Final exam

Do not forget to hand in your projects by January 15 or 2 days before the
final exam, whichever comes first.

You can bring a cheat sheet (2 sheets of A4, both sides)
+ theoretical computer science cheat sheet

Written final exam: model exam will be available next week

40% of you total grade, you need to get at least 50% of points on the exam

regular exam dates: 16.1.2020 (Thursday) 9:00-12:00
22.1.2020(Wednesday) 9:00-12:00

signh up in AIS2 latest 2 days before the exam

Dates for repeat exams will be scheduled as needed.

To finalize your grade, we may ask you to come in to discuss and
demonstrate your project.
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Course Summary

Supervised learning

- regression, classification
Unsupervised learning

- clustering, dimensionality reduction
Machine learning theory

- bias and variance, PAC learning, VC dimension
On-line learning and reinforcement learning



Regression

Linear regression

Solving normal
equations in O(n"3)

Gradient descent

Expansion of
underlying vector
space through non-
linear transformation
=> generalized linear
regression



Classification

Linear classification Using non-linear expansions




Neural Networks

hidden units « Each unit (“neuron”) -
: linear combination
followed by non-linear
73 transformation

™ . Gradient descent (so
called “back
propagation”)

U1




Support Vector Machines

e Linear classifier

y= -1 maximizing margin
— 0 .
"7+ Quadratic_
I orogramming, dual
. programs
« Kernel trick:
e expansion into infinite
dimensional vector
space

K(X,y) — dot product In
the expanded space
(Intuition: similarity
measure)



Support Vector Machines




Decision Trees
and Random Forests
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ID3 algorithm for building
trees (based on entropy
measure)

Stopping criteria
Bagging — ensemble of
complex classifiers
Boosting — ensemble of
simple classifiers



Prediction Error

Bias and Variance

High Bias Low Bias
Low Variance High Variance
———————— -

Test Sample

s

Training Sample

Low _ High
Model Complexity



PAC Learning
(Probably Approximately Correct)

« How many training data points do we need to
train a classifier?

e For large enough t,
training and testing error
with high probability (>1-6)
will not differ much (<g)

« PAC learning theory provides bounds ont for
specific H, ¢ and &



PAC learning - bounds

« Finite hypothesis space:
t=0O(log |H|)

 Infinite hypothesis space:

- Vapnik-Cervonenkis (VC) dimension d
(t grow linearly with d)
Neural networks: d=©(W.log n)
(W — # weights, n — # sigmoids )

- SVM: t=0(1/r"2 log"2 1/r)
(r — margin size)



Clustering

« K-means and k-

medoids clustering
e |terative methods to

R find a good solution
e o -
oA « Beware: slow!




Hierarchical clustering

Average Linkage

Complete Linkage

Single Linkage
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Dimensionality reduction

> « Principal Component
=~ Analysis (PCA)

« Kernel trick (again)

« Multi-dimensional
scaling (i.e. t-SNE)




Mathematical Methods

Matrix algebra, solving systems of linear equations
Eigenvectors and eigenvalues

Partial derivatives, Lagrange multipliers

Numeral mathematics: Gradient descent

Optimization: linear and quadratic programming, duality
Analytical geometry

Vector spaces



(Un)related Classes

Spring 2020:

e 2-INF-188: Current Topics in Machine Learning (Boza)
e 2-AIN-132: Neural Networks (Farkas)

e 2-AIN-235: Al Algorithms in Robotics (Petrovic)

e (2021) 2-AIN-288: Speech Recognition

Fall 2020:

« 1-BIN-301: Methods in Bioinformatics (Vinar, Brejova)

o 2-AIN-268: Deep Learning in Computer Vision
(Cernekova)

e 2-PMS-129: Stochastic Optimization Methods (Harman)
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