2-INF-237 Vybrané partie z dátových štruktúr 2-INF-237 Selected Topics in Data Structures

• Instructor: Broňa Brejová

• E-mail: brejova@fmph.uniba.sk

• Office: M163

Course webpage: http://compbio.fmph.uniba.sk/vyuka/vpds/

Recall: binary search trees

- Basic dictionary operations: insert, delete, search
- Keys can be compared with \leq (totally ordered set)
- Every node stores one item and has 0-2 children
- All nodes in the left subtree of a node with key x have value < x
- All nodes in the right subtree of a node with key x have value > x
- Inorder traversal lists keys in increasing order

Binary search trees: running time

- Insert, delete, search: O(h) where h is the height of the tree
- Best case: $h = \Theta(\log n)$
- Worst case: $h = \Theta(n)$ (tree is a path)
- Keys inserted in random order: $h = \Theta(\log n)$ average
- Balanced trees: $h = \Theta(\log n)$
 - examples: AVL, red-black trees
 - keep balancing information in each node
 - complex rules for insert and delete
 - basic step: node rotation (switches parent and child, rearranges their subtrees to maintain correct order of keys)

Today: two tree data structures with $O(\log n)$ amortized time

Scapegoat trees

scapegoat = osoba, na ktorú zhodíme vinu, obetný baránok

- Lazy amortized binary search trees
- Do not require balancing information stored in nodes
- Insert and delete O(log n) amortized
 search O(log n) worst-case
- Invariant: keep the height of the tree at most $\log_{3/2} n$ Note: 3/2 can be changed to $1/\alpha$ for $\alpha \in (1/2, 1)$
- Let D(v) denotes the size of subtree rooted at v
- I. Galperin, R.L.Rivest. Scapegoat trees. SODA 1993 Similar idea also A.Andersson 1989

Scapegoat trees, lemma

Lemma 1. If a node ν in a tree with π nodes is in depth greater than $\log_{3/2} \pi$, then on the path from ν to the root there is a node π and its parent p such that $D(\pi)/D(p) > 2/3$.

Let nodes on the path from ν to the root be $\nu_k, \nu_{k-1}, ... \nu_0$, where $\nu_k = \nu$ and ν_0 is the root.

Scapegoat trees, example of use

Scapegoat trees useful when rotations cannot be done fast (additional information maintained in the nodes)

Goal: maintain a sequence of elements (conceptually a linked list).

Insert gets a pointer to a node, inserts a new node before it, returns pointer to the new node.

Compare gets pointers to two nodes, decides which is earlier in the list.

Idea: store in a scapegoat tree, key is the position in the list. Each node holds the path from the root as a binary number.

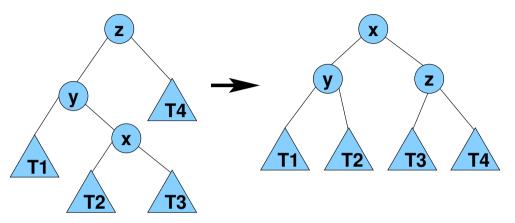
Details?

Splay trees

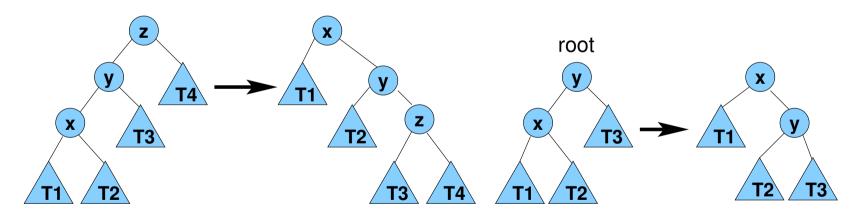
Sleator and Tarjan 1985

- Binary search tree
- Amortized time $O(\log n)$ for each operation
- No balancing information
- The tree can have in principle any shape
- After searching for node x, move node x to root
- ullet This is done by **splaying node** χ
- Splaying uses rotations in a prescribed way

