
2-INF-237 Vybrané partie z dátových štruktúr

2-INF-237 Selected Topics in Data Structures

• Instructor: Broňa Brejová

• E-mail: brejova@fmph.uniba.sk

• Office: M163

• Course webpage: http://compbio.fmph.uniba.sk/vyuka/vpds/

1



Partially persistent data structures

Update only current version, query any old version

versions linearly ordered

Arbitrary pointer machine data structure

with at most O(1) incoming pointers per node

and f(n) update, g(n) query

Partially persistent version with node copying

O(f(n)) amortized update, O(g(n)) query

2



Retroactive data structures

Insert updates to the past, delete past updates,

query at any past time relative to the current set of updates

Search problem:

maintain a set S with insert and delete

support query(x, S)

Decomposable search problem

query(x,A ∪ B) = query(x,A)� query(x, B)

Arbitrary data structure

f(n) update, g(n) query

Totally retroactive version

O(f(n) logn) amortized update, O(g(n) logn) query

3



Bentley–Ottmann algorithm

for finding intersections of line segments

n line segments, k intersections

Sweepline algorithm, sweeps from left to right

Maintains priority queue of events: start of a line, end of a line, intersection

Balanced binary search tree of segments at current x-coordinate

(2n+ k)×Insert, (2n+ k)×ExtractMin

O((n+ k) logn) time

4



Planar point location

• Plane subdivided into regions by non-intersecting straight lines

(planar graph)

• Given point (x, y), which face contains it?

• Examples: regions in a map, GUI elements, . . .

• Nearest neighbor via Voronoi diagram

• Static version: preprocess a fixed graph

• Dynamic version: edge added/removed

5



Vertical ray shooting

• Given set of non-intersecting line segments

• Query: which edge first intersects a vertical ray starting in (x, y)?

• In static case implies planar point location

(each edge keeps face ID)

• First assume that all line segments horizontal

6



Vertical ray shooting for horizontal line segments (static)

• Sweep with partially persistent balanced BST

Left segment endpoint (x1, y): insert y at time x1

Right segment endpoint (x2, y): delete y at time x2

• O(n logn) time preprocessing

• Given ray from (x, y), search for successor of y at time x

• O(logn) query

7



Vertical ray shooting for horizontal line segments (dynamic)

• Use retroactive binary search tree

• O(log2 n) queries last time, O(logn) version also exists

• Insert line segment (x1, y), (x2, y):

Insert(x1,insert(y))

Insert(x2,delete(y))

• Delete line segment (x1, y), (x2, y):

Delete(x1,insert(y))

Delete(x2,delete(y))

8



Vertical ray shooting with arbitrary segments

• Segments do not cross, but any direction

• Static version still with partially persistent BST

• When searching successor of y at time x,

use comparison function which depends on x

• Dynamic version does not work in O(logn)

Also interesting is ray shooting in arbitrary direction

– no poly-log algorithms known

– motivated by ray tracing

9



Orthogonal range searching

• Maintain a set of points in Rd

• Query: find points in box [a1, b1]× · · · × [ad, bd]

existence / count / report k

• Static / dynamic case

• E.g. database queries combining d columns

• Also related to nearest neighbour

• Range trees O(logd n+ k) query

• Layered range trees O(logd−1 n+ k) query

• Updates in range trees O(logd n) amortized

• Further improvements exist

10



Range trees: 1D case

Report/count points in an interval [a, b]

• Balanced binary search tree/segment tree

• Points in the leaves

• Internal nodes store maximum in the left subtree and subtree size for

fast counting

• Find predecessor of a, successor of b

• Leaves between form the answer

O(logn) subtrees (canonical decomposition)

11



Canonical decomposition

Decompose query interval [x, y) to a set of disjoint tree intervals

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 1 8 3 4 3 7 5 0 1 3 2 6 2 4 1

1 3 3 5 0 2 2 1

1 3 0 1

1 0

0

12



Canonical decomposition

Decompose query interval [x, y) to a set of disjoint tree intervals

• Current node [i, j), and its left child [i, k)

invariant: [i, j) overlaps with [x, y)

