
2-INF-237 Vybrané partie z dátových štruktúr

2-INF-237 Selected Topics in Data Structures

• Instructor: Broňa Brejová

• E-mail: brejova@fmph.uniba.sk

• Office: M163

• Course webpage: http://compbio.fmph.uniba.sk/vyuka/vpds/

1

Succinct data structures

We usually count memory in words of some size w ≥ lgn

each word can hold pointer, index, count, symbol etc.

Now we will count memory in bits

Lower bound: to store any x ∈ U , we need at least OPT = lg |U | bits

Compact data structure uses O(OPT) bits

Succinct data structure uses OPT + o(OPT) bits

Leading constant 1 plus some lower-order terms

Implicit data structure uses OPT bit plus O(1) words

Uses ordering of elements in an array

Example: binary heap, sorted array

2

Succinct structure for binary rank and select

Bit vector A[0..n-1]

rank(i) = number of bits set to 1 in A[0..i]

select(i) = position of the i-th bit set to 1

Example:

i 0 1 2 3 4 5 6 7

A[i] 0 1 1 0 1 0 0 1

rank(3) = 2, rank(4) = 3

select(1) = 1, select(3) = 4

Goal:

rank, select in O(1) time

structure needs n+ o(n) bits of memory

we will concentrate on rank

3

Succinct structure for rank (Jacobson 1989)

• Divide bit vector to super blocks of size t1 = lg2 n

• Divide each super block to blocks of size t2 =
1
2 lgn

• Keep rank at each super block boundary

O(n
t1

· logn) = O(n/ logn) = o(n) bits

• Keep rank within super block at each block boundary

O(n
t2

· log t1) = O(n log logn/ logn) = o(n) bits

• Each block stored as a binary number using t2 bits

n bits

• For each of 2t2 possible blocks and each query keep the answer

O(2t2 · t2 · log t2) = O(
√
n logn log logn) = o(n) bits

4

Succinct structure for rank (Jacobson 1989)

R1: array of ranks at superblock boundaries

R2: array of ranks at block boundaries within superblocks

R3: precomputed rank for each block type and each position

B: bit array

1 rank (i) {

2 superblock = i / t1 ; / / i n t e g e r d i v i s i o n

3 block = i / t2 ;

4 index = block∗ t2 ;

5 type = B[index . . index+t2 −1];

6 return R1[superblock]+R2 [b lock]+R3 [type , i%t2]

7 }

5

Succinct structure for select

• Let t1 = lgn lg lgn, t2 = (lg lgn)2.

• Store select(t1 · i) for i = 0, . . . , n/t1;

this divides bit vector into super-blocks of unequal size.

• Large super-blocks of size ≥ t21: store array of indices of 1 bits.

• Small super-block of size ≤ t21: repeat with t1:

store select(t2 · i) within super-block for i = 0, . . . , n/t2;

this divides small super-blocks into blocks of unequal size.

• Large blocks of size ≥ t22: store relative indices of all 1 bits.

• Small blocks of size < t22: store as t22-bit integer,

plus a lookup table of all answers.

6

Succinct data structures

• Data structure uses OPT + o(OPT) bits of memory

and supports fast operations

• Rank and select on a binary vector of length n in O(1) time

Next:

• Compressed data structures (for rank)

• Wavelet tree for rank over larger alphabet

• Succinct data structure for binary trees

7

Entropy and compression

Consider alphabet Σ of size σ, probability of a ∈ Σ is pa

Entropy of this distribution is: −
∑

a∈Σ

pa lgpa

Measure of randomness:

Uniform distribution has entropy log2 σ (max)

If pa = 1 for some a ∈ Σ, then entropy 0 (min)

Lossless compression of a text consisting of independent identically

distributed random symbols with entropy H,

needs roughly H bits per symbol

Goal: use − log2 pa bit to encode a

Huffman encoding close to that but needs rounding

Arithmetic coding avoids rounding

8

Compressed structure for rank (Raman, Raman, Rao 2002)

• Compressed size of bit vector + o(n) bits

• Need to reduce the following part:

Each block stored as a binary number using t2 bits

• Blocks with many 0s or many 1s stored using fewer bits

• For each block store the number of 1s (class)

O(n
t2

log t2) = O(n log logn/ logn) = o(n) bits

• For a block with x 1s store its signature: index in lexicographic order

of all binary strings of size t2 with x 1s

⌈lg
(

t2
x

)

⌉ ≤ lg 2t2 = t2 bits (overall at most n
t2
t2 = n bits)

• Rearrange the table with answers for all possible blocks of size t2

Add signature boundaries in compressed bit vector o(n)

9

Compressed structure for rank (RRR)

t2 = 3

Cl Sig Length Block Answers

0 0 0 000 0 0 0

1 0 2 001 0 0 1

1 010 0 1 1

2 100 1 1 1

2 0 2 011 0 1 2

1 101 1 1 2

2 110 1 2 2

3 0 0 111 1 2 3

Original bits: 000|101|001|111|111

Number of 1s in each block: 00|10|01|11|11

Index of block: ǫ|01|00|ǫ|ǫ

Where each block starts (within superblock): 0000|0000|0010|0100|0100

10

Compressed structure for rank (RRR)

rank(i):