Splay operation for node χ : three cases



zig-zag case: same as rotate x twice



zig-zig case: same as rotate y, rotate x

zig case: rotate x

Repeat until x becomes root

Amortized analysis of splaying

Real cost: the number of rotations

D(x): the size of the subtree rooted at x

$$r(x) = \lg(D(x))$$
 (rank of node x)

$$\Phi(\mathsf{T}) = \sum\nolimits_{\mathsf{x} \in \mathsf{T}} \mathsf{r}(\mathsf{x})$$

Amortized analysis of splaying: exercise

D(x): the size of the subtree rooted at x

$$r(x) = lg(D(x))$$
 (rank of node x)

$$\Phi(\mathsf{T}) = \sum_{\mathsf{x} \in \mathsf{T}} \mathsf{r}(\mathsf{x})$$

Questions:

What is the potential of a path with n nodes?

What is the potential of a complete binary tree of height $\mathfrak m$ and

$$n = 2^{m+1} - 1$$
?

(asymptotic answers in Θ notation)

Amortized analysis of splaying

Real cost: the number of rotations

D(x): the size of the subtree rooted at x

$$r(x) = \lg(D(x))$$
 (rank of node x)

$$\Phi(\mathsf{T}) = \sum_{\mathsf{x} \in \mathsf{T}} \mathsf{r}(\mathsf{x})$$

Lemma 1. Consider one step of splaying x (1 or 2 rotations).

Let r(x) be the rank of x before splaying, r'(x) after splaying.

Amortized cost of one step of splaying is then at most

$$3(r'(x) - r(x))$$
 for zig-zag and zig-zig

$$3(r'(x) - r(x)) + 1$$
 for zig

Lemma 2. Amortized cost of splaying x to the root in a tree with n nodes is $O(\log n)$.

Amortized analysis of splaying

Real cost: the number of rotations

D(x): the size of the subtree rooted at x

$$r(x) = lg(D(x))$$
 (rank of node x)

$$\Phi(\mathsf{T}) = \sum_{\mathsf{x} \in \mathsf{T}} \mathsf{r}(\mathsf{x})$$

Lemma 2. Amortized cost of splaying x to the root in a tree with n nodes is $O(\log n)$.

Theorem. Amortized cost of insert, search and delete in a splay tree is $O(\log n)$.

Splay tree operations (proof of Theorem)

Real cost c in amortized analysis: the number of rotations In each operation keep running time O(1+c)

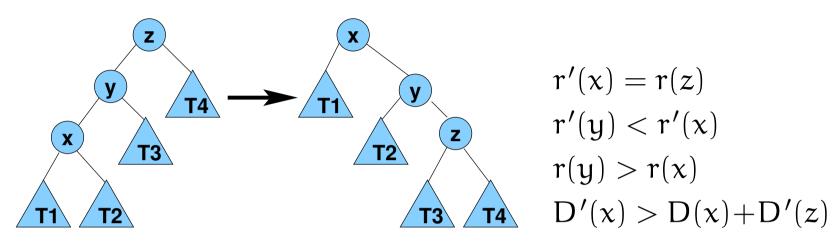
Search(x): walk down to x,

then splay x or the last visited node if x not found

Insert(x): insert x as in unbalanced BST, then splay x Inserting increases potential!

Delete(x): delete x as in unbalanced BST this may in fact delete node for the successor of x if x has 2 children splay the parent of the deleted node Deleting does not increase potential

Proof of Lemma 1, zig-zig case



zig-zig case: same as rotate y, rotate x

Want: $\hat{\mathbf{c}} \leq 3(\mathbf{r}'(\mathbf{x}) - \mathbf{r}(\mathbf{x}))$

Have: $\hat{c} = 2 + r'(x) + r'(y) + r'(z) - r(x) - r(y) - r(z)$

Recall: Ig is concave and so $\frac{\lg \alpha + \lg b}{2} \le \lg \frac{\alpha + b}{2}$ and if $\alpha + b \le 1$, $\lg \alpha + \lg b \le -2$

