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6.1 The PAC Model - Review

In the PAC Model we assume there exists a distribution D on the examples that the learner
receives; i.e. when choosing an instance from the sample it is drawn according to D. We
assume that D is:

1. Fixed throughout the learning process.

2. Unknown to the learner.

3. The instances are chosen independently.

The target concept is specified as a computable function ct, thus our instances are of the
form <x, ct(x)>. Our goal is to find a function h which approximates ct with respect to D,
in the following sense. Let

error(h) = ProbD[ct(x) 6= h(x)].

We would like to ensure that error(h) is below a certain threshold ǫ,which is given as a
parameter to the algorithm. This parameter is a measure of the accuracy of the learning
process.

As a measure of our confidence in the outcome of the learning process, we add another
parameter δ. We require that the following hold:

Prob[error(h) < ǫ] ≥ 1 − δ.

The PAC algorithm has two inputs: the accuracy parameter ǫ and the confidence param-
eter δ. It also has access to instances using EX(D, ct), which generates a random example,
using the distribution D, and labelled by ct.

We say that an algorithm A learns a family of concepts C if for any ct ∈ C and any

distribution D on the instances in C, A outputs a function h, such that the probability that
error(h) < ǫ is at least 1 − δ.

1Based on scribe written by Vladimir Goldner
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A PAC algorithm is efficient if its running time is polynomial in 1

ǫ
, ln 1

δ
, the input size

and the size of the target concept ct.

6.2 THE VC-DIMENSION

6.2.1 Motivation

Let us consider the following question: How many random examples does a learning algo-
rithm need to draw before it has sufficient information to learn an unknown target concept
chosen from the concept class C? For the case of a finite concept class C, we proved a lower
bound on the number of examples required for PAC learning:

m ≥
1

ǫ
ln

|C|

δ

We would like to be able to handle infinite concept classes, perhaps even not enumerable.
We saw already some examples:

• concept of axes-parallel rectangles,

• concept of Cθ for θ ∈ [0, 1]: Cθ(x) = 0 for x < θ and Cθ(x) = 1 for x ≥ θ.

Here we saw that the number of examples sufficient for PAC learning is 1

ǫ
ln 1

δ
(between the

leftist ’1’ and the rightist ’0’ the weight will be at most ǫ by probability 1 − δ).
Frequently, there is a significant structure in C, and we like to formally quantify how this
structure helps our learning algorithms. We will introduce the definition of VC–dimension
and show the connection between the VC–dimension and learning. The concept of the VC–
dimension, will provide us a substitute to ln |C|, for infinite concept classes.

6.2.2 Definitions

We start with few definitions. Assume C is a concept class defined over instance space X.
let S ⊆ X.

Definition For each class C over X and for any S ⊆ X:

ΠC(S) = {c ∩ S|c ∈ C}

Equivalently, if S = {x1, . . . , xm} then we can think of ΠC(S) as the set of vectors ΠC(S) ⊆ {0, 1}m

defined by ΠC(S) = {< c(x1), . . . , c(xm) >: c ∈ C}.

This is the projection of the concept class C on the input S, namely ΠC(S) is all the
possible functions that C creates on S. We are interested in how many different functions
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C creates on S. In effect we are reducing the concept class C into the concept class C|S,
where S = {x1, ..., xm}. The concept class C|S is finite with at most 2m different concepts,
thus |ΠC(S)| ≤ 2m.

Definition A concept class C shatters S if 2|S| = |ΠC(S)|.
In other words a class shatters a set of inputs if every possible function on S can be

represented by some c ∈ C.

Now we are ready to define the notion of VC–dimension.

Definition VCdim (Vapnik-Chervonenkis dimension) of C is the maximum size of a set
shattered by C:

V Cdim(C) = max{d : ∃S : |S| = d and ΠC(S) = {0, 1}d}.

V Cdim(C) = ∞, if such a maximum as above doesn’t exist, i.e. there exist sets as large as
we want which are shattered by C.

6.2.3 Some examples of geometric concepts

• C1 - the concepts are cα for α ∈ [0, 1]:

++++– – – – –

0 1

α

Note that although the number of concepts is uncountable the concept class C1 is
learnable. The reason for C1’s learnability is the structure of the concept class, as in
fact VCdim(C)=1:

Let S = {1

2
}, we will show 2 concepts, such that |ΠC({1

2
})| = 2.

c 3

4

⇒
1

2
is ′ −′ (negative example)

c 1

4

⇒
1

2
is ′ +′ (positive example)
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thus the VC–dimension is at least 1.

+ –

x y

We will now show that the dimension is less than 2. For any two points, x, y (y > x),
the assignment that lets x be ’+’ and y be ’−’, is impossible. Thus, V Cdim(C1) < 2,
and we derive V Cdim(C1) = 1.

• C2 - straight line which divides the plane. All the positive points are above or on the
line, and all the negative points are below the line.
Formally:

C2 = {cw|w = (α1, α2, θ)},

where

cw(x1, x2) = 1 ⇐⇒ α1x1 + α2x2 ≥ θ (x1, x2) ∈ R2.

