
Announcements
● Next week:

○ Tuesday self study
○ Wednesday tutorials

● Week after that:
○ Tuesday lecture via hangout
○ Wednesday tutorials

● There are homeworks on the webpage
○ Warning: template code is in python2, if this thing is a problem let me know

Regularization

● We have seen:
○ Pick the right polynomial for regression (x vs vs)x2 x3
○ Via holdout testing or k-fold cross validation

● Another idea:
○ Penalize huge weights

○ Instead , i.e. in regression in (f (x), y)m θ ∑

i
L i i in (x .θ y)m θ ∑

i
i − i

2

○ Do - L2 regularization or Ridge regressionin (f (x), y) Cm θ ∑

i
L i i + ∑

i
θi

2

○ Or - L1 regularization or Lasso regressionin (f (x), y) Cm θ ∑

i
L i i + ∑

i
|θ |i

○ L1 regularization leads to more zero weights -> sparse models
■ Useful when looking for relevant attributes

○ Ridge regression can be analytically solved
○ Lasso penalty is tricky to implement rather use some package (e.g. scikit-learn)

● How to choose C
○ Via holdout testing or k-fold cross validation

Binary classification

● 0/1 classification, e.g. spam / non spam, click / not click, safe / unsafe content, …
● Conversion to regression is not ideal

● Let’s change predictions. Force it into 0-1 range. Interpretation of prediction:

○ Probability of target being 1 (e.g. probability of spam)
○ Do regression and then process result z via sigmoid: (z) σ = 1

1 + e−z
■ I.e our output for two attributes is:

● (θ x x)σ 0 + θ1 1 + θ2 2
● How to fit.

○ Maximalize probability of data
■ If data point has target 1, I want to maximize probability
■ If data point had target 0, I want to minimize the probability
■ - my prediction; pi (1 p)piyi − i

1−yi
○ Goal to optimize is product of all datapoints

■ (1 p)∏

i
piyi − i

1−yi

■ Where (θ.x)pi = σ
○ In practice we want sum (easier to differentiate). And also minimize something

(just to be consistent with other stuff). Just logarithm and negate and goal would
be to minimize

■ (p (1 p)) − 1) (1)− ∑

i
log i

yi − i
1−yi = ∑

i
yi log pi + (− yi log − pi

■ This is also called cross-entropy.
● More math:

○ Model: =[y |x]P i i (θ.x)σ

○ We optimize likelihood of y-s
● What if we use L2 penalty (instead of log? Think about gradient.)pi − yi

2
● Checkout how to calculate gradient for parameters.

○ y)x∂J
∂θj

= (i − pi j

● This is also called Logistic regression

Softmax classification
● Generalization for multiple target categories (e.g. predict what is in the picture

dog/cat/plane/house/…)
● Categories are fixed beforehand
● Predict probability for each category

○ E.g. [y og|x]P i = d i
● One parameter for each input-output combination (before only one parameter for each

input).
● We should process outputs:

○ Each output is in 0-1 range
○ Sum of outputs should be one

● Via something called softmax:
○ (z , z , ..., z)σ 1 2 j i = ezi

∑

k
ezk

● Model:
○ Input: x (, x x)x1 2, ..., m
○ k categories
○ Parameters - matrix of size m x k: θij Θ
○ Intermediate output

■ , j-th element: Θx θzj = ∑

i
xi ij

○ Output probabilities
■ (z)p = σ

● Loss:
○ Negative log-likelihood of the data:

■ (p)− ∑

i
log iyi

● Also called maximum-entropy classification

Probabilistic interpretation of regression
● Let’s say that our output is x x noiseθ0 + θ1 1 + θ2 2 +
● What if noise has a normal distribution with mean 0 and variance V
● Or in other words: y is from normal distribution with mean and variance Vx xθ0 + θ1 1 + θ2 2

● Let’s maximize the probability of the data (intentionally ignoring some terms to simplify
the presentation):

○ ∏

i
e−(y −θ +θ x +θ x)i 0 1 1 2 2

2

○ Now do the log and negation (to get sum and minimization)

○ =− y x x)− ∑

i
(i − θ0 + θ1 1 + θ2 2

2 (y x x)∑

i
i − θ0 + θ1 1 + θ2 2

2

○ Which is linear regression formulation!