Weighted amortized analysis of splaying

Assign each node x fixed weight w(x) > 0

D(x): the sum of weights in the subtree rooted at x

$$r(x) = \lg(D(x))$$
 (rank of node x)

$$\Phi(\mathsf{T}) = \sum_{\mathsf{x} \in \mathsf{T}} \mathsf{r}(\mathsf{x})$$

Weighted version of Lemma 2:

Amortized cost of splaying x to the root is

$$1+3(r(t)-r(x))=O\left(1+\log\frac{D(t)}{D(x)}\right)$$
 , where t is the original root before splaying.

Static optimality lemma

Weighted version of Lemma 2: Amortized cost of splaying x to the root is $1+3(r(t)-r(x))=O\left(1+\log\frac{D(t)}{D(x)}\right)$ where t is the original root before splaying.

Static optimality theorem: Starting with a tree with $\mathfrak n$ nodes, execute $\mathfrak m$ find operations where find(x) is done $q(x) \geq 1$ times. The total access time is

$$O\left(m + \sum_{x} q(x) \log \frac{m}{q(x)}\right) = O(m(1 + H)),$$

where H is the entropy of the sequence of operations.

Note: Lower bound for a static tree is $\Omega(mH)$.

Sequential access theorem

Sequential access theorem: (Tarjan 1985, Elmasry 2004)

Starting from any tree with n nodes, splaying each node to the root once in the increasing order of the keys has total time O(n).

Note: trivial upper bound $O(n \log n)$

Collection of splay trees

The following operations can be done in $O(\log n)$ amortized time (each operation gets pointer to a node)

- findMin(v): find minimum element $\mathfrak m$ in the tree containing $\mathfrak v$ and make it root of that tree.
- join(v, w): all elements in the tree of v must be smaller than all elements in the tree of w. Join these two trees into one.
- splitAfter(v): split tree containing v into 2 trees, one containing keys $\leq v$, one containing keys > v, return root of the second tree
- splitBefore(ν): split tree containing ν into 2 trees, one containing keys $< \nu$, one containing keys $\geq \nu$, return root of the first tree

Recall: Union/find

Maintains a collection of disjoint sets, supports operations

- union(v, w): connects sets containing v and w
- find(v): returns representative element of set containing v (can be used to test of v and w are in the same set)

Maintains connected components as we add edges to the graph Useful in Kruskal's algorithm for minimum spanning tree

Exercise: implement as a collection of splay trees

Union/find implementation

- Each set a tree (non-binary)
- Each node v has a pointer to its parent v.p
- find(v) follows parent pointers to the root, returns the root
- union(v, w): use find for v and w and joins one root as a child of other

Improvements:

- Keep track of tree height and always join shorter tree below higher tree
- Path compression in find

Amortized time $O(\alpha(m+n,n))$ where α is inverse Ackermann function, extremely slowly growing (n is the number of elements, m the number of queries).

Link/cut trees

Maintain a collection of disjoint rooted trees on n nodes

- findRoot(ν): find root of the tree containing ν
- link(v, w): make w a child of v (w a root, v not in tree of w)
- cut(v): cut edge connecting v to its parent (v not a root)

 $O(\log n)$ amortized per operation.

We will show $O(\log^2 n)$ amortized time.

Can be also modified to achieve worst-case $O(\log n)$ time.

More operations can be added, e.g. weights in nodes.

Disjoint paths

- findPathHead(ν): highest element on path containing ν
- linkPaths(v, w): join paths containing v and w (head of v's path will remain head)
- splitPathAbove(ν): remove edge connecting ν to its parent p, return some node in the path containing p
- splitPathBelow(v): remove edge connecting v to its child c, return some node in the path containing c

Can be done in $O(\log n)$ amortized per operation using a collection of splay trees.

