
2-INF-237 Vybrané partie z dátových štruktúr

2-INF-237 Selected Topics in Data Structures

• Instructor: Broňa Brejová

• E-mail: brejova@fmph.uniba.sk

• Office: M163

• Course webpage: http://compbio.fmph.uniba.sk/vyuka/vpds/

1



Model of computation: word RAM

• Consider universe U = {0, . . . , 2w − 1}

• Word: w-bit unsigned integer

• Input, output, queries, etc. are given in words

• Memory is an array of m cells of size w

• Words can serve as pointers (indices)

• We need w ≥ lg(m), otherwise we cannot index whole memory

• If n is the problem size, this implies w ≥ lg(n)

• Program may use “C-style” operations in O(1) on words,

such as +,−, ∗, /,%,&, |,≫,≪, <,>

2



Predecessor problem

• Maintain a set words over universe U

• Operations insert, delete, predecessor, successor

• Predecessor of x ∈ U: max{y ∈ S | y < x}

n: the number of elements in the set

w: size of word

u = 2w: size of universe

Binary search trees: O(logn) time, O(n) words

Rank/select (static only): O(1) time, O(2w/w) words

Today vEB: O(logw) time, Ω(2w) words

Improvements: O(logw) time, O(n) words

Note: if u = nO(1), we have O(logw) = O(log logn)

3



van Emde Boas tree (vEB) (1977)

Goal: running time governed by recurrence

T(w) = T(w/2) +O(1)

T(u) = T(
√
u) +O(1)

Result: T(w) = O(logw), T(u) = O(log logu)

Approach: Split U into blocks of size
√
u or split words into halves

Hierarchical coordinates: x = 〈b, i〉
where b is block ID, i ID within block

x = b
√
u+ i

b = x/
√
u

i = x%
√
u

4



van Emde Boas data structure

Structure V for universe size u contains:

• Array V .blocks of size
√
u

– each element pointer to vEB for universe of size
√
u

• Another vEB V.summary for universe of size
√
u

– contains as elements IDs of non-empty blocks

• Integer V .max contains maximum element in V

• Integer V .min contains minimum element in V

– this minimum not stored elsewhere (blocks/summary)

– this is important for achieving running time

5



Example of a van Emde Boas tree

w = 4, {1 | 4, 5, 6, 7 | 9, 10 | 12, 13, 14}

Root structure

min 1, max 14

summary {1, 2, 3}

blocks [∅, {0, 1, 2, 3}, {1, 2}, {0, 1, 2}]
Subtrees for w = 2

For set {1 | 2, 3}

min 1, max 3, summary {1} blocks [∅, {0, 1}]
For set ∅
min None, max None, summary ∅ blocks [∅, ∅]
For set {0, 1 | 2, 3}

min 0, max 3, summary {0, 1} blocks [{1}, {0, 1}]

. . .

6



Predecessor query

1 Predecessor (V, x = <b , i >) {

2 i f (V . b locks [ b ] . min != None && i > V. b locks [ b ] . min ) {

3 return <b , Predecessor (V . b locks [ b ] , i ) > ;

4 } else {

5 bb = Predecessor (V . summary , b ) ;

6 i f ( bb == None ) {

7 i f ( x > V. min ) return V. min ;

8 else return None ;

9 }

10 return <bb , V . b locks [ bb ] . max>;

11 }

12 }

7



Insert operation

1 I n s e r t (V, x = <b , i >) {

2 i f (V . min == None ) {

3 V . min = V.max = x ;

4 return ;

5 }

6 i f ( x < V. min ) swap ( x , V . min ) ;

7 i f ( x > V.max) V . max = x ;

8 i f (V . b locks [ b ] . min == None ) {

9 I n s e r t (V . summary , b ) ;

10 }

11 I n s e r t (V . b locks [ b ] , i ) ;

12 }

8



vEB trees via hash tables

Improving memory:

– do not store empty vEB structures

– array V.blocks replaced by a hash table with dynamic perfect hashing

The memory is proportional to the number of vEB structures:

– hash table proportional to the number of children

– charge space in hash table to children, the rest O(1) per node

The number of vEB structures O(n logw):

– charge each vEB to the minimum element

– in summary represent each block by minimum

– each element minimum at most twice on one level

Total memory O(n logw) words,

can be improved to O(n) by careful packing of shorter numbers

9



x-fast trie, Willard 1983

Each element of S a binary string of length w

Store all prefixes of all elements of S in a hash table

Overall O(nw) words of space

For each prefix store minimum and maximum element with this prefix

For each element of the set store its predecessor and successor

10



Example of x-fast trie

w = 4, {1, 4, 5, 6, 7, 9, 10, 12, 13, 14}

View as trie:

1

1 1

1 1 1 1

1 0 1 1 1 1 1 1

0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0

Prefixes:

ǫ, 0, 1, 00, 01, 10, 11, 000, 010, 011, 100, 101, 110, 111,

0001, 0100, 0101, 0110, 0111, 1001, 1010, 1100, 1101, 1110

11



Predecessor in x-fast trie

1 Predecessor (H, x ) {

2 i f ( x i n H) { return H[ x ] . predecessor }

3 y = longes t p r e f i x o f x i n H / / by b inary search

4 i f ( x == y1u ) { return H[ y ] . max }

5 else return H[H[ y ] . min ] . predecessor

6 }

Time O(logw) with perfect hashing

12



Insert to x-fast trie

• Need to insert/update all w+ 1 prefixes of x

• For each prefix update min and max

• Update predecessor and successor for x and its neighbors

• O(w) expected time with perfect hashing

13



y-fast trie, Willard 1983

Disadvantages of x-fast trie:

space O(nw) rather than O(n)

insert time O(w) rather than O(logw)

Improve by bucketing:

Maintain buckets, each containing Θ(w) successive elements of the set

Within bucket store data in a balanced BST

Minimum of each bucket inserted to a x-fast trie or improved vEB

Size of this structure is O(nw/w) = O(n)

Combined sizes of trees O(n)

14



y-fast trie operations

Maintain buckets, each containing Θ(w) successive elements of the set

Within bucket store data in a balanced BST

Minimum of each bucket inserted to a x-fast trie or improved vEB

Predecessor query:

find correct bucket, search in BST, both O(logw)

Insert:

find correct bucket, if enough space, add in O(logw),

otherwise split bucket into two, insert another element to main structure

Second case costs O(w) but happens infrequently, amortize

15


