

2-INF-237 Vybrané partie z dátových štruktúr

2-INF-237 Selected Topics in Data Structures

- Instructor: Broňa Brejová
- E-mail: brejova@fmph.uniba.sk
- Office: M163
- Course webpage: <http://compbio.fmph.uniba.sk/vyuka/vpds/>

Partially persistent data structures

Update only current version, query any old version
versions linearly ordered

Arbitrary pointer machine data structure

with at most $O(1)$ incoming pointers per node
and $f(n)$ update, $g(n)$ query

Partially persistent version with node copying

$O(f(n))$ amortized update, $O(g(n))$ query

Retroactive data structures

Insert updates to the past, delete past updates,
query at any past time relative to the current set of updates

Search problem:

maintain a set S with insert and delete
support $\text{query}(x, S)$

Decomposable search problem

$$\text{query}(x, A \cup B) = \text{query}(x, A) \square \text{query}(x, B)$$

Arbitrary data structure

$f(n)$ update, $g(n)$ query

Totally retroactive version

$O(f(n) \log n)$ amortized update, $O(g(n) \log n)$ query

Bentley–Ottmann algorithm for finding intersections of line segments

n line segments, k intersections

Sweepline algorithm, sweeps from left to right

Maintains priority queue of events: start of a line, end of a line, intersection

Balanced binary search tree of segments at current x -coordinate

$(2n + k) \times \text{Insert}$, $(2n + k) \times \text{ExtractMin}$

$O((n + k) \log n)$ time

Planar point location

- Plane subdivided into regions by non-intersecting straight lines (planar graph)
- Given point (x, y) , which face contains it?
- Examples: regions in a map, GUI elements, . . .
- Nearest neighbor via Voronoi diagram
- Static version: preprocess a fixed graph
- Dynamic version: edge added/removed

Vertical ray shooting

- Given set of non-intersecting line segments
- Query: which edge first intersects a vertical ray starting in (x, y) ?
- In static case implies planar point location
(each edge keeps face ID)
- First assume that all line segments horizontal

Vertical ray shooting for horizontal line segments (static)

- Sweep with partially persistent balanced BST
 - Left segment endpoint (x_1, y) : insert y at time x_1
 - Right segment endpoint (x_2, y) : delete y at time x_2
- $O(n \log n)$ time preprocessing
- Given ray from (x, y) , search for successor of y at time x
- $O(\log n)$ query

Vertical ray shooting for horizontal line segments (dynamic)

- Use retroactive binary search tree
- $O(\log^2 n)$ queries last time, $O(\log n)$ version also exists
- Insert line segment $(x_1, y), (x_2, y)$:

Insert(x_1 ,insert(y))

Insert(x_2 ,delete(y))

- Delete line segment $(x_1, y), (x_2, y)$:
- Delete(x_1 ,insert(y))
- Delete(x_2 ,delete(y))

Vertical ray shooting with arbitrary segments

- Segments do not cross, but any direction
- Static version still with partially persistent BST
- When searching successor of y at time x ,
use comparison function which depends on x
- Dynamic version does not work in $O(\log n)$

Also interesting is ray shooting in arbitrary direction

- no poly-log algorithms known
- motivated by ray tracing

Orthogonal range searching

- Maintain a set of points in \mathbb{R}^d
- Query: find points in box $[a_1, b_1] \times \cdots \times [a_d, b_d]$
existence / count / report k
- Static / dynamic case
- E.g. database queries combining d columns
- Also related to nearest neighbour
- Range trees $O(\log^d n + k)$ query
- Layered range trees $O(\log^{d-1} n + k)$ query
- Updates in range trees $O(\log^d n)$ amortized
- Further improvements exist

