
2-INF-237 Vybrané partie z dátových štruktúr

2-INF-237 Selected Topics in Data Structures

• Instructor: Broňa Brejová

• E-mail: brejova@fmph.uniba.sk

• Office: M163

• Course webpage: http://compbio.fmph.uniba.sk/vyuka/vpds/

1

Full-text keyword search

Plnotextové vyhl’adávanie kl’účových slov

Problem statement

Document: Sequence of words

Goal: Create an index for a static set of documents to answer the following

queries efficiently.

Query: Given a word w, find all documents containing w.

Example:

Document 0: Ema ma mamu.

Document 1: Mama ma Emu.

Document 2: Mama sa ma. Ema sa ma.

Query Mama returns documents 1,2.

2

Full-text keyword search

Plnotextové vyhl’adávanie kl’účových slov

Problem statement

Document: Sequence of words

Goal: Create an index for a static set of documents to answer the following

queries efficiently.

Query: Given a word w, find all documents containing w.

Practical issues

Document: webpage/email/book/chapter/abstract/. . .

Preprocessing: lower/upper case, stemming (úprava na základný tvar),

what is a word/word separator?, synonyms, . . .

If there are many documents, how to rank them? (Information/text retrieval)

3

Preprocessing: divide into words, convert to lowercase, . . .

Document 0: ema, ma, mamu

Document 1: mama, ma, emu

Document 2: mama, sa, ma, ema, sa, ma

Inverted index: for each word a list of occurrences (document IDs)

ema: 0,2

emu: 1

ma: 0,1,2

mama: 1,2

mamu: 0

sa: 2

4

Implementing inverted index with balanced search trees

Balanced binary search tree, (e.g. red-black tree):

search, insert, delete using O(logn) comparisons

ma

emu

mama

mamu

ema sa

0,2

1

0,1,2

0

1,2 2

5

Trie (lexikografický strom)

Represents a set of words

Edges labeled with characters

A node represents string read along the path from the root

Root represents empty string

In each node store flag if node in the set, plus other data

e

m

a u

m

a

s

a
a

u

m

6

Inverted index implemented as a trie

e

m

a u

m

a

s

a
a

u

m

0,2 1

1,2 0

0,1,2 2

7

Searching for word w in a trie

1 node = roo t ;

2 for (i =0; i <m; i ++) {

3 node = node−>c h i l d [w[i]] ;

4 i f (! node) return emp ty_ l i s t ;

5 }

6 return node−> l i s t ;

e

m

a u

m

a

s

a
a

u

m

0,2 1

1,2 0

0,1,2 2

8

Inserting word w from document d to a trie

1 node = roo t ;

2 for (i =0; i <m; i ++) {

3 i f (! node−>c h i l d [w[i]]) {

4 node−>c h i l d [w[i]] = new node ;

5 }

6 node = node−>c h i l d [w[i]] ;

7 }

8 node−> l i s t . add (d)

e

m

a u

m

a

s

a
a

u

m

0,2 1

1,2 0

0,1,2 2

What about delete?

9

Trie

Assume word of length m, small alphabet

Insert, search, delete in O(m) time if alphabet is small

How to store each node if alphabet large?

e

m

a u

m

a

s

a
a

u

m

10

Trie

In each node: map from alphabet to pointers to children nodes

Implementation of this map for an alphabet of size σ:

Search Insert Memory

Array of size σ O(m) O(mσ) O(Dσ)

Sorted array O(m logσ) O(m logσ+ σ) O(D)

Bin. search tree O(m logσ) O(m logσ) O(D)

D – total length of all words

m – length of the word to be searched/inserted

σ – alphabet size

11

Implementations of inverted index

Query Preprocessing

Binary search tree (balanced) O(m logn+ p) O(mN logn)

Hashing - expected/average case O(m+ p) O(mN)

Trie O(m logσ+ p) O(mN logσ)

m – max. length of a word

n – the number of distinct words

N – total number of words

σ – alphabet size

p – the number of documents found

12

Queries with multiple keywords

Searching with 2 keywords (connected by AND)

Intersection of two lists of occurrences

Assume input lists sorted (by some criterion)

Lengths of lists m and n (m ≤ n)

Any ideas?

13

Queries with multiple keywords

Find intersection of two sorted arrays (lengths m < n)

• Linear-time merge O(m+ n)

• m-times binary search O(m logn)

• Doubling search O(m log
n
m
)

More than two arrays: add one by one, or use a different algorithm

Also possibly preprocess sets for faster answers [Cohen, Porat 2010]

14

Applications of tries

Work with individual words:

• Keyword search

• Spell-checking

• Counting word frequencies

Also used in multiple pattern search (Aho-Corasick algorithm)

and LZW compression

e

m

a u

m

a

s

a
a

u

m

15

