2-INF-237 Vybrané partie z dátových štruktúr 2-INF-237 Selected Topics in Data Structures

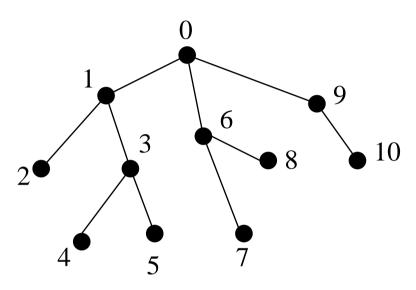
• Instructor: Broňa Brejová

• E-mail: brejova@fmph.uniba.sk

• Office: M163

Course webpage: http://compbio.fmph.uniba.sk/vyuka/vpds/

Lowest common ancestor (LCA), najnižší spoločný predok

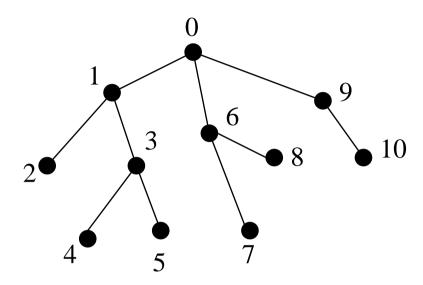


 ν is ancestor of $\mathfrak u$ if it is on the path from $\mathfrak u$ to the root $lca(\mathfrak u, \nu)$: node of greatest depth in ancestors $(\mathfrak u) \cap ancestors(\nu)$

Task: preprocess tree T in O(n), answer lca(u, v) in O(1)

Harel and Tarjan 1984, Schieber a Vishkin 1988 (Gusfield book), Bender and Farach-Colton 2000 (this lecture)

Back to static trees

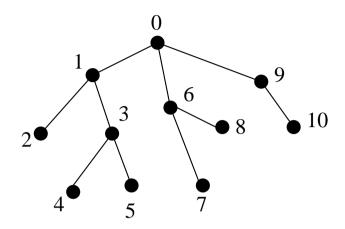


Task: preprocess tree T in O(n), answer lca(u, v) in O(1)

Trivial solutions:

- no preprocessing, $O(\boldsymbol{n})$ time per lca
- $O(n^3)$ preprocessing, $O(n^2)$ memory, O(1) time per lca

Lowest common ancestor (LCA)



lca(u, v): node of greatest depth which is ancestor of both u and v

Task: preprocess tree T in O(n), answer lca(u, v) in O(1)

Range minimum query (RMQ)

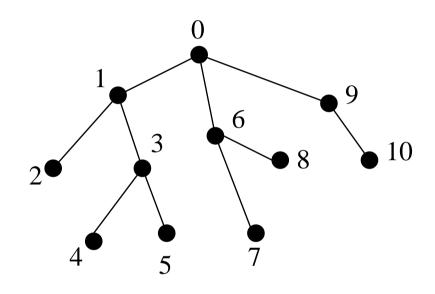
Array A of size n

$$RMQ(i,j) = arg \min_{k \in \{i,i+1,\dots,j\}} A[k]$$

Task: preprocess array A in O(n), then answer RMQ(i,j) in O(1)

Solving LCA using RMQ

Preprocess tree to arrays V, D, R



V – visited nodes

D – their depths

R – first occurrence of node in V

i:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
V:	0	1	2	1	3	4	3	5	3	1	0	6	7	6	8	6	0	9	10	9	0
D:	0	1	2	1	2	3	2	3	2	1	0	1	2	1	2	1	0	1	2	1	0
i:	0	1	2	3	4	5	6	7	8	9	10										
R:	0	1	2	4	5	7	11	12	14	17	18										

Solving LCA using RMQ

```
search(root, 0); // call recursion
2
3
   void search(node v, int depth) {
     R[v] = V.size;
4
5
     V.push_back(v);
     D.push_back(depth);
6
     foreach child u of v {
7
         search(u, depth+1);
8
9
        V.push_back(v);
10
        D. push_back (depth);
11
12
```

RMQ algorithm 3

M[i,k]: index of minimum in $A[i..i+2^k-1]$ for $k=1,\ldots,\lfloor \lg n \rfloor$

i 0 1 2 3 4 5 6 7 8 9 10 11 12

A[i] 0 1 2 1 2 3 2 1 0 1 0 1 0

k=1 0 1 3 3 4 6 7 8 0 10 10 12 -

k=2 0 1 3 3 7 8 8 8 10 - - -

k=3 0 8 8 8 8 - - - - - -

RMQ algorithm 3

M[i,k]: index of minimum in $A[i..i+2^k-1]$ for $k=1,\ldots,\lfloor \lg n \rfloor$