Note that here too, the number of “legal” assignments is distinctively smaller than
those possible in principle, implying a highly structured concept space. If we take
any 3 points not on the same line, all 3 assignments are possible. This shows that
V Cdim(C2) ≥ 3. However, for any 4 points in the plane there are two different possible
structures, for each we show an impossible assignment, and thus the VC–dimension is
less than 4.
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1.

2.

X2

X3

X4

X1

X1

X2

X3

X4

In case 1 the four points are on the convex-hull of the four points. In this case, one
can easily verify that the assignment:

< x1,− >,< x2, + >,< x3,− >,< x4, + >

is impossible.
In case 2 there is a point inside the convex-hull of the other three points. In this case,
the assignment:

< x1, + >,< x2, + >,< x3, + >,< x4,− >

is impossible.
Thus, V Cdim(C2) = 3.

• C3 - Parallel Rectangles. Rectangles for which the edges are parallel to the axis.
Positive examples are points inside the rectangle, and negative examples are points
outside the rectangle.
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It is enough to have at least one setting for which all the classification are possible, in
order to have V Cdim(C3) ≥ 4, even if there is a setting for which there is a classification
which is not possible.

We can show that the dimension is at least 4 :

It is obvious from the figure above that four points can be shattered, by choosing the
appropriate rectangle.

Example to a setting of four points and a classification which is not possible:

However, for any 5 points in the plane, and for every structure we can draw a rectangle
by 4 points and the fifth is inside, so if we take an assignment which assign the external
points to be ’+’ and the internal point to be ’-’ we get an impossible assignment (see
the following figure).
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And thus we get V Cdim(C3) = 4.

• C4 - A finite union of intervals.

For any set of points we could cover the positive points by choosing the intervals small
enough.

Thus, V Cdim(C4) = ∞.

• C5 - Parity.
X = {0, 1}n. The concept class is

χS(x) = ⊕i∈Sxi

where S ⊂ {1, ..., n}. The lower bound: V Cdim(C5) ≥ n
Let ei = 0...010...0 unit vectors, where ’1’ appears in the i-th place. There are n such
vectors. For any bits assignment b1, ..., bn for the vectors e1, ..., en we choose the set

S = {i : bi = 1}

We get

χS(ej) =

{

1 j ∈ S
0 j /∈ S

Thus, we conclude V Cdim(C5) ≥ n.

The upper bound: V Cdim(C5) ≤ n
We present two simple proofs for the upper bound:
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1. There are 2n parity functions. Thus V Cdim(C5) ≤ log22
n = n.

2. Given n+ 1 vectors, there is a vector that is the linear combination of the others:

ej = e1 ⊕ ... ⊕ ek

Therefore, the values of e1, ..., ek fix the value of ej. So the assignment

b1 = 0, ..., bk = 0, bj = 1

is impossible.

• C6 - OR of n literals.
X = {0, 1}n, S ⊂ {1, ..., n}, ; S̄ ⊂ {1, ..., n}. The concept class is:

CS(x) = (∪i∈Sxi) ∪ (∪j∈S̄x̄j)

The lower bound: V Cdim(C6) ≥ n
Let ei = 0...010...0 where ’1’ appears in the i-th place. There are n such vectors. For
any bits assignment b1, ..., bn for the vectors e1, ..., en we choose the sets

S = {i : bi = 1}

so the target concept is
CS(x) = ∪i∈Sxi

Thus, we conclude V Cdim(C6) ≥ n.

Claim 6.1 The upper bound: V Cdim(C6) ≤ n

Proof: Suppose we have n + 1 vectors.
In one of the previous lectures we saw algorithm ELIM that maintains a literals list L,
that is initialized to the set of all literals, and each assignment of 0 to vector removes
all positive literals of the vector from L.
Let assign 0 to the first vector. It removes n literals from L. If some next vector does
not remove any literal from L, then all it’s literals was already removed, and then we
can’t assign 1 to such vector, so there is an infeasible assignment.
Else each next vector removes at least one literal.
We will show that there exists an order of vectors, such that the second vector can
remove at least two literals.

Lemma 6.2 Given set of 3 (or more) vectors, there exist two of them such that they
differ by at least two bits.
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Proof: We can observe that if two vectors differ by only one bit, then the XOR’s of
bits of each of them are different. Then if two different vectors have the same XOR,
then they are different by more than one bit. Given 3 (or more) vectors, there exist
two of them with same XOR. The lemma is follows. ✷

Let a, b two such vectors. We can perform two first ELIM stages on this two vectors.
So, b will remove at least two literals from L (in addition to n literals, that was removed
by a), because b has two bits, that differ from the appropriate bits of a.
All the next vectors remove from L at least one literal. Then before the assignment of
the last (n + 1) vector, the list L is empty. So we can’t assign 1 to it. Thus,

V Cdim(C6) ≤ n

✷

• C7 - Convex polygons.
Points inside the convex polygon are positive and outside are negative.
Again, we have no bound on the number of edges, and we want to show V Cdim(C7) =
∞; i.e. for every d there is a set whose size is d that can be shattered by convex
polygons.

