A PAC-Bayesian Margin Bound for Linear Classifiers: Why SVMs work

Ralf Herbrich

Statistics Research Group Computer Science Department Technical University of Berlin ralfh@cs.tu-berlin.de

Thore Graepel

Statistics Research Group Computer Science Department Technical University of Berlin guru@cs.tu-berlin.de

Abstract

We present a bound on the generalisation error of linear classifiers in terms of a refined margin quantity on the training set. The result is obtained in a PAC-Bayesian framework and is based on geometrical arguments in the space of linear classifiers. The new bound constitutes an exponential improvement of the so far tightest margin bound by Shawe-Taylor et al. [8] and scales logarithmically in the inverse margin. Even in the case of less training examples than input dimensions sufficiently large margins lead to non-trivial bound values and — for maximum margins — to a vanishing complexity term. Furthermore, the classical margin is too coarse a measure for the essential quantity that controls the generalisation error: the volume ratio between the whole hypothesis space and the subset of consistent hypotheses. The practical relevance of the result lies in the fact that the well-known support vector machine is optimal w.r.t. the new bound only if the feature vectors are all of the same length. As a consequence we recommend to use SVMs on normalised feature vectors only — a recommendation that is well supported by our numerical experiments on two benchmark data sets.

1 Introduction

Linear classifiers are exceedingly popular in the machine learning community due to their straight-forward applicability and high flexibility which has recently been boosted by the so-called kernel methods [13]. A natural and popular framework for the theoretical analysis of classifiers is the PAC (probably approximately correct) framework [11] which is closely related to Vapnik's work on the generalisation error [12]. For binary classifiers it turned out that the growth function is an appropriate measure of "complexity" and can tightly be upper bounded by the VC (Vapnik-Chervonenkis) dimension [14]. Later, structural risk minimisation [12] was suggested for directly minimising the VC dimension based on a training set and an a priori structuring of the hypothesis space.

In practice, e.g. in the case of linear classifiers, often a thresholded real-valued func-

tion is used for classification. In 1993, Kearns [4] demonstrated that considerably tighter bounds can be obtained by considering a scale-sensitive complexity measure known as the *fat shattering dimension*. Further results [1] provided bounds on the Growth function similar to those proved by Vapnik and others [14, 6]. The popularity of the theory was boosted by the invention of the *support vector machine* (SVM) [13] which aims at directly minimising the complexity as suggested by theory.

Until recently, however, the success of the SVM remained somewhat obscure because in PAC/VC theory the structuring of the hypothesis space must be *independent* of the training data — in contrast to the data-dependence of the canonical hyperplane. As a consequence Shawe-Taylor et.al. [8] developed the *luckiness framework*, where luckiness refers to a complexity measure that is a function of both hypothesis and training sample.

Recently, David McAllester presented some PAC-Bayesian theorems [5] that bound the generalisation error of Bayesian classifiers *independently* of the correctness of the prior and regardless of the underlying data distribution — thus fulfilling the basic desiderata of PAC theory. In [3] McAllester's bounds on the Gibbs classifier were extended to the Bayes (optimal) classifier. The PAC-Bayesian framework provides a posteriori bounds and is thus closely related in spirit to the luckiness framework¹.

In this paper we give a tight margin bound for linear classifiers in the PAC-Bayesian framework. The main idea is to identify the generalisation error of the classifier h of interest with that of the Bayes (optimal) classifier of a (point-symmetric) subset Q that is summarised by h. We show that for a uniform prior the normalised margin of h is directly related to the volume of a large subset Q summarised by h. In particular, the result suggests that a learning algorithm for linear classifiers should aim at maximising the normalised margin instead of the classical margin. In Section 2 and 3 we review the basic PAC-Bayesian theorem and show how it can be applied to single classifiers. In Section 4 we give our main result and outline its proof. In Section 5 we discuss the consequences of the new result for the application of SVMs and demonstrate experimentally that in fact a normalisation of the feature vectors leads to considerably superior generalisation performance.

