2-INF-237 Vybrané partie z datovych struktur
2-INF-237 Selected Topics in Data Structures

e Instructor: Brona Brejova
e E-mail: brejova@fmph.uniba.sk
e Office: M163

e Course webpage: http://compbio.fmph.uniba.sk/vyuka/vpds/

Succinct data structures

We usually count memory in words of some size w > Ign

each word can hold pointer, index, count, symbol etc.

Now we will count memory in bits

Lower bound: to store any x € U4, we need at least OPT = Ig |I/| bits
Compact data structure uses O(OPT) bits

Succinct data structure uses OPT + o(OPT) bits

Leading constant 1 plus some lower-order terms

Implicit data structure uses OPT bit plus O(1) words
Uses ordering of elements in an array

Example: binary heap, sorted array

Succinct structure for binary rank and select

Bit vector A[0..n-1]
rank(i) = number of bits set to 1 in A[0..i]

select(i) = position of the i-th bit set to 1

Example:

i 0 1 2 3 4 5 6 7

Ail o 1 1 0 1 0 0 1

rank(3) = 2, rank(4) = 3
select(1) = 1, select(3) =4

Goal:
rank, selectin O(1) time
structure needs . + o(n) bits of memory

we will concentrate on rank

Succinct structure for rank (Jacobson 1989)
e Divide bit vector to super blocks of size t1 = Ig2 n
e Divide each super block to blocks of size t; = I lgn

e Keep rank at each super block boundary
O(% logn) = 0O(n/logn) = o(n) bits

e Keep rank within super block at each block boundary

O(% logt;) = O(nloglogn/logn) = o(n) bits

e Each block stored as a binary number using t, bits
N bits

e For each of 212 possible blocks and each query keep the answer
O(2%2 -t -logty) = O(y/nlognloglogn) = o(n) bits

1

N OO o A WD

Succinct structure for rank (Jacobson 1989)

R1: array of ranks at superblock boundaries
R2: array of ranks at block boundaries within superblocks

R3: precomputed rank for each block type and each position

B: bit array

rank (i) {
superblock = i/t1; //integer division
block = i/t2;

index = blockx*t2;
type = B[index..index+t2 —1];
return Ri1[superblock]+R2[block]+R3[type, i%t2]

Succinct structure for select

Lett; =Ignliglgn, t; = (Iglgn)?.

Store select(t; - 1) fori =0,...,n/tl;

this divides bit vector into super-blocks of unequal size.
Large super-blocks of size > t%: store array of indices of 1 bits.

Small super-block of size < t%: repeat with t7:
store select(t, - i) within super-block fori =0, ..., n/t2;

this divides small super-blocks into blocks of unequal size.
Large blocks of size > t%: store relative indices of all 1 bits.

Small blocks of size < t%: store as t%-bit integer,

plus a lookup table of all answers.

Succinct data structures

e Data structure uses OPT + o(OPT) bits of memory

and supports fast operations
e Rank and select on a binary vector of length . in O(1) time
Next:
e Compressed data structures (for rank)
e Wavelet tree for rank over larger alphabet

e Succinct data structure for binary trees

Entropy and compression

Consider alphabet 2 of size 0, probability of a € 2 is pq

Entropy of this distribution is: — Z Pal9Pa
acl

Measure of randomness:
Uniform distribution has entropy log, 0 (max)

If po = 1 for some a € X, then entropy O (min)

Lossless compression of a text consisting of independent identically
distributed random symbols with entropy H,

needs roughly H bits per symbol

Goal: use —log, p bit to encode a
Huffman encoding close to that but needs rounding

Arithmetic coding avoids rounding

Compressed structure for rank (Raman, Raman, Rao 2002)

Compressed size of bit vector + o(n) bits

Need to reduce the following part:

Each block stored as a binary number using t, bits
Blocks with many 0Os or many 1s stored using fewer bits

For each block store the number of 1s (class)

O(% logty) = O(nloglogn/logn) = o(n) bits

For a block with X 1s store its signature: index in lexicographic order
of all binary strings of size t, with X 1s
lg (2)] <1g2'2 =t, bits (overall at most ¢, L2 = n bits)

Rearrange the table with answers for all possible blocks of size 1,

Add signature boundaries in compressed bit vector o(n)

Compressed structure for rank (RRR)

th=3

Cl Sig Length Block Answers

0 0 0 000 0 0 O

1 0 2 001 0 0 1
1 010 01 1
2 100 1 1 1

2 0 2 011 01 2
1 101 1 1 2
2 110 1 2 2

3 0 0 111 1 2 3

Original bits: 000[101|001|111|111

Number of 1s in each block: 00{10[01|11]11

Index of block: €|01]|00|e|e

Where each block starts (within superblock): 0000|0000/0010|0100|0100

10

Compressed structure for rank (RRR)
rank(i):

e superblock = i/t1 (integer division)

e block = i/t2

® index = S1[superblock]+S2[block]

e class = C[block]

e length = L[class]

e signature = B[index..index+length-1]

e return R1[superblock]+R2[block]+R3[class, signature, i%t2]