Collection of splay trees

The following operations can be done in $O(\log n)$ amortized time (each operation gets pointer to a node)

- findMin(v): find minimum element $\mathfrak m$ in the tree containing $\mathfrak v$ and make it root of that tree.
- join(v, w): all elements in the tree of v must be smaller than all elements in the tree of w. Join these two trees into one.
- splitAfter(ν): split tree containing ν into 2 trees, one containing keys $\leq \nu$, one containing keys $> \nu$, return root of the second tree
- splitBefore(ν): split tree containing ν into 2 trees, one containing keys $< \nu$, one containing keys $\geq \nu$, return root of the first tree

Link/cut trees

Maintain a collection of disjoint rooted trees on n nodes

- findRoot(ν): find root of the tree containing ν
- link(v, w): make w a child of v (w a root, v not in tree of w)
- cut(v): cut edge connecting v to its parent (v not a root)

Representation:

Each edge solid or dashed

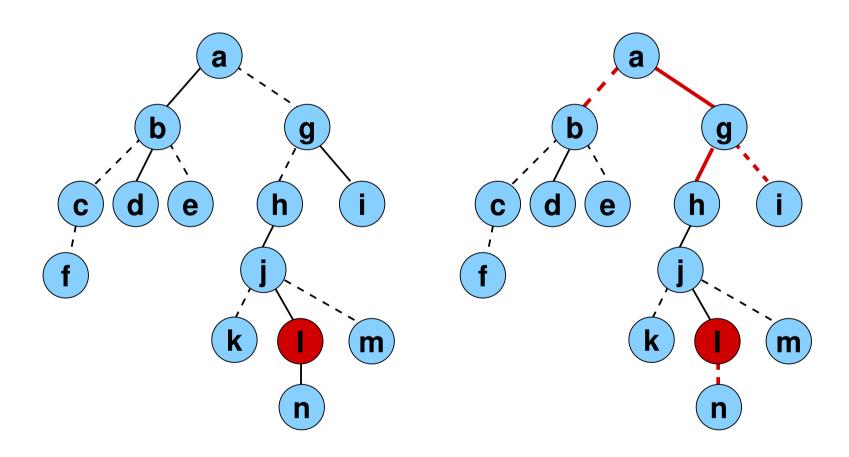
Each node at most one child connected by solid edge

Disjoint solid paths kept in the dynamic path structure (splay trees)

Each head of a path keeps pointer to its parent (dashed edges)

Operation $expose(\ell)$

Make ℓ the lower end of a solid path to root



Link/cut tree operation via dynamic paths and expose

- findRoot(v): find root of the tree containing v expose(v); findPathHead(v)
- link(v, w): make root w a child of v expose(v); linkPaths(v, w)
- cut(v): cut edge connecting v to its parent expose(v); splitPathAbove(v);

expose(v)

```
y = splitPathBellow(v);
    if (y != NULL) findPathHead(y).dashed = v;
    while(true) {
      x = findPathHead(v);
4
     w = x.dashed;
5
      if (w == NULL) break;
6
      x.dashed = NULL;
      q = splitPathBelow(w);
8
      if (q != NULL) { findPathHead(q).dashed = w; }
9
      linkPaths(w, x);
10
11
```

Heavy-light decomposition

D(v): the number of descendants of node v, including v (size of a node)

Edge from ν to its parent p is called **heavy** if $D(\nu) > D(p)/2$, otherwise it is **light**.

Observations:

- Each node has at most one child connected to it by a heavy edge
- Each path from ν to root at most $\lg n$ light edges because after each light edge $D(\nu) \leq D(p)/2$

Amortized analysis of expose

- ullet Potential function Φ : the number of heavy dashed edges Cost: the number of splices
- Assume expose creates L new light solid edges amortized cost $\hat{c} \leq 2L + 1 = O(\log n)$
- Other operations creating heavy dashed edges:
 - never happens in link, at most $O(\log n)$ times in cut

Application: maximum flow problem

In 1983, a different version of link-cut trees has improved the best running time for the maximum flow problem from $O(nm\log^2 n)$ to $O(nm\log n)$. Since then other techniques better.