We denote n-tuples by italic bold letters (e.g. $\boldsymbol{x}=(x_1,\ldots,x_n)$), vectors by roman bold letters (e.g. \boldsymbol{x}), random variables by sans serif font (e.g. \boldsymbol{X}) and vector spaces by calligraphic capitalised letters (e.g. $\boldsymbol{\mathcal{X}}$). The symbols $\boldsymbol{\mathsf{P}},\boldsymbol{\mathsf{E}},\boldsymbol{\mathsf{I}}$ and ℓ_2^n denote a probability measure, the expectation of a random variable, the indicator function and the normed space (2-norm) of sequences of length n, respectively.

2 A PAC Margin Bound

We consider learning in the PAC framework. Let \mathcal{X} be the input space, and let $\mathcal{Y} = \{-1, +1\}$. Let a labelled training sample $z = (x, y) \in (\mathcal{X} \times \mathcal{Y})^m = \mathcal{Z}^m$ be drawn iid according to some unknown probability measure $\mathbf{P}_Z = \mathbf{P}_{Y|X}\mathbf{P}_X$. Furthermore for a given hypothesis space $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ we assume the existence of a "true" hypothesis $h^* \in \mathcal{H}$ that labelled the data

$$\mathsf{P}_{\mathsf{Y}|\mathsf{X}=x}\left(y\right) = \mathsf{I}_{y=h^{*}(x)} \,. \tag{1}$$

We consider linear hypotheses

$$\mathcal{H} = \{h_{\mathbf{w}} : x \mapsto \operatorname{sign}\left(\langle \mathbf{w}, \boldsymbol{\phi}\left(x\right)\rangle_{\mathcal{K}}\right) \mid \mathbf{w} \in \mathcal{W}\}, \quad \mathcal{W} = \{\mathbf{w} \in \mathcal{K} \mid \|\mathbf{w}\|_{\mathcal{K}} = 1\}, \quad (2)$$

¹In fact, even Shawe-Taylor et.al. concede that "... a Bayesian might say that luckiness is just a complicated way of encoding a prior. The sole justification for our particular way of encoding is that it allows us to get the PAC like results we sought..." [9, p. 4].

where the mapping $\phi: \mathcal{X} \to \mathcal{K} \subseteq \ell_2^n$ maps² the input data to some feature space \mathcal{K} and $\|\mathbf{w}\|_{\mathcal{K}} = 1$ leads to a one-to-one correspondence of hypotheses $h_{\mathbf{w}}$ to their parameters \mathbf{w} . From the existence of h^* we know that there exists a version space $V(z) \subseteq \mathcal{W}$,

$$V\left(\boldsymbol{z}\right) = \left\{\mathbf{w} \in \mathcal{W} \mid \forall \left(x,y\right) \in \boldsymbol{z} \ : \ h_{\mathbf{w}}\left(x\right) = y \right\} \ .$$

Our analysis aims at bounding the true risk $R[\mathbf{w}]$ of consistent hypotheses $h_{\mathbf{w}}$,

$$R[\mathbf{w}] = \mathbf{P}_{\mathsf{XY}} (h_{\mathbf{w}}(\mathsf{X}) \neq \mathsf{Y}) .$$

Since all classifiers $\mathbf{w} \in V(z)$ are indistinguishable in terms of number of errors committed on the given training set z let us introduce the concept of the $margin \gamma_z(\mathbf{w})$ of a classifier \mathbf{w} , i.e.

$$\gamma_{z}(\mathbf{w}) = \min_{(x_{i}, y_{i}) \in z} \frac{y_{i} \langle \mathbf{w}, \mathbf{x}_{i} \rangle_{\mathcal{K}}}{\|\mathbf{w}\|_{\mathcal{K}}}.$$
 (3)

The following theorem due to Shawe-Taylor et al. [8] bounds the generalisation errors $R[\mathbf{w}]$ of all classifier $\mathbf{w} \in V(z)$ in terms of the margin $\gamma_z(\mathbf{w})$.

