Supervised learning 23. oktébra 2022 1/36



Supervised learning

Vladimir Boza
boza@fmph.uniba.sk
M-25 (ask by email about office hours)
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Aplications of ML

Supervised learning

Speech recognition, image recongition
Machine translation, text generation
Recommendations of movies, books, ...
House price prediction

Marketing predictions (conversion rates, ... )

Unsupervised learing

Signal decomposition
Clustering

Visualization of data
Learning embeddings

Reinforcement learning

Games (go, chess, ...)
Robotics
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Supervised learning

Data
Set of n pairs x - input, y - expected output. This is called training set.

v

Goal

Predict output for new x.

Note
In most cases, the X is a vector with m values (attributes) and y is scalar
value.
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Example: house prices

—

X y
Size | # of rooms | Distance from city centre | Price
122 3 0.5 400000
39 1 6 76000
67 3 2 175000
88 2 4 77

. Supervised learning

23. oktébra 2022

5/36



Nearest neighbour

@ Got a new input x;.
e From training examples, pick one (X, y) where X is the most similar to
x¢. Predict y.

o (Modification: pick k most similar, predict average.)

Good

Good accuracy, when we have a lots of data.

Bad

Slow, bulky (we need to store whole training set in fast memory). Need to
define similarity. Sensitive to scaling and irelevant attributes.
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Picking from set of hyphothesis

Input
Set of examples (x1,y1), ..., (Xn, ¥n)-

Set of hyphoteses
HCR” >R

Error function

Pick hyphothesis h € H, which gives the lowest error.: >7_, err(h(x}), yi),
where err is an error function.
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Simple linear regression

One attribute (flat size).
Hyphotesis set: H = {ho(x) = ©¢ + O1x}
Error function: err(y,, y) = (yp — ¥)?
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Simple linear regression cont.

Looking for g, 61, such that error is smallest as possible:

n

J(00,01) = > (0 + b1xi — yi)?

i=1
Derivatives should be zero:
o
90y
oJ
iy
001
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Example

Given training data:

m‘p‘w‘x
\‘
©

Error would be:

J(6o,61) = (B + 301 — 6.5)% + (6o + 461 — 7.9)> + (Ao + 561 — 9.9)?

Derivatives:
OE
0= 67 = 2(00 + 3601 — 6.5) + 2(00 + 46, — 7.9) + 2(90 + 5601 — 9.9)
0

E
0= g@ =2(0p+301 —6.5)-3+2(0p+461—7.9)-4+2(0o+501 —9.9)-5
1
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Example cont.

oJ
0=— =260 2461 — 48.6
50, o + 1
0= ﬂ = 246y + 10061 — 201.2
001

2 linear equations with 2 unknowns — boring and easy.
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In general

J(007 91) Z(GO + 91XI I)
i=1
Derivatives:
oJ
0= 800 22 (6o + O1xi — yi)
oJ
0= (991 Z2XI 90+91XI y,)
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Generalization cont.

n n
0="6on+ 04 ZX; - ZYI
i=1 i=1
n n n
0= HOZX,-+91§:X,-2 — ZX,'y,'
i=1 i=1 i=1

n n n n n
0= QOHZX,' + 91ZXiZXi — inzyf
i=1 =1 i=1 i=1  i=1
n n n
0= GOnZX,' +91HZX,'2 — nZXi)/i
i=1 i=1 i=1
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...cont.

n n n n n n
0=260, ZX,'ZX,’ - 91I7ZX;2 + nZXi)/i - ZXIZYI
i=1 i=1 i=1 =1 i=1

i=1 = = = i=

01 — D1 Xi Dy Vi — MYy XiYi
DI Xi i X — Ny XF

From first equation:

n n

902% > yi—6) %
i—1 i—1
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Other ways of minimalization

@ Grid search

» Try several grid spaced values. Zoom in.
» Only for few variables.

@ Numerical methods.
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Numerical minimalization

Vector (aa—é{), g—ejl) gives direction upwards (gradient).

Idea: Use gradient to move down.
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Gradient descent

@ (6p,01) = Good initialization
@ while (error changes):
> 90 = 00 — Oégej
> 0 =0, — aae
We need to pick «. Trial and error works well. Usual values
1,0.1,0.01,.... There are better ways.
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Derivatives

Options:
@ Manually
@ Wolfram alpha
e Libraries, which do it for you (pytorch, autograd). Keyword here is
autograd.
@ Numerical derivative
> scipy.optimize.approx_fprime

f(x+Ax)—f(x—Ax)

oF
Y ax 2Ax
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Generalized linear regression

We use column vectors for now.