Range trees: 1D case

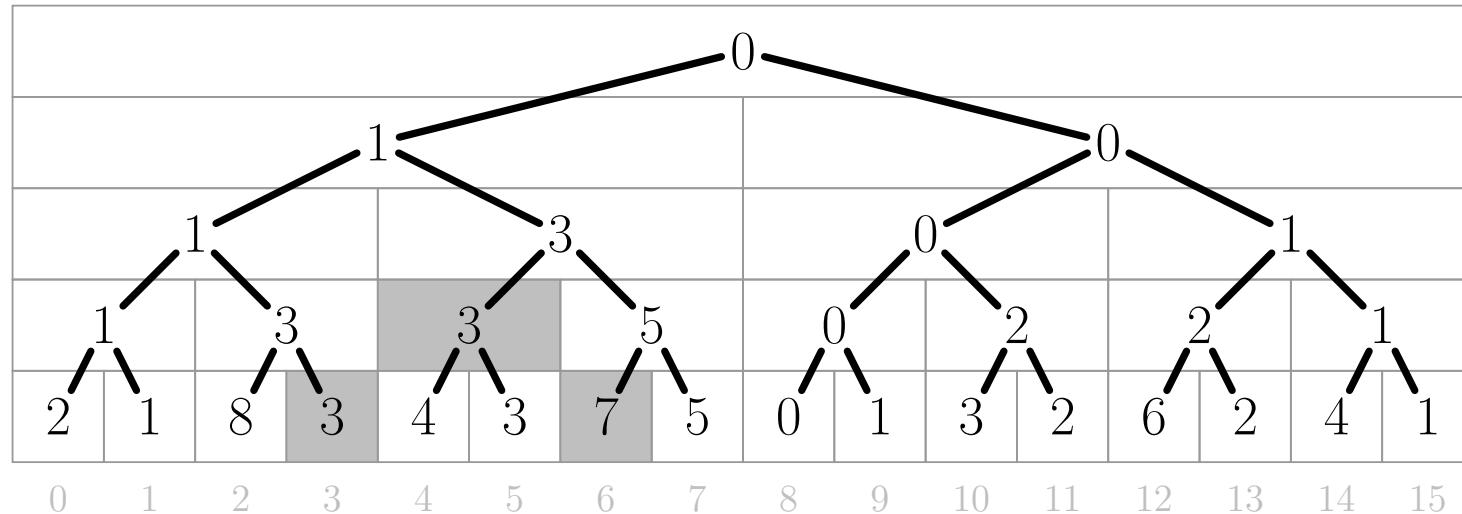
Report/count points in an interval $[a, b]$

- Balanced binary search tree/segment tree
- Points in the leaves
- Internal nodes store maximum in the left subtree and subtree size for fast counting
- Find predecessor of a , successor of b
- Leaves between form the answer

$O(\log n)$ subtrees (canonical decomposition)

Canonical decomposition

Decompose query interval $[x, y)$ to a set of disjoint tree intervals



Canonical decomposition

Decompose query interval $[x, y)$ to a set of disjoint tree intervals

- Current node $[i, j)$, and its left child $[i, k)$
invariant: $[i, j)$ overlaps with $[x, y)$
- If $[i, j) \subseteq [x, y)$, return $\{[i, j)\}$
- $R = \emptyset$
- If $[i, k)$ overlaps with $[x, y)$, recurse on left child, add to R
- If $[k, j)$ overlaps with $[x, y)$, recurse on right child, add to R
- Return R

Range trees: 2D case

- Build BST for x -coordinate
- Consider internal node v
- Build BST tree for subtree rooted at v in y -coordinate
- Each point in $O(\log n)$ y -coord trees
- Search for $[a_1, b_1] \times [a_2, b_2]$:
 - find $O(\log n)$ subtrees for $[a_1, b_1]$ according to x
 - search in each according to y

d dimensions:

- Every node in dimension i has a range tree for remaining dimensions
- Query $O(\log^d n)$, space and preprocessing $O(n \log^{d-1} n)$

Layered range trees: $O(\log^{d-1} n)$ for $d \geq 2$

a.k.a fractional cascading

- Replace y BSTs by sorted arrays
- Root of x BSTs has all points sorted by y in array
- Array in a child a subset of parent's
 - link from parent array to successors in child array
- At the root find $[a_2, b_2]$ in the array
- Follow array links as traversing the tree
- In higher dimensions use this at the last dimension
- Saves $\log n$ factor