• superblock = i/t1 (integer division)

• block = i/t2

• index = S1[superblock]+S2[block]

• class = C[block]

• length = L[class]

• signature = B[index..index+length-1]

• return R1[superblock]+R2[block]+R3[class, signature, i%t2]

11

Analysis of RRR structure

• Let S be a string in which a ∈ Σ occurs na times

• Its 0th order empirical entropy is H0(S) =
∑

a
na

n lg n
na

• RRR structure for bit vector B uses nH0(B) + o(n) bits

Stirling’s approximation of n!

n! =
√
2πn

(

n
e

)n
(1+O(1/n))

ln(n!) = n ln(n) − n+O(ln(n))

12

Wavelet tree (Grossi, Gupta, Vitter 2003)

Σ0 = {$, ., a} Σ1 = {e,m, u}

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

S[i] e m a . m a . m a m u . m a m a . m a . e m u $

B[i] 1 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 0

S0 a.a.a.aa.a.$ S1 emmmmummmemu

Σ00 = {$}, Σ01 = {., a}, Σ010 = {.}, Σ011 = {a}

Σ10 = {e}, Σ11 = {m,u}, Σ110 = {m}, Σ111 = {u}

i 0 1 2 3 4 5 6 7 8 9 10 11

S0[i] a . a . a . a a . a . $

B0[i] 1 1 1 1 1 1 1 1 1 1 1 0

S00 a.a.a.aa.a. S01 $

Store

B[i] =110010010110101001001110

B0[i] = 111111111110 B1[i] = 011111111011

B01[i] = 10101011010 B11[i] = 000100001

13

Combination of RRR structure and wavelet trees

• Store binary rank structures in the wavelet tree for text T

overall nH(T) + o(nH(T)) bits

• Instead of wavelet tree, store indicator vector for each a ∈ Σ

overall nH(T) +O(n) + o(σn) bits

O(1) per rank query

14

Dynamic texts (Navarro, Nekrich 2014)

Access, rank, select

Insert/delete character

All in O(logn/ log logn) amortized

Additional memory o(n lgσ) +O(σ lgn)

15

Succinct binary trees

• Consider all binary trees with n nodes

• Classical trees with pointers use Ω(n logn) bits

• OPT is cca 2n bits (proof later)

• Goal: Use 2n+ o(n) memory,

support operations left child, right child, parent in O(1)

• Add n+ 1 auxiliary leaves

• Nodes are numbers {1, . . . , 2n+ 1} in level order (BFS)

16

Succinct binary trees: level order representation

A

B C

D E F

G H

2

1

3

4 5 6 7

8 10 11 12 13

14 15 16 17

9

17

Succinct binary trees

• Consider all binary trees with n nodes

• Goal: Use 2n+ o(n) memory,

support operations left child, right child, parent in O(1)

• Add n+ 1 auxiliary leaves

• Nodes are numbers from {1, . . . , 2n+ 1}

Using rank can be mapped to {1, . . . , n}

These can be then used as indices to arrays with additional data

• Static trees only, construction requires more memory

18

Equivalence of binary trees and rooted ordered trees

A

B C

D E F

G H

A C F

B E H

GD

*

Rooted ordered tree as a well-parenthesized expression:

((())(())())()()

ABDDBEGGEHHACCFF

19

Counting well-parenthesized expresions

X(n,m, k): set of all sequences containing n times 1, m times -1

with all prefix sums ≥ k

Easy: |X(n,m,−∞)|

Want: |X(n,n, 0)|

Prove: |X(n,n,−∞) \ X(n,n, 0)| = |X(n− 1, n+ 1,−∞)|

Then: |X(n,n, 0)| =
(

2n
n

)

−
(

2n
n−1

)

=
(2n)!
n!n! −

(2n)!
(n−1)!(n+1)!

=
(2n)!(n+1−n)

n!(n+1)!
=

(

2n
n

)

/(n+ 1)

Example:

|X(3, 3,−∞) \ X(3, 3, 0)| = |X(2, 4,−∞)| = 15

|X(3, 3,−∞)| = 20

|X(3, 3, 0)| = 20− 15 = 5 = C3

20

Counting well-parenthesized expresions

X(n,m, k): set of all sequences containing n times 1, m times -1

with all prefix sums ≥ k

|X(n,n,−∞) \ X(n,n, 0)| = |X(n− 1, n+ 1,−∞)|

Consider n = 3, first four examples out of 15:
))) ((() (()))

-4
-3
-2
-1
0
1
2

)) () (() () ())

-4
-3
-2
-1
0
1
2

)) (() () ()) ()

-4
-3
-2
-1
0
1
2

)) ((()) ())) (

-4
-3
-2
-1
0
1
2

21

Back to trees

The number of binary trees with n nodes is Cn =
(

2n
n

)

/(n+ 1)

Recall Stirling’s approximation of n!:

ln(n!) = n ln(n) − n+O(ln(n))

ln(Cn) = ln((2n)!) − 2 ln(n!) +O(logn)

= 2n ln(2n) − 2n− 2n ln(n) + 2n+O(logn)

= 2n ln(2) +O(logn)

lg(Cn) = ln(Cn)/ ln(2) = 2n+O(logn)

Thus OPT for representing binary trees is 2 bits per node

22