We extend each input with attribute with value 1 (to simplify a lot of
things).
Our model is:

y:ZT-g

Each input will make one row in matrix and expected outputs will be a
column vector:

T o

x= |07 7=

()T yo
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Matrix magic

(%1))T9: y(1)
Xi—y | E)TT—y®
(RM)TG — ytm)
(X0 =) (X0~ 7) =D (T8 - y0)? = J(6)
i=1
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Gradient

Gradient definition:

oJ 0J a0J
Ve-'J— <86178027730n>

Shows direction up (i.e. if you move parameters this way, loss will
increase).
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Gradient of error

Using matrices:
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Matrix magic - conclusion

We want to have: .
Vgl =2XT(X6—y)=0

XTX0=X"y
f=(X"X)xTy

These are called normal equations for linear regression.
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Source code

import numpy as np

X = [[122, 3], [39, 1], [67. 3]]
y = [400000, 76000, 175000]

X = np.hstack ([np.array (X, float),
np.ones(shape=(len(y),1))])

y = np.array(y, float)

XXi = np.linalg.inv(X.T.dot(X))

theta = XXi.dot(X.T).dot(y)

print(theta)

print(np.linalg.solve(X.T.dot(X), X.T.dot(y)))
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Time complexity

o XX - O(m?n)
o Inversion of matrix / solving system of linear equations — O(m?).
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Numerical methods - gradient descent

We iterate: o
0=06-— aV(;J

After substiting for our gradient (factor 2 is hidden in «):

6=0—aX"(X0-y)
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Stochastic gradient descent

Instead of calculation error and gradient from all training examples, we do
update after each example (we calcuate gradient from one example):
@ while (not converged):
» for i in range(n):
* 0 =0—axD((x1)76 -y
It usually converges faster than vanilla gradient descent. But, you need to
decrease alpha over time (this is not needed for vanilla gradient descent).
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Summary

Linear regression

Inputs: rows in matrix X.

Expected outputs: vector y.

We are looking for parameters 6, such that E = (X0 — y)"(X6 — ¥) was
smallest as possible.

Training

Option 1: solve system of equations XTX0 = XTy

Option 2: (stochastic) gradient descent: = 6 — aX (X0 — y)

E is convex function, it has at most one local minimum, which is also

global and both methods will find same solution (apart from numerical
errors).

Prediction from new input

_ T 23
)/new - XneW : 0
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Other models

Still regression (one real number as an output).
Sometimes data are nonlinear.

@ Locally weighted linear regression (in Machine learing course)
@ Polynomial regression and its reduction on linear

e Neural nets (not today)
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Polynomial regression

One input x, model with degree 2:

y =16 —|-91X+(92X2
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Polynomial regression

One input x, model with degree 2:
y =6+ 01x + 02x2
Two inputs x1, x2, model (up to degree 2):
y = 0o + 010x1 + Oorxz + O11x1%0 + 020%F + 023

We can use same procedure as last time and find values of §. Or reduce
the problem to linear regression.
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Reduction of polynomial regression

For two inputs

Input: (1, x1, x2) we change into:

(1,X1,X2,X1X2,Xf,X22)

And we can solve linear regression (we do not change outputs).
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Reduction of polynomial regression

For two inputs

Input: (1, x1, x2) we change into:

(1, x1, X2, X1%2, X3, X3 )

And we can solve linear regression (we do not change outputs).

In general

We have p basis functions: ¢1(X), $2(X), ..., ¢p(X), kde ¢; € R™ — R.
We preprocess input matrix X into matrix ®:

HEZD) 5 (RD) . go(xD)
H(7D) Go(D) ... g,(x?)
HZD) G(RD) L ga(R)

And we solve linear regression, for example the system: dTdf = o7y

v

_ Supervised learning 23. oktdbra 2022 31/36




Basis fuctions - examples

Not only polynomials.
o ¢(X) = xax7, 9(X) = x2
@ 0-1 functions: ¢(xX) = x¢ >0
@ Some preprocessings: ¢(X) = log(xs + 1)

o 2
—l1Z=x]|

o Kernel fuctions: ¢(X) = e -
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