
Common problems with k-means clustering

1. The algorithm attempts to optimize global error function J
but instead converges to a local minimum



Common problems with k-means clustering

2. How to determine number of clusters?

 can try to compare

○ theoretical error curve (simulation on a 
dataset with no cluster structure)

○ error curve on the real dataset

the error “drop” when increasing number of clusters 
should be larger than that on the theoretical curve until 
the “correct” number of clusters is reached

(k=2 or k=4 are good candidates here)
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Common problems with k-means clustering

3. Features are categorical variables (not real numbers)

Examples:

● clustering of newspaper articles
● colors



Algorithm k-medians

Need to define a distance measure d(x,z):

● d(x,z)=0 if x=z
● d(x,z)=d(z,x)  (symmetry)
● typically weighted sum of distance measures for individual features

Examples:

● quantitative features: Euclidean distance
● ordinal features: replace with real values from [0,1], treat as quantitative features
● categorical features: table

Differences from k-means algorithm:

● cannot easily define centers as new points in the space 
(what is the average of “chicken” and “pig”?)

● instead use existing points from the data set to characterize clusters
● no guarantee of convergence



1. [Initialization] Randomly choose k 
centers 
out of all input vectors 

2. Repeat until convergence:
a. Assign each input vector to its closest 

center:

b. Choose new centers:

Algorithm k-medians

1. [Initialization] Randomly choose k 
median points 
out of all input vectors 

2. Repeat until convergence:
a. Assign each input vector to its closest 

median point:

b. Choose new median points:

Algorithm k-means



Hierarchical clustering

not a single structure of clusters, instead a nested data structure:



Hierarchical clustering algorithms

Agglomerative clustering (bottom up)

● start with each data point being in a 
separate cluster

● in each step, merge two clusters A, B 
that are “closest” to each other based on:

○ single linkage: the distance of the two 
closest points from A and B

○ group average: distance of center of A to 
center of B

○ complete linkage: average or sum of 
all-to-all distances between points of 
A and B

Divisive clustering (top to bottom)

● star with all points being a single cluster
● in each step, choose one cluster and 

divide it into two clusters
for example:

○ choose a particular cluster G
○ choose its “most distant” point and move it 

to a new cluster H
○ iterate through all points x in H and if

move x to cluster H
○ continue until no more points can be 

moved from G to H