Preprocessing:

$$\label{eq:interpolation} \begin{split} &\text{if } A[M[i,k-1]] < A[M[i+2^{k-1},k-1]],\, M[i,k] = M[i,k-1] \\ &\text{else } M[i,k] = M[i+2^{k-1},k-1] \end{split}$$

RMQ(i,j):

$$\begin{split} &\text{let } k = \lfloor \lg(j-i+1) \rfloor \\ &\text{if } A[M[i,k]] < A[M[j-2^k+1,k]], \, \text{return } M[i,k] \\ &\text{else return } M[j-2^k+1,k] \end{split}$$

Time: $O(n \log n)$ preprocessing, O(1) query

LCA algorithm overview

- Compute arrays V,D,R by depth-first search in the tree
- Enumerate all possible +1, -1 blocks of length m-1, precompute answers for all intervals in each type
- Split D into blocks of length $m = \log_2(n)/2$, precompute minimum and its index in each block (A', M'), find type of each block
- Precompute $O(n' \log n')$ data structure for RMQ in A'
- For lca(u, v) a query:
 - i = R[u], j = R[v], find position k of minimum in D[i..j] as follows:
 - find block b_i containing i, block b_j containing j
 - compute minimum in $b_i \cap [i,j]$, $b_j \cap [i,j]$
 - compute minimum in $A'[b_{i+1} \dots b_{j-1}]$
 - find minimum of three numbers, let k be its index in D return V[k]

Lowest common ancestor (LCA)

Range minimum query (RMQ):

Alg.1 no preprocessing, O(n) query

Alg.2 $O(n^2)$ preprocessing, O(1) query

Alg.3 $O(n \log n)$ preprocessing, O(1) query

 ± 1 RMQ: O(n) preprocessing, O(1) time split to blocks, use alg.2 within blocks, alg.3 between blocks many blocks repeat in input – save time

LCA: O(n) preprocessing, O(1) time use ± 1 RMQ on array of depths in depth-first search

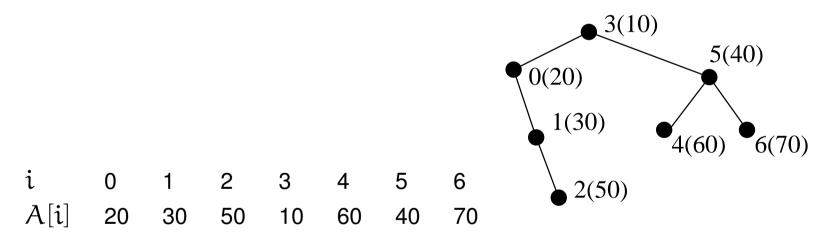
RMQ: want O(n) preprocessing, O(1) time convert back to LCA!

RMQ using LCA

Cartesian tree for A: root: minimum in A (at position k)

left subtree: recursively for A[1..k-1]

right subtree: recursively for A[k+1..n]



 $A \to \text{Cartesian tree in } O(n)$: add elements from left to right $\min A[i..j] = \text{lca}(i,j)$

Building a Cartesian tree

```
Use auxiliary value \alpha[-1] = -\infty
    root = new node(-1, null);
2 r = root;
    for(int i=0; i<n; i++) {
      while(a[r.id]>a[i]) {
4
5
        r = r.parent;
6
7
      v = new node(i, r);
8
      v.left = r.right;
9
      r.right = v;
10 	 r = v;
11 }
```

Lowest common ancestor (LCA)

Range minimum query (RMQ):

Alg.2 $O(n^2)$ preprocessing, O(1) query Alg.3 $O(n \log n)$ preprocessing, O(1) query

 ± 1 RMQ: O(n) preprocessing, O(1) time split to blocks, use alg.2 within blocks, alg.3 between blocks

LCA: O(n) preprocessing, O(1) time use ± 1 RMQ on array of depths in depth-first search

RMQ: O(n) preprocessing, O(1) time use LCA on Cartesian tree

Direct method: split to blocks, represent blocks by Cartesian trees (Fischer and Heun 2006)

Precomputing values over intervals

Operation \circ , compute $R_{\circ}(i,j) = A[i] \circ A[i+1] \circ \cdots \circ A[j]$