Theorem 1 (PAC margin bound). For all probability measures P_Z such that $P_X(\|\phi(X)\|_{\mathcal{K}} \leq \varsigma) = 1$, for any $\delta > 0$ with probability at least $1 - \delta$ over the random draw of the training set z, if we succeed in correctly classifying m samples z with a linear classifier w achieving a positive margin $\gamma_z(w) > \sqrt{32\varsigma^2/m}$ then the generalisation R[w] of w is bounded from above by

$$\frac{2}{m} \left(\kappa \left(\mathbf{w} \right) \log_2 \left(\frac{8em}{\kappa \left(\mathbf{w} \right)} \right) \log_2 \left(32m \right) + \ln \left(\frac{m^2}{\delta} \right) \right), \quad \kappa \left(\mathbf{w} \right) = \left[\left(\frac{8\varsigma}{\gamma_z \left(\mathbf{w} \right)} \right)^2 \right]. \quad (4)$$

As the bound on $R[\mathbf{w}]$ depends linearly on $\gamma_z^{-2}(\mathbf{w})$ we see that Theorem 1 provides a theoretical foundation of all algorithms that aim at maximising $\gamma_z(\mathbf{w})$, e.g. SVMs and Boosting [13, 7].

3 PAC-Bayesian Analysis

We first present a result [5] that bounds the risk of the generalised Gibbs classification strategy $Gibbs_{W(z)}$ by the measure $\mathbf{P_W}(W(z))$ on a consistent subset $W(z) \subseteq V(z)$. This average risk is then related via the Bayes-Gibbs lemma to the risk of the Bayes classification strategy $Bayes_{W(z)}$ on W(z). For a single consistent hypothesis $\mathbf{w} \in \mathcal{W}$ it is then necessary to identify a consistent subset $Q(\mathbf{w})$ such that the Bayes strategy $Bayes_{Q(\mathbf{w})}$ on $Q(\mathbf{w})$ always agrees with \mathbf{w} . Let us define the Gibbs classification strategy $Gibbs_{W(z)}$ w.r.t. the subset $W(z) \subseteq V(z)$ by

$$Gibbs_{W(z)}(x) = h_{\mathbf{w}}(x) , \qquad \mathbf{w} \sim \mathsf{P}_{\mathbf{W}|\mathbf{W} \in W(z)}.$$
 (5)

Then the following theorem [5] holds for the risk of $Gibbs_{W(z)}$.

Theorem 2 (PAC-Bayesian bound for subsets of classifiers). For any measure P_W and any measure P_Z , for any $\delta > 0$ with probability at least $1 - \delta$ over the random draw of the training set z for all subsets $W(z) \subseteq V(z)$ such that $P_W(W(z)) > 0$ the generalisation error of the associated Gibbs classification strategy $Gibbs_{W(z)}$ is bounded from above by

$$R\left[Gibbs_{W(z)}\right] \le \frac{1}{m} \left(\ln \left(\frac{1}{\mathsf{P_{W}}\left(W\left(z\right)\right)} \right) + 2\ln \left(m\right) + \ln \left(\frac{1}{\delta}\right) + 1 \right). \tag{6}$$

²For notational simplicity we sometimes abbreviate $\phi(x)$ by \mathbf{x} which should not be confused with the sample \mathbf{x} of training objects.

Now consider the Bayes classifier $Bayes_{W(z)}$,

$$Bayes_{W(z)}(x) = sign\left(\mathbf{E}_{\mathbf{W}|\mathbf{W}\in W(z)}[h_{\mathbf{W}}(x)]\right)$$
,

where the expectation $\mathsf{E}_{\mathsf{W}|\mathsf{W}\in W(z)}$ is taken over a cut-off posterior given by combining the PAC-likelihood (1) and the prior P_{W} .

