2-INF-237 Vybrané partie z datovych struktur
2-INF-237 Selected Topics in Data Structures

e Instructor: Brona Brejova
e E-mail: brejova@fmph.uniba.sk
e Office: M163

e Course webpage: http://compbio.fmph.uniba.sk/vyuka/vpds/

Partially persistent data structures

Update only current version, query any old version

versions linearly ordered

Arbitrary pointer machine data structure
with at most O(1) incoming pointers per node

and f(m) update, g(n) query

Partially persistent version with node copying

O(f(n)) amortized update, O(g(m)) query

Retroactive data structures

Insert updates to the past, delete past updates,

query at any past time relative to the current set of updates

Search problem:
maintain a set S with insert and delete

support query(x, S)

Decomposable search problem
query(x, A U B) = query(x, A) O query(x, B)

Arbitrary data structure

f(n) update, g(n) query

Totally retroactive version
O(f(m) logn) amortized update, O(g(n) logn) query

Bentley—Ottmann algorithm
for finding intersections of line segments

N line segments, K intersections

Sweepline algorithm, sweeps from left to right

Maintains priority queue of events: start of a line, end of a line, intersection
Balanced binary search tree of segments at current x-coordinate

(2n + k) xInsert, (2n + k) x ExtractMin

O((n+ k) logn) time

Planar point location

e Plane subdivided into regions by non-intersecting straight lines

(planar graph)
e Given point (X, y), which face contains it?
e Examples: regions in a map, GUI elements, ...
e Nearest neighbor via Voronoi diagram
e Static version: preprocess a fixed graph

e Dynamic version: edge added/removed

Vertical ray shooting
e Given set of non-intersecting line segments
e Query: which edge first intersects a vertical ray starting in (x,y)?

e In static case implies planar point location

(each edge keeps face ID)

e First assume that all line segments horizontal

Vertical ray shooting for horizontal line segments (static)

e Sweep with partially persistent balanced BST
Left segment endpoint (x1,Yy): insert y at time x;

Right segment endpoint (x,y): delete y at time X,
e O(nlogmn) time preprocessing
e Given ray from (X, y), search for successor of y at time x

e O(logn) query

Vertical ray shooting for horizontal line segments (dynamic)
e Use retroactive binary search tree
e O(log? n) queries last time, O(logn) version also exists

e Insert line segment (x1,y), (x2,Y):
Insert(Xx1,insert(y))

Insert(x;,delete(y))

e Delete line segment (X1>U)> (X2>U)5
Delete(X1,insert(y))
Delete(x;,delete(y))

Vertical ray shooting with arbitrary segments
e Segments do not cross, but any direction
e Static version still with partially persistent BST

e When searching successor of y at time X,

use comparison function which depends on x
e Dynamic version does not work in O(logn)

Also interesting is ray shooting in arbitrary direction
— no poly-log algorithms known

— motivated by ray tracing

Orthogonal range searching

Maintain a set of points in R4

Query: find points in box [aj, bi] x - -+ X [ag, bg]

existence / count / report k

Static / dynamic case

E.g. database queries combining d columns
Also related to nearest neighbour

Range trees O(log n + k) query

Layered range trees O (logd™"' n + k) query
Updates in range trees O (log¢ 1) amortized

Further improvements exist

10

Range trees: 1D case

Report/count points in an interval [a, b]
e Balanced binary search tree/segment tree
e Points in the leaves

e Internal nodes store maximum in the left subtree and subtree size for

fast counting
e Find predecessor of a, successor of b

e Leaves between form the answer

O(logn) subtrees (canonical decomposition)

11

Canonical decomposition
Decompose query interval [x,) to a set of disjoint tree intervals
/1\ /0\
/N AN SN N
1 3 3 3] 0 2 2 1
/NI N /N A\ NN\ AN
2 1813 4 3.7 5 0 1/3 2 624 1

12

Canonical decomposition

Decompose query interval [x,) to a set of disjoint tree intervals

e Current node [i,j), and its left child [i, k)

invariant: [i, j) overlaps with [x,y)
e If[i,j) C [x,y), return {[i,])}
e R=1
e If [i, k) overlaps with [x, 1), recurse on left child, add to R
e If [K,j) overlaps with [x,), recurse on right child, add to R

e Return R

13

Range trees: 2D case
e Build BST for x-coordinate
e Consider internal node v
e Build BST tree for subtree rooted at v in y-coordinate
e Each pointin O(log n) y-coord trees

e Search for (a7, b1] X [ay, bs]:
—find O(logn) subtrees for [aj, by] according to x

