
Announcements 
● Next week: 

○ Tuesday self study 
○ Wednesday tutorials 

● Week after that: 
○ Tuesday lecture via hangout 
○ Wednesday tutorials 

● There are homeworks on the webpage 
○ Warning: template code is in python2, if this thing is a problem let me know 

Regularization 
 

● We have seen: 
○ Pick the right polynomial for regression (x vs vs )x2 x3  
○ Via holdout testing or k-fold cross validation 

● Another idea: 
○ Penalize huge weights 

○ Instead , i.e. in regression in (f (x ), y )m θ ∑
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○ Do - L2 regularization or Ridge regressionin (f (x ), y ) Cm θ ∑
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○ Or - L1 regularization or Lasso regressionin (f (x ), y ) Cm θ ∑
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○ L1 regularization leads to more zero weights -> sparse models 
■ Useful when looking for relevant attributes 

○ Ridge regression can be analytically solved  
○ Lasso penalty is tricky to implement rather use some package (e.g. scikit-learn) 

● How to choose C 
○ Via holdout testing or k-fold cross validation 

 

Binary classification 
 

● 0/1 classification, e.g. spam / non spam, click / not click, safe / unsafe content, … 
● Conversion to regression is not ideal 



 
● Let’s change predictions. Force it into 0-1 range. Interpretation of prediction: 

○ Probability of target being 1 (e.g. probability of spam) 
○ Do regression and then process result z via sigmoid: (z) σ = 1

1 + e−z  
■ I.e our output for two attributes is: 

● (θ x x )σ 0 + θ1 1 + θ2 2  
● How to fit. 

○ Maximalize probability of data 
■ If data point has target 1, I want to maximize probability 
■ If data point had target 0, I want to minimize the probability 
■ - my prediction; pi (1 p )piyi −  i

1−yi  
○ Goal to optimize is product of all datapoints 

■ (1 p )∏
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■ Where (θ.x)pi = σ  
○ In practice we want sum (easier to differentiate). And also minimize something 

(just to be consistent with other stuff). Just logarithm and negate and goal would 
be to minimize 

■ (p (1 p ) ) − 1 ) (1 )− ∑
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■ This is also called cross-entropy. 
● More math: 

○ Model: =[y |x ]P i i (θ.x)σ  



○ We optimize likelihood of y-s 
● What if we use L2 penalty (  instead of log? Think about gradient.)pi − yi

2  
● Checkout how to calculate gradient for parameters. 

○ y )x∂J
∂θj

= ( i − pi j  

● This is also called Logistic regression 
 

Softmax classification 
● Generalization for multiple target categories (e.g. predict what is in the picture 

dog/cat/plane/house/…) 
● Categories are fixed beforehand 
● Predict probability for each category 

○ E.g. [y og|x ]P i = d i  
● One parameter for each input-output combination (before only one parameter for each 

input). 
● We should process outputs: 

○ Each output is in 0-1 range 
○ Sum of outputs should be one 

● Via something called softmax: 
○ (z , z , ..., z )σ 1  2   j i = ezi

∑
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● Model: 
○ Input: x ( , x x )x1  2, ..., m  
○ k categories 
○ Parameters - matrix of size m x k: θij Θ  
○ Intermediate output 

■ , j-th element: Θx θzj = ∑
 

i
xi ij  

○ Output probabilities 
■  (z)p = σ  

● Loss: 
○ Negative log-likelihood of the data: 

■ (p )− ∑
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● Also called maximum-entropy classification 

Probabilistic interpretation of regression 
● Let’s say that our output is x x  noiseθ0 + θ1 1 + θ2 2 +   
● What if noise has a normal distribution with mean 0 and variance V 
● Or in other words: y is from normal distribution with mean and variance Vx xθ0 + θ1 1 + θ2 2  



● Let’s maximize the probability of the data (intentionally ignoring some terms to simplify 
the presentation): 

○ ∏
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○ Now do the log and negation (to get sum and minimization) 

○ =− y x x )− ∑
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○ Which is linear regression formulation! 
 