Lemma 1 (Bayes-Gibbs Lemma). For any two measures P_W and P_{XY} and any set $W \subseteq W$

$$\mathbf{P}_{\mathsf{XY}} \left(Bayes_{W} \left(\mathsf{X} \right) \neq \mathsf{Y} \right) \leq 2 \cdot \mathbf{P}_{\mathsf{XY}} \left(Gibbs_{W} \left(\mathsf{X} \right) \neq \mathsf{Y} \right). \tag{7}$$

Proof. (Sketch) Consider only the simple PAC setting we need. At all those points $x \in \mathcal{X}$ at which $Bayes_W$ is wrong by definition at least half of the classifiers $\mathbf{w} \in W$ under consideration make a mistake as well.

The combination of Lemma 1 with Theorem 2 yields a bound on the risk of $Bayes_{W(z)}$. For a single hypothesis $\mathbf{w} \in \mathcal{W}$ let us find a (Bayes-admissible) subset $Q(\mathbf{w})$ of version space V(z) such that $Bayes_{Q(\mathbf{w})}$ on $Q(\mathbf{w})$ agrees with \mathbf{w} on every point in \mathcal{X} .

Definition 1 (Bayes-admissibility). Given the hypothesis space in (2) and a prior measure $P_{\mathbf{W}}$ over \mathcal{W} we call a subset $Q(\mathbf{w}) \subseteq \mathcal{W}$ Bayes admissible w.r.t. \mathbf{w} and $P_{\mathbf{W}}$ if and only if

$$\forall x \in \mathcal{X}: h_{\mathbf{w}}(x) = Bayes_{Q(\mathbf{w})}(x).$$

Although difficult to achieve in general the following geometrically plausible lemma establishes Bayes-admissibility for the case of interest.

Lemma 2 (Bayes-admissibility for linear classifiers). For uniform measure P_W over W each ball $Q(\mathbf{w}) = \{\mathbf{v} \in \mathcal{W} \mid ||\mathbf{w} - \mathbf{v}||_{\mathcal{K}} \leq r\}$ is Bayes admissible w.r.t. its centre \mathbf{w} .

Please note that by considering a ball $Q(\mathbf{w})$ rather than just \mathbf{w} we make use of the fact that \mathbf{w} summarises all its neighbouring classifiers $\mathbf{v} \in Q(\mathbf{w})$. Now using a uniform prior $P_{\mathbf{w}}$ the normalised margin

$$\Gamma_{z}\left(\mathbf{w}\right) = \min_{\left(x_{i}, y_{i}\right) \in z} \frac{y_{i} \left\langle \mathbf{w}, \mathbf{x}_{i} \right\rangle_{\mathcal{K}}}{\left\|\mathbf{w}\right\|_{\mathcal{K}} \left\|\mathbf{x}_{i}\right\|_{\mathcal{K}}}, \tag{8}$$

quantifies the relative volume of classifiers summarised by \mathbf{w} and thus allows us to bound its risk. Note that in contrast to the classical margin γ_z (see 3) this normalised margin is a dimensionless quantity and constitutes a measure for the relative size of the version space invariant under rescaling of both weight vectors \mathbf{w} and feature vectors \mathbf{x}_i .

4 A PAC-Bayesian Margin Bound

Combining the ideas outlined in the previous section allows us to derive a generalisation error bound for linear classifiers $\mathbf{w} \in V(z)$ in terms of their normalised margin $\Gamma_z(\mathbf{w})$.

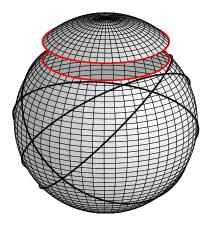


Figure 1: Illustration of the volume ratio for the classifier at the north pole. Four training points shown as grand circles make up version space — the polyhedron on top of the sphere. The radius of the "cap" of the sphere is proportional to the margin Γ_z , which *only* for constant $\|\mathbf{x}_i\|_{\mathcal{K}}$ is maximised by the SVM.