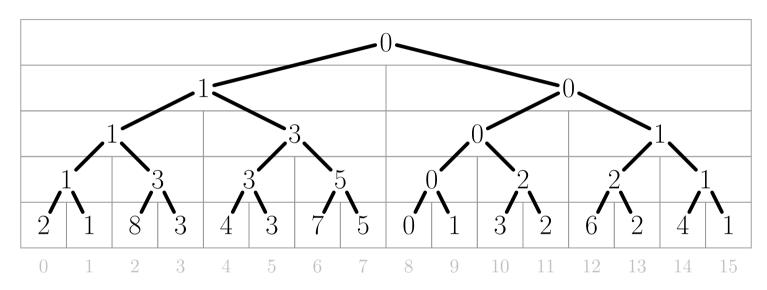
- Precompute all answers: $O(n^2)$ preprocessing, O(1) query
- Precompute prefix "sums" $R_{\circ}(0,i)$ good for groups (e.g. $\circ = +$ over Z,Q,R,etc.) $R_{\circ}(i,j) = R_{\circ}(0,j)) \circ R_{\circ}(0,i-1))^{-1}$ Optional HW: what about multiplication?
- Precompute intervals of sizes 2ⁱ
 combine 2 overlapping answers e.g. for min
- Segment trees: precompute non-overlapping intervals of sizes 2ⁱ combine several intervals to cover each element exactly once good for any associative ○, e.g. matrix multiplication also good in case of dynamic updates of the array

Segment tree

- Root correspods to interval [0, n)
- Leafs correspond to intervals [i, i+1)
- If a node corresponds to [i,j) left child corresponds to [i,k), right child to [k,j) where $k=\lfloor (i+j)/2 \rfloor$
- For each node [i,j) store $R_{\circ}(i,j-1) = A[i] \circ \cdots \circ A[j-1]$
- ullet Total number of nodes 2n-1, height $\lceil \lg n \rceil$

Segment tree

Example for $\circ = \min$

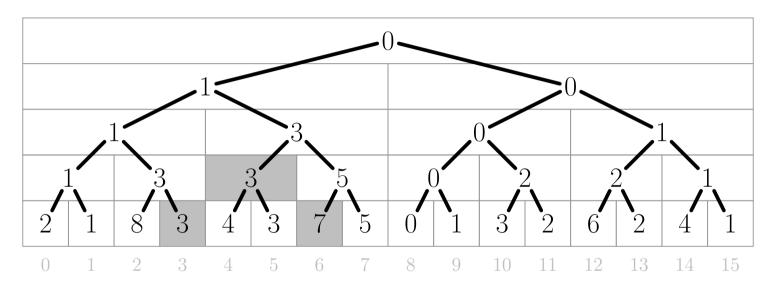


It might be more useful to store position of minimum, rather than value

The structure can be stored in an array similarly as binary heap

Canonical decomposition

Decompose query interval [x, y) to a set of disjoint tree intervals



Canonical decomposition

Decompose query interval [x, y) to a set of disjoint tree intervals

- Current node [i, j), and its left child [i, k) invariant: [i, j) overlaps with [x, y)
- If $[i, j) \subseteq [x, y)$, return $\{[i, j)\}$
- \bullet R = \emptyset
- If [i, k) overlaps with [x, y), recurse on left child, add to R
- If [k, j) overlaps with [x, y), recurse on right child, add to R
- Return R

Segment tree (summary)

- Tree of intervals, height O(log n)
- Root: entire array; leaves: intervals of length 1
- Each node stores the result of operation on its interval
- Each internal node split into two disjoint intervals, left and right child
- Canonical decomposition: Each query interval can be written as union of $O(\log n)$ disjoint intervals, these can be found in $O(\log n)$ time
- To compute $A[i] \circ \cdots \circ A[j]$, we need $O(\log n)$ time for any associative \circ
- Update of an element in A can be done in $O(\log n)$ time

Finding all small numbers

We have array A precomputed for RMQ.

```
For given i, j, x find all indices k \in \{i, ..., j\} s.t. A[k] \le x.
```

```
1  void small(i, j, x) {
2   if(j > i) return;
3   k = rmq(i, j);
4   if(a[k] <= x) {
5     print k;
6     small(i, k-1, x);
7     small(k+1, j, x);
8   }
9  }</pre>
```

Running time O(p), where p is the number of printed indices