Dynamic range trees: outline

- Use scapegoat trees
- Rebalancing: rebuild an entire subtree
- If rebuild linear, $O(\log n)$ amortized updates
 - pay $O(1)$ on each level towards future rebuilds
 - linearly many updates between 2 rebuilds of the same node
- If rebuild $O(n \log n)$, $O(\log^2 n)$ amortized updates
 - pay $O(\log n)$ on each level towards future rebuilds
- In layered range trees: $O(\log^d n)$ amortized update

Review: Scapegoat trees

- Lazy amortized binary search trees
- Do not require balancing information stored in nodes
- Insert and delete $O(\log n)$ amortized
- search $O(\log n)$ worst-case
- Invariant: keep the height of the tree at most $\log_{3/2} n$
- When invariant not satisfied, completely rebuild a subtree

Wavelet tree (Grossi, Gupta, Vitter 2003)

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
S[i]	e	m	a	.	m	a	.	m	a	m	u	.	m	a	m	a	.	m	a	.	e	m	u	\$
B[i]	1	1	0	0	1	0	0	1	0	1	1	0	1	0	1	0	0	1	0	0	1	1	1	0
S0	a.a.a.aa.a.\$	S1	emmmmmummmmemu																					

$$\Sigma_{00} = \{\$\}, \Sigma_{01} = \{., a\}, \Sigma_{010} = \{.\}, \Sigma_{011} = \{a\}$$

$$\Sigma_{10} = \{e\}, \Sigma_{11} = \{m, u\}, \Sigma_{110} = \{m\}, \Sigma_{111} = \{u\}$$

i	0	1	2	3	4	5	6	7	8	9	10	11
S0[i]	a	.	a	.	a	.	a	a	.	a	.	\$
B0[i]	1	1	1	1	1	1	1	1	1	1	1	0
S00	a.a.a.aa.a.		S01	\$								

Store

`B[i] =11001001011010100100110`

$$B0[i] = 111111111110 \quad B1[i] = 011111111011$$

B01[i] = 10101011010 B11[i] = 000100001

2D range searching via wavelet trees

- Points $(x_0, y_0), \dots, (x_{n-1}, y_{n-1})$ s.t. $y_i < y_{i+1}$
- Wavelet tree for "string" $T = x_0, \dots, x_{n-1}$
- Wavelet tree similar to BST/segment tree for x-coordinate:
 - each node an interval
- Before: $\text{rank}(a, i)$: the number of occurrences of a in $T[0..i]$
- Extend to: $\text{rank}(a, b, i)$: the number of occurrences of values from $[a, b]$ in $T[0..i]$
- Canonical decomposition of $[a, b]$ in $O(\log n)$ intervals
- If one of the children $[c, d]$ of the current node is a canonical interval, one binary rank in parent can count $\text{rank}(c, d, i)$ in $O(1)$
- Overall $\text{rank}(a, b, i)$ in $O(\log n)$ time

2D range searching via wavelet trees (cont.)

- Points $(x_0, y_0), \dots, (x_{n-1}, y_{n-1})$ s.t. $y_i < y_{i+1}$
- Wavelet tree for $T = x_0, \dots, x_{n-1}$ + array y_0, \dots, y_{n-1}

Counting points in $[a_1, b_1] \times [a_2, b_2]$:

- Find substring $x_i \dots x_j$ of T corresponding to $[a_2, b_2]$
(binary search in array y)
- Return $\text{rank}(a_1, b_1, j) - \text{rank}(a_1, b_1, i - 1)$
- Counting points in $O(\log n)$, small memory, static
- Reporting points takes $O(\log n)$ per point, can be improved

Exercise

- Consider a static set of points in 2D, each with a cost
(for example hotels...)
- Find the lowest-cost point in a given rectangle
- How to add to layered range trees and to wavelet trees?

Exercise

- Preprocess text T (e.g. to suffix array plus other structures)
- Query: (P, i, j) : find/count occurrences of P in $T[i..j]$
- How can we use range searching for this?