Strong Lagrange Duality

Let $f: R^n \to R$ a $g: R^n \to R^m$ are **convex** functions, X is a closed convex set over R^n there exists $\hat{x} \in X: g(\hat{x}) < 0$.

Then:

if x^* minimizes f(x) subject to $g(x) \leq 0$, $x \in X$

 λ^* maximizes $L(\lambda)$ subject to $\lambda \geq 0$

then
$$f(x^*) = L(\lambda^*)$$

$$L(\lambda) = \min_{x \in X} \underbrace{\{f(x) + \langle \lambda, g(x) \rangle\}}_{\ell(\lambda, x)}$$

vector λ : so called Lagrange multipliers

Strong Lagrange Duality (with equality constraints)

Let $f: R^n \to R$ a $g: R^n \to R^m$ are **convex** functions, $h: R^n \to R^k$ is **affine** X is a closed convex set over R^n there exists $\hat{x} \in X: g(\hat{x}) < 0$ and $h(\hat{x}) = 0$.

Then:

if
$$x^*$$
 minimizes $f(x)$ subject to $g(x) \leq 0$, $h(x) = 0$, $x \in X$

primal program

$$(\lambda_g^*, \lambda_h^*)$$
 maximizes $L(\lambda_g, \lambda_h)$ subject to $\lambda_g \geq 0 \quad \leftarrow \mathsf{dual}$ program

then
$$f(x^*) = L(\lambda_g^*, \lambda_h^*)$$

$$L(\lambda_g, \lambda_h) = \min_{x \in X} \underbrace{\{f(x) + \langle \lambda_g, g(x) \rangle + \langle \lambda_h, h(x) \rangle\}}_{\ell(\lambda_g, \lambda_h, x)}$$

vectors λ_q, λ_h : so called Lagrange multipliers