11

Analysis of RRR structure
e Let S be a string in which a € X occurs ng times
e lts Oth order empirical entropy is Ho(S) = >, "2 g nla

e RRR structure for bit vector B uses nHp(B) + o(n) bits
Stirling’s approximation of n!

n! =+2m (2)" (14 0(1/n))
In(n!) =nin(n) —m + O(In(n))

12

Wavelet tree (Grossi, Gupta, Vitter 2003)
2y = {$> *) a} 2= {e> m, LL}

o 1 2 3 4 5 6 7 8
e m a . m a . m a m u

B(i7 1. 1. 60 0 1 0 O 1 O 1 1 O
a

.a.a.aa.a.s S1 emmmmummmemu

Yoo = 1{$}, Zo1 ={,al, Zoro =1{} ZLo11 ={a}
Yio ={e}, L1 ={myu}, Zy10 ={m} L1717 ={u}

i 0 1 2 3 4 5 o 7 8 9 10 11
s0fiJ] a . a . a . a a . a . S
BO[1] 1 1 1 1 1 1 1 1 1 1 1 0

S00 a.a.a.aa.a. S01 s

Store

B[i] =110010010110101001001110
BO[i]=111111111110 B1[i(]=011111111011
BO1[i]=10101011010 B11[i] = 000100001

13

m
1

a
0

m
1

a
0

0

m
1

a
0

0

e
1

m
1

u
1

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

$
0

Combination of RRR structure and wavelet trees

e Store binary rank structures in the wavelet tree for text T
overall NH(T) + o(mH(T)) bits

e Instead of wavelet tree, store indicator vector for each a € X~
overal nH(T) + O(m) + o(on) bits
O(1) per rank query

14

Dynamic texts (Navarro, Nekrich 2014)

Access, rank, select

Insert/delete character

Allin O(logn/ log log n) amortized
Additional memory o(nigo) + O(olgn)

15

Succinct binary trees
e Consider all binary trees with n. nodes
e Classical trees with pointers use Q(n logn) bits
e OPT is cca 2n bits (proof later)

e Goal: Use 2n + o(n) memory,

support operations left child, right child, parentin O(1)
e Add n + 1 auxiliary leaves

e Nodes are numbers {1,...,2n + 1}in level order (BFS)

16

Succinct binary trees: level order representation

14 15 16 17

17

Succinct binary trees
e Consider all binary trees with n. nodes

e Goal: Use 2n + o(n) memory,

support operations left child, right child, parentin O(1)
e Add n + 1 auxiliary leaves

e Nodes are numbers from{1,...,2n + 1}
Using rank can be mapped to {1, ..., n}

These can be then used as indices to arrays with additional data

e Static trees only, construction requires more memory

18

Equivalence of binary trees and rooted ordered trees
Rooted ordered tree as a well-parenthesized expression:

(CO) O 0) 00
ABDDBEGGEHHACCEFEF

19

Counting well-parenthesized expresions

X(n, m, k): set of all sequences containing 1. times 1, m times -1

with all prefix sums > k

Easy: [X(n, m, —00)|

Want: | X(n, n, 0)

Prove: [X(n,n,—o0) \ X(n,n,0)] = [X(n—1,n+1,—00)|

2n)! 2n)!
Then: [X(n,n,0)] = (*") — () = (n’?L)' - (n—1()!T(L1)1+1)!
_ 2n)n+1-—m) _ 2
I I ()/(n+1)
Example:

X(3>3>_OO) \X(3>3>O)‘ — |X(2>4> —OO)| =15
X(3, 3, —00)| = 20
X(3,3,0)] =20 — 15 =5 = C;

20

Counting well-parenthesized expresions

X(m, m, k): set of all sequences containing n times 1, m times -1

with all prefix sums > k
|X(T1,Tl, _OO) \X(TI,TI, O)l — |X(Tl —],Tl - 1>_OO)|

Consider n = 3, first four examples out of 15:
)))«))))

21

Back to trees

The number of binary trees with n. nodes is C;, = (ZTTL‘)/(TI +1)

Recall Stirling’s approximation of n.!:
nn!) =nin(n) —m+ O(In(n))

In(Cn) = In((2n)!) — 2In(n!) + O(logn)
=2nin(2n) —2n —2nin(n) +2n + Oflogn)
—2nin(2) + O(logn)

9(Cr) =In(Cy)/In(2) = 2n + O(logn)

Thus OPT for representing binary trees is 2 bits per node

22