Theorem 3 (PAC-Bayesian margin bound). Suppose $\mathcal{K} \subseteq \ell_2^n$ is a given feature space of dimensionality n. For all probability measures \mathbf{P}_{Z} , for any $\delta > 0$ with probability at least $1 - \delta$ over the random draw of the training set z, if we succeed in correctly classifying m samples z with a linear classifier \mathbf{w} achieving a positive margin $\Gamma_z(\mathbf{w}) > 0$ then the generalisation error $R[\mathbf{w}]$ of \mathbf{w} is bounded from above by

$$\frac{2}{m} \left(d \ln \left(\frac{1}{1 - \sqrt{1 - \Gamma_z^2(\mathbf{w})}} \right) + 2 \ln (m) + \ln \left(\frac{1}{\delta} \right) + 2 \right). \tag{9}$$

where $d = \min(m, n)$.

Proof. Geometrically the hypothesis space \mathcal{W} is the unit sphere in \mathbb{R}^n (see Figure 1). Let us assume that $\mathbf{P}_{\mathbf{W}}$ is uniform on the unit sphere as suggested by symmetry. Given the training set z and a classifier \mathbf{w} all classifiers $\mathbf{v} \in Q(\mathbf{w})$

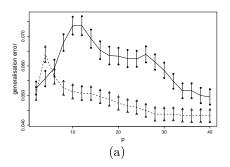
$$Q(\mathbf{w}) = \left\{ \mathbf{v} \in \mathcal{W} \mid \langle \mathbf{w}, \mathbf{v} \rangle_{\mathcal{K}} > \sqrt{1 - \Gamma_{z}^{2}(\mathbf{w})} \right\}$$
(10)

are within V(z) (For a proof see [2]). Such a set $Q(\mathbf{w})$ is Bayes-admissible by Lemma 2 and hence we can use $\mathbf{P_W}(Q(\mathbf{w}))$ to bound the generalisation error of \mathbf{w} . Since $\mathbf{P_W}$ is uniform, the value $-\ln(\mathbf{P_W}(Q(\mathbf{w})))$ is simply the logarithm of the volume ratio between the surface of the unit sphere and the surface of all \mathbf{v} fulfilling equation (10). In [2] it is shown that this ratio is exactly given by

$$\ln \left(\frac{\int_{0}^{2\pi} \sin^{n-2}(\theta) \ d\theta}{\int_{0}^{\arccos\left(\sqrt{1-\Gamma_{z}^{2}(\mathbf{w})}\right)} \sin^{n-2}(\theta) \ d\theta} \right).$$

It can be shown that this ratio is tightly bounded from above by

$$n \ln \left(\frac{1}{1 - \sqrt{1 - \Gamma_z^2(\mathbf{w})}} \right) + \ln \left(2 \right).$$



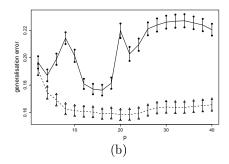


Figure 2: Generalisation errors of classifiers learned by an SVM with (dashed line) and without (solid line) normalisation of the feature vectors \mathbf{x}_i . The error bars indicate one standard deviation over 100 random splits of the data sets. The two plots are obtained on the (a) thyroid and (b) sonar data set.

With $\ln(2) < 1$ we obtain the desired result. Note that m points maximally span an m-dimensional space and thus we can marginalise over the remaining n - m dimensions of feature space \mathcal{K} . This gives $d = \min(m, n)$.

An appealing feature of equation (9) is that for $\Gamma_z(\mathbf{w}) = 1$ the bound reduces to $\frac{2}{m} (2 \ln (m) - \ln (\delta) + 2)$ with a rapid decay to zero as m increases. In case of margins $\Gamma_z(\mathbf{w}) > 0.91$ the troublesome situation of d = m, which occurs e.g. for RBF kernels, is compensated for. Furthermore, upper bounding $1/(1 - \sqrt{1 - \Gamma})$ by $2/\Gamma$ we see that Theorem 3 is an exponential improvement of Theorem 1 in terms of the attained margins. It should be noted, however, that the new bound depends on the dimensionality of the input space via $d = \min(m, n)$.