• If [i, j) ⊆ [x, y), return {[i, j)}

• R = ∅

• If [i, k) overlaps with [x, y), recurse on left child, add to R

• If [k, j) overlaps with [x, y), recurse on right child, add to R

• Return R

13



Range trees: 2D case

• Build BST for x-coordinate

• Consider internal node v

• Build BST tree for subtree rooted at v in y-coordinate

• Each point in O(logn) y-coord trees

• Search for [a1, b1]× [a2, b2]:

– find O(logn) subtrees for [a1, b1] according to x

– search in each according to y

d dimensions:

• Every node in dimension i has a range tree for remaining dimensions

• Query O(logd n), space and preprocessing O(n logd−1 n)

14



Layered range trees: O(logd−1 n) for d ≥ 2

a.k.a fractional cascading

• Replace y BSTs by sorted arrays

• Root of x BSTs has all points sorted by y in array

• Array in a child a subset of parent’s

link from parent array to successors in child array

• At the root find [a2, b2] in the array

• Follow array links as traversing the tree

• In higher dimensions use this at the last dimension

• Saves logn factor

15



Dynamic range trees: outline

• Use scapegoat trees

• Rebalancing: rebuild an entire subtree

• If rebuild linear, O(logn) amortized updates

– pay O(1) on each level towards future rebuilds

– linearly many updates between 2 rebuilds of the same node

• If rebuild O(n logn), O(log2 n) amortized updates

– pay O(logn) on each level towards future rebuilds

• In layered range trees: O(logd n) amortized update

16



Review: Scapegoat trees

• Lazy amortized binary search trees

• Do not require balancing information stored in nodes

• Insert and delete O(logn) amortized

search O(logn) worst-case

• Invariant: keep the height of the tree at most log3/2 n

• When invariant not satisfied, completely rebuild a subtree

17



Wavelet tree (Grossi, Gupta, Vitter 2003)

Σ0 = {$, ., a} Σ1 = {e,m, u}

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

S[i] e m a . m a . m a m u . m a m a . m a . e m u $

B[i] 1 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 0

S0 a.a.a.aa.a.$ S1 emmmmummmemu

Σ00 = {$}, Σ01 = {., a}, Σ010 = {.}, Σ011 = {a}

Σ10 = {e}, Σ11 = {m,u}, Σ110 = {m}, Σ111 = {u}

i 0 1 2 3 4 5 6 7 8 9 10 11

S0[i] a . a . a . a a . a . $

B0[i] 1 1 1 1 1 1 1 1 1 1 1 0

S00 a.a.a.aa.a. S01 $

Store

B[i] =110010010110101001001110

B0[i] = 111111111110 B1[i] = 011111111011

B01[i] = 10101011010 B11[i] = 000100001

18



2D range searching via wavelet trees

• Points (x0, y0), . . . , (xn−1, yn−1) s.t. yi < yi+1

• Wavelet tree for ”string” T = x0, . . . , xn−1

• Wavelet tree similar to BST/segment tree for x-coordinate:

– each node an interval

• Before: rank(a, i): the number of occurrences of a in T [0..i]

• Extend to: rank(a, b, i): the number of occurrences of values from

[a, b] in T [0..i]

• Canonical decomposition of [a, b] in O(logn) intervals

• If one of the children [c, d] of the current node is a canonical interval,

one binary rank in parent can count rank(c, d, i) in O(1)

• Overall rank(a, b, i) in O(logn) time

19



2D range searching via wavelet trees (cont.)

• Points (x0, y0), . . . , (xn−1, yn−1) s.t. yi < yi+1

• Wavelet tree for T = x0, . . . , xn−1 + array y0, . . . , yn−1

Counting points in [a1, b1]× [a2, b2]:

• Find substring xi . . . xj of T corresponding to [a2, b2]

(binary search in array y)

• Return rank(a1, b1, j) − rank(a1, b1, i− 1)

• Counting points in O(logn), small memory, static

• Reporting points takes O(logn) per point, can be improved

20



Exercise

• Consider a static set of points in 2D, each with a cost

(for example hotels...)

• Find the lowest-cost point in a given rectangle

• How to add to layered range trees and to wavelet trees?

21



Exercise

• Preprocess text T (e.g. to suffix array plus other structures)

• Query: (P, i, j): find/count occurrences of P in T [i..j]

• How can we use range searching for this?

22


