,ea Y Psa(s)V ().

}

Thus, the inner-loop repeatedly computes the value function for the current
policy, and then updates the policy using the current value function. (The
policy 7 found in step (b) is also called the policy that is greedy with re-
spect to V.) Note that step (a) can be done via solving Bellman’s equations
as described earlier, which in the case of a fixed policy, is just a set of |S]
linear equations in |S| variables.

After at most a finite number of iterations of this algorithm, V' will con-
verge to V*, and 7 will converge to 7*.

Both value iteration and policy iteration are standard algorithms for solv-
ing MDPs, and there isn’t currently universal agreement over which algo-
rithm is better. For small MDPs, policy iteration is often very fast and
converges with very few iterations. However, for MDPs with large state
spaces, solving for V™ explicitly would involve solving a large system of lin-
ear equations, and could be difficult. In these problems, value iteration may
be preferred. For this reason, in practice value iteration seems to be used
more often than policy iteration.

3 Learning a model for an MDP

So far, we have discussed MDPs and algorithms for MDPs assuming that the
state transition probabilities and rewards are known. In many realistic prob-
lems, we are not given state transition probabilities and rewards explicitly,
but must instead estimate them from data. (Usually, S, A and v are known.)

For example, suppose that, for the inverted pendulum problem (see prob-
lem set 4), we had a number of trials in the MDP, that proceeded as follows:
aw’ o oa’ @’ g«

1 2
SO _)81 _)82 _)83 —_— ...

2) @ @) @)
%o (2) &1 (2) %2 (2) 23
55 —= 8] — 8y — 83 — ...

Here, sz(j) is the state we were at time 4 of trial 7, and agj) is the cor-

responding action that was taken from that state. In practice, each of the
trials above might be run until the MDP terminates (such as if the pole falls
over in the inverted pendulum problem), or it might be run for some large
but finite number of timesteps.

Given this “experience” in the MDP consisting of a number of trials,
we can then easily derive the maximum likelihood estimates for the state
transition probabilities:

_ Ftimes took we action a in state s and got to s’

Pe(s) = (4)

#times we took action a in state s

Or, if the ratio above is “0/0”—corresponding to the case of never having
taken action a in state s before—the we might simply estimate Ps,(s’) to be
1/|S]. (I.e., estimate Py, to be the uniform distribution over all states.)
Note that, if we gain more experience (observe more trials) in the MDP,
there is an efficient way to update our estimated state transition probabilities

using the new experience. Specifically, if we keep around the counts for both
the numerator and denominator terms of (4), then as we observe more trials,
we can simply keep accumulating those counts. Computing the ratio of these
counts then given our estimate of Pi,.

Using a similar procedure, if R is unknown, we can also pick our estimate
of the expected immediate reward R(s) in state s to be the average reward
observed in state s.

Having learned a model for the MDP, we can then use either value it-
eration or policy iteration to solve the MDP using the estimated transition
probabilities and rewards. For example, putting together model learning and
value iteration, here is one possible algorithm for learning in an MDP with
unknown state transition probabilities:

1. Initialize 7 randomly.
2. Repeat {

(a) Execute 7 in the MDP for some number of trials.

(b) Using the accumulated experience in the MDP, update our esti-
mates for P, (and R, if applicable).

(¢) Apply value iteration with the estimated state transition probabil-
ities and rewards to get a new estimated value function V.

(d) Update 7 to be the greedy policy with respect to V.

}

We note that, for this particular algorithm, there is one simple optimiza-
tion that can make it run much more quickly. Specifically, in the inner loop
of the algorithm where we apply value iteration, if instead of initializing value
iteration with V' = 0, we initialize it with the solution found during the pre-
vious iteration of our algorithm, then that will provide value iteration with
a much better initial starting point and make it converge more quickly.