5 Experimental Study

Theorem 3 suggest the following learning algorithm: given a version space V(z) (through a given training set z) find the classifier $\mathbf w$ that maximises $\Gamma_z(\mathbf w)$. This algorithm, however, is given by the SVM only if the training data in feature space $\mathcal K$ are normalised. We investigate the influence of such a normalisation on the generalisation error in the feature space $\mathcal K$ of all monomials up to the p-th degree (well-known from handwritten digit recognition, see [13]). Since the SVM learning algorithm as well as the resulting classifier only refer to inner products in $\mathcal K$, it suffices to use an easy-to-calculate kernel function $k: \mathcal X \times \mathcal X \to \mathbb R$ such that for all $x, x' \in \mathcal X$, $k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal K}$, given in our case by the polynomial kernel

$$\forall p \in \mathbb{N}: \quad k(x, x') = (\langle x, x' \rangle_{\mathcal{X}} + 1)^p.$$

Earlier experiment have shown [13] that without normalisation too large values of p may lead to "overfitting". We used the UCI [10] data sets thyroid (d = 5, m = 140, $m_{\text{test}} = 75$) and sonar (d = 60, m = 124, $m_{\text{test}} = 60$) and plotted the generalisation error of SVM solutions (estimated over 100 different splits of the data set) as a function of p (see Figure 2). As suggested by Theorem 3 in almost all cases the normalisation improved the performance of the support vector machine solution at a statistically significant level. As a consequence, we recommend:

When training an SVM, always normalise your data in feature space.

Intuitively, it is only the *spatial direction* of both weight vector and feature vectors that determines the classification. Hence the different lengths of feature vectors in the training set should not enter the SVM optimisation problem.

6 Conclusion

The PAC-Bayesian framework together with simple geometrical arguments yields the so far tightest margin bound for linear classifiers. The role of the normalised margin Γ_z in the new bound suggests that the SVM is theoretically justified only for input vectors of constant length. We hope that this result is recognised as a useful bridge between theory and practice in the spirit of Vapnik's famous statement:

Nothing is more practical than a good theory

Acknowledgements We would like to thank David McAllester, John Shawe-Taylor, Bob Williamson, Olivier Chapelle, John Langford, Alex Smola and Bernhard Schölkopf for interesting discussions and useful suggestions on earlier drafts.

References

- [1] N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale sensitive dimensions, uniform convergence and learnability. *Journal of the ACM*, 44(4):615-631, 1997.
- [2] R. Herbrich. Learning Linear Classifiers Theory and Algorithms. PhD thesis, Technische Universität Berlin, 2000. accepted for publication by MIT Press.
- [3] R. Herbrich, T. Graepel, and C. Campbell. Bayesian learning in reproducing kernel Hilbert spaces. Technical report, Technical University of Berlin, 1999. TR 99-11.
- [4] M. J. Kearns and R. Schapire. Efficient distribution-free learning of probabilistic concepts. Journal of Computer and System Sciences, 48(2):464-497, 1993.
- [5] D. A. McAllester. Some PAC Bayesian theorems. In Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pages 230–234, Madison, Wisconsin, 1998.
- [6] N. Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series A, 13:145-147, 1972.
- [7] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. In *Proceedings of the 14-th International Conference in Machine Learning*, 1997.
- [8] J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony. Structural risk minimization over data-dependent hierarchies. *IEEE Transactions on Information Theory*, 44(5):1926-1940, 1998.
- [9] J. Shawe-Taylor and R. C. Williamson. A PAC analysis of a Bayesian estimator. Technical report, Royal Holloway, University of London, 1997. NC2-TR-1997-013.
- [10] UCI. University of California Irvine: Machine Learning Repository, 1990.
- [11] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134– 1142, 1984.
- [12] V. Vapnik. Estimation of Dependences Based on Empirical Data. Springer, 1982.
- [13] V. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.
- [14] V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Application, 16(2):264–281, 1971.