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Model of computation: word RAM

• Consider universe U = {0, . . . , 2w − 1}

• Word: w-bit unsigned integer

• Input, output, queries, etc. are given in words

• Memory is an array of m cells of size w

• Words can serve as pointers (indices)

• We need w ≥ lg(m), otherwise we cannot index whole memory

• If n is the problem size, this implies w ≥ lg(n)

• Program may use “C-style” operations in O(1) on words,

such as +,−, ∗, /,%,&, |,≫,≪, <,>
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Predecessor problem

• Maintain a set words over universe U

• Operations insert, delete, predecessor, successor

• Predecessor of x ∈ U: max{y ∈ S | y < x}

n: the number of elements in the set

w: size of word

u = 2w: size of universe

Binary search trees: O(logn) time, O(n) words

Rank/select (static only): O(1) time, O(2w/w) words

Today vEB: O(logw) time, Ω(2w) words

Improvements: O(logw) time, O(n) words

Note: if u = nO(1), we have O(logw) = O(log logn)
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van Emde Boas tree (vEB) (1977)

Goal: running time governed by recurrence

T(w) = T(w/2) +O(1)

T(u) = T(
√
u) +O(1)

Result: T(w) = O(logw), T(u) = O(log logu)

Approach: Split U into blocks of size
√
u or split words into halves

Hierarchical coordinates: x = 〈b, i〉
where b is block ID, i ID within block

x = b
√
u+ i

b = x/
√
u

i = x%
√
u
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van Emde Boas data structure

Structure V for universe size u contains:

• Array V .blocks of size
√
u

– each element pointer to vEB for universe of size
√
u

• Another vEB V.summary for universe of size
√
u

– contains as elements IDs of non-empty blocks

• Integer V .max contains maximum element in V

• Integer V .min contains minimum element in V

– this minimum not stored elsewhere (blocks/summary)

– this is important for achieving running time
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Example of a van Emde Boas tree

w = 4, {1 | 4, 5, 6, 7 | 9, 10 | 12, 13, 14}

Root structure

min 1, max 14

summary {1, 2, 3}

blocks [∅, {0, 1, 2, 3}, {1, 2}, {0, 1, 2}]
Subtrees for w = 2

For set {1 | 2, 3}

min 1, max 3, summary {1} blocks [∅, {0, 1}]
For set ∅
min None, max None, summary ∅ blocks [∅, ∅]
For set {0, 1 | 2, 3}

min 0, max 3, summary {0, 1} blocks [{1}, {0, 1}]

. . .
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Predecessor query

1 Predecessor (V, x = <b , i >) {

2 i f (V . b locks [ b ] . min != None && i > V. b locks [ b ] . min ) {

3 return <b , Predecessor (V . b locks [ b ] , i ) > ;

4 } else {

5 bb = Predecessor (V . summary , b ) ;

6 i f ( bb == None ) {

7 i f ( x > V. min ) return V. min ;

8 else return None ;

9 }

10 return <bb , V . b locks [ bb ] . max>;

11 }

12 }
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Insert operation

1 I n s e r t (V, x = <b , i >) {

2 i f (V . min == None ) {

3 V . min = V.max = x ;

4 return ;

5 }

6 i f ( x < V. min ) swap ( x , V . min ) ;

7 i f ( x > V.max) V . max = x ;

8 i f (V . b locks [ b ] . min == None ) {

9 I n s e r t (V . summary , b ) ;

10 }

11 I n s e r t (V . b locks [ b ] , i ) ;

12 }
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vEB trees via hash tables

Improving memory:

– do not store empty vEB structures

– array V.blocks replaced by a hash table with dynamic perfect hashing

The memory is proportional to the number of vEB structures:

– hash table proportional to the number of children

– charge space in hash table to children, the rest O(1) per node

The number of vEB structures O(n logw):

– charge each vEB to the minimum element

– in summary represent each block by minimum

– each element minimum at most twice on one level

Total memory O(n logw) words,

can be improved to O(n) by careful packing of shorter numbers
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x-fast trie, Willard 1983

Each element of S a binary string of length w

Store all prefixes of all elements of S in a hash table

Overall O(nw) words of space

For each prefix store minimum and maximum element with this prefix

For each element of the set store its predecessor and successor
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Example of x-fast trie

w = 4, {1, 4, 5, 6, 7, 9, 10, 12, 13, 14}

View as trie:

1

1 1

1 1 1 1

1 0 1 1 1 1 1 1

0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0

Prefixes:

ǫ, 0, 1, 00, 01, 10, 11, 000, 010, 011, 100, 101, 110, 111,

0001, 0100, 0101, 0110, 0111, 1001, 1010, 1100, 1101, 1110
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Predecessor in x-fast trie

1 Predecessor (H, x ) {

2 i f ( x i n H) { return H[ x ] . predecessor }

3 y = longes t p r e f i x o f x i n H / / by b inary search

4 i f ( x == y1u ) { return H[ y ] . max }

5 else return H[H[ y ] . min ] . predecessor

6 }

Time O(logw) with perfect hashing
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Insert to x-fast trie

• Need to insert/update all w+ 1 prefixes of x

• For each prefix update min and max

• Update predecessor and successor for x and its neighbors

• O(w) expected time with perfect hashing
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y-fast trie, Willard 1983

Disadvantages of x-fast trie:

space O(nw) rather than O(n)

insert time O(w) rather than O(logw)

Improve by bucketing:

Maintain buckets, each containing Θ(w) successive elements of the set

Within bucket store data in a balanced BST

Minimum of each bucket inserted to a x-fast trie or improved vEB

Size of this structure is O(nw/w) = O(n)

Combined sizes of trees O(n)
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y-fast trie operations

Maintain buckets, each containing Θ(w) successive elements of the set

Within bucket store data in a balanced BST

Minimum of each bucket inserted to a x-fast trie or improved vEB

Predecessor query:

find correct bucket, search in BST, both O(logw)

Insert:

find correct bucket, if enough space, add in O(logw),

otherwise split bucket into two, insert another element to main structure

Second case costs O(w) but happens infrequently, amortize
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