— search in each according to y
d dimensions:
e Every node in dimension 1 has a range tree for remaining dimensions

e Query O(logdn), space and preprocessing O (n logd~" n)

14

Layered range trees: O(log® ' n) ford > 2

a.k.a fractional cascading

Replace y BSTs by sorted arrays
Root of X BSTs has all points sorted by y in array

Array in a child a subset of parent’s

link from parent array to successors in child array
At the root find [ay, bs] in the array

Follow array links as traversing the tree

In higher dimensions use this at the last dimension

Saves log n factor

15

Dynamic range trees: outline

Use scapegoat trees
Rebalancing: rebuild an entire subtree

If rebuild linear, O (log n) amortized updates
—pay O(1) on each level towards future rebuilds

— linearly many updates between 2 rebuilds of the same node

If rebuild O(1.logmn), O(log®) amortized updates

—pay O(logn) on each level towards future rebuilds

In layered range trees: O (log® n) amortized update

16

Review: Scapegoat trees
e Lazy amortized binary search trees
e Do not require balancing information stored in nodes

e Insert and delete O(log) amortized

search O(logn) worst-case
e Invariant: keep the height of the tree at most log; ,

e When invariant not satisfied, completely rebuild a subtree

17

Wavelet tree (Grossi, Gupta, Vitter 2003)
2y = {$> *) a} 2= {e> m, LL}

o 1 2 3 4 5 6 7 8
e m a . m a . m a m u

B(i7 1. 1. 60 0 1 0 O 1 O 1 1 O
a

.a.a.aa.a.s S1 emmmmummmemu

Yoo = 1{$}, Zo1 ={,al, Zoro =1{} ZLo11 ={a}
Yio ={e}, L1 ={myu}, Zy10 ={m} L1717 ={u}

i 0 1 2 3 4 5 o 7 8 9 10 11
s0fiJ] a . a . a . a a . a . S
BO[1] 1 1 1 1 1 1 1 1 1 1 1 0

S00 a.a.a.aa.a. S01 s

Store

B[i] =110010010110101001001110
BO[i]=111111111110 B1[i(]=011111111011
BO1[i]=10101011010 B11[i] = 000100001

18

m
1

a
0

m
1

a
0

0

m
1

a
0

0

e
1

m
1

u
1

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

$
0

2D range searching via wavelet trees

Points (X0, Yo)y -+« (Xn—1,Yn—1) 8.t Yi < Yiq

Wavelet tree for "string” T = X0, ..., Xn_1

Wavelet tree similar to BST/segment tree for x-coordinate:

— each node an interval
Before: rank(a, 1): the number of occurrences of a in T|0..i]

Extend to: rank(a, b, 1): the number of occurrences of values from

[a, bl in T[O..i]
Canonical decomposition of [a, b] in O(log n) intervals

If one of the children [c, d] of the current node is a canonical interval,

one binary rank in parent can count rank(c, d, i) in O(1)

Overall rank(a, b, i) in O(logn) time

19

2D range searching via wavelet trees (cont.)

e Points (X0, Yo)y+++y (Xn_1yYn_1) St. Yi < Yix1

e Wavelet tree for T = Xg,...,Xn_1 +array Yo, ..., Yn_1
Counting points in (a7, b1] X [az, bsl:

e Find substring x; ... X; of T corresponding to [a;, b;]

(binary search in array y)
e Returnrank(aj, br,j) —rank(aj,by,i—1)
e Counting points in O(logn), small memory, static

e Reporting points takes O (log n) per point, can be improved

20

Exercise

e (Consider a static set of points in 2D, each with a cost

(for example hotels...)
e Find the lowest-cost point in a given rectangle

e How to add to layered range trees and to wavelet trees?

21

Exercise
e Preprocess text T (e.g. to suffix array plus other structures)
e Query: (P, 1,j): find/count occurrences of P in T|[i..j]

e How can we use range searching for this?

22