Let S be a set of d points on the circle perimeter. We show that for every labelling of
the points in S, there exists ct ∈ C that is consistent with the labelling. The concept
ct connects the + points. The polygon includes all the positive examples and none of
the negative ones. Thus, for any d points on the perimeter of the unit circle, all the 2d

classifications are possible. Therefore, V Cdim(C) = ∞.

+ +

+

-

--

It is clear that for any d one can choose d points located on a circle for which any 2d

assignments exist. In the figure above d = 6.

• C8 - Hyper Plane.
Let lw be a hyper plane which devides Rn into 2 sets of points:
l+w - points above or on the hyper plane lw.
l−w - points below the hyper plane lw.
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Formally; for w = (α1, ..., αn, θ) ∈ Rn+1

lw = {y ∈ Rn|
n

∑

i=0

αiyi = θ}

We define the classification by hw as,

hw(y) = 1 ⇐⇒
n

∑

i=0

αiyi ≥ θ

We will prove the following bound.

Theorem 6.3

V Cdim(C8) = n + 1

First we show that there are at least n + 1 points that can be shattered.

Claim 6.4

V Cdim(C8) ≥ n + 1

Proof: Let E = {
−→
0 ,−→e1 , ...,−→en} of size n + 1 in order to show that C8 shatters it.

Any classification of the vectors of E can be viewed as a subset S ⊂ E of positive
classification and each vector in E \ S is classified as negative. For each S we define a
hyper plane Ws,

Ws = (αs
1, ..., α

s
n, θs),

where,

θs =

{

−1

2
0 ∈ S

1

2
otherwise

and,

αs
i =

{

1 ei ∈ S
−1 otherwise.

Ws is the hyper plane which classifies every vector in S as ′+′ and vectors in E \ S as
′−′. Since
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hws
(ei) = 1 ⇐⇒ αs

i ≥ θs ⇐⇒ ei ∈ S

hws
(0) = 1 ⇐⇒ 0 > θs ⇐⇒ 0 ∈ S

✷

We showed that there exists a set of size n+1 which C8 shatters, hence V Cdim(C8) ≥
n + 1.
We will now show that V Cdim(C8) = n + 1.
Before further examination can be done, some general definitions and Radon theorem
will be shown.
Definition A subset A is convex if ∀x, y ∈ A the line connecting x to y is in A.

Formally:
∀λ such as 0 < λ < 1 λx + (1 − λ)y ∈ A

Definition The Convex Hull of S is the smallest convex set which contains all the
points of S. We denote it as conv(S).

We are now ready to state (Radon Theorem).

Theorem 6.5 (RADON Theorem) Let E be a set of d + 2 points in Rd. There is a
non empty subset S of E such that

conv(S) ∩ conv(E \ S) 6= φ

Proof: Let:
E = {x0, ..., xd+1}

where xi ∈ Rd

Since E contains d + 2 vectors, we can solve for the following d + 1 equations and find
(α0, ..., αd+1) 6=

−→
0 , such that,

d+1
∑

i=0

αixi = 0,

and
d+1
∑

i=0

αi = 0.

Thus, we have a set of d + 1 linear equations over d + 2 variables {αi}
d+1
i=0 . There exist

a non-zero vector < α0, ..., αd+1 > satisfying the above equations, because every d + 1
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points (vectors) are linear dependent.
Assume that α0, ..., αp are positive, and αp+1, ..., αd+1 are negative.
We define:

– α =
∑p

i=0 αi > 0

– βi = αi

α
> 0 0 ≤ i ≤ p

– γi = −αi

α
> 0 p + 1 ≤ i ≤ d + 1

We have that,
d+1
∑

i=0

αixi = 0 ⇒
p

∑

i=0

βixi =
d+1
∑

i=p+1

γixi

Notice that
∑p

i=0 βi =
∑d+1

i=p+1 γi = 1.
By definition of convexity,

p
∑

i=0

βixi ∈ conv(x0, ..., xp),

and
d+1
∑

i=p+1

γixi ∈ conv(xp+1, ..., xd+1).

Hence, there is a point that belongs to the intersection of

conv(x0, ..., xp) ∩ conv(x0, ..., xp) 6= φ

✷

Claim 6.6

V Cdim(C8) < n + 2

Proof: Proof by contradiction. Assume E = {x1, ..., xn+2} could be shattered. By
RADON theorem there is a subset S of E such that conv(S) ∩ conv(E \ S) 6= φ.
Assume we have hyper plane Hw which classifies S as ’+’ and E \ S as ’-’, and since
hyper planes are convex,

S ⊂ l+w ⇒ conv(S) ⊂ l+w ,

and
E \ S ⊂ l−w ⇒ conv(E \ S) ⊂ l−w .
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Combining the two, we have that,

conv(S) ∩ conv(E \ S) ⊂ l+w ∩ l−w = φ,

which is a contradiction to the choice of S. Therefore such a hyper plane Hw exists. ✷

Combining Claim 5.3 and Claim 5.5, we can now conclude that V Cdim(C8) = n + 1

6.3 Bibliographic Notes

The presentation of the material of this lecture follows closely [1].

1. An introduction to Computational Learning Theory.


