The Highest Expected Reward Decoding
for HMMs with Application to
Recombination Detection

Michal Nanasi, Tomas Vinaf, and Brona Brejova

Faculty of Mathematics, Physics, and Informatics, Comenius University,
Mlynské Dolina, 842 48 Bratislava, Slovakia

Abstract. Hidden Markov models are traditionally decoded by the Vi-
terbi algorithm which finds the highest probability state path in the
model. In recent years, several limitations of the Viterbi decoding have
been demonstrated, and new algorithms have been developed to address
them (Kall et al., 2005; Brejova et al., 2007; Gross et al., 2007; Brown
and Truszkowski, 2010). In this paper, we propose a new efficient highest
expected reward decoding algorithm (HERD) that allows for uncertainty
in boundaries of individual sequence features. We demonstrate usefulness
of our approach on jumping HMMs for recombination detection in viral
genomes.

Keywords: hidden Markov models, decoding algorithms, recombination
detection, jumping HMMs

1 Introduction

Hidden Markov models (HMMs) are an important tool for modeling and anno-
tation of biological sequences and other data, such as natural language texts.
The goal of sequence annotation is to label each symbol of the input sequence
according to its meaning or a function. For example, in gene finding, we seek
to distinguish regions of DNA that encode proteins from non-coding sequence.
An HMM defines a probability distribution Pr(A|X) over all annotations A of
sequence X . Typically, one uses the well-known Viterbi algorithm (Forney Jr.,
1973) or its variants for more complex models (Brejova et al., 2007) to find
the annotation with the highest overall probability argmax4 Pr(A|X). In this
paper, we design an efficient HMM decoding algorithm that finds the optimal an-
notation for a different optimization criterion that is more appropriate in many
applications.

In recent years, several annotation strategies were shown to achieve better
performance than the Viterbi decoding in particular applications (Kall et al.,
2005; Gross et al., 2007; Brown and Truszkowski, 2010). Generally, they can
be expressed in the terminology of gain functions introduced in the context of
stochastic context-free grammars (Hamada et al., 2009). In particular, we choose
a gain function G(A4, A’) which characterizes similarity between a proposed an-
notation A and the (unknown) correct annotation A’. The goal is then to find the

annotation A with the highest expected value of G(A, A’) over the distribution
of A’ defined by the HMM, conditioning on sequence X. That is, we maximize
Eax[G(AA)] =>4 GA A P(A'|X).

Intuitively, the gain function should characterize the measure of prediction
accuracy appropriate for a particular application domain. If the sequences and
the true annotations are generated from the HMM, the decoding algorithm op-
timizing the expected gain will on average reach higher prediction accuracy,
measured by G(A, A"), than any other decoding.

In this framework, the Viterbi decoding optimizes the identity gain function
G(A,A") = [A = A’], that is the gain is 1 if we predict the whole annotation
exactly correctly, and 0 otherwise. There may be many high-probability anno-
tations besides the optimal one, and they are disregarded by this gain function,
even though their consensus may suggest a different answer that is perhaps more
accurate locally. On the other hand, the posterior decoding (Durbin et al., 1998)
predicts at each position a label that has the highest posterior probability at that
position, marginalizing over all annotations. Therefore, it optimizes the expected
gain under the gain function that counts the number of correctly predicted labels
in A with respect to A’.

These two gain functions are extremes: the Viterbi decoding assigns a posi-
tive gain to the annotation only if it is completely correct, while the posterior
decoding gain function rewards every correct label. It is often appropriate to
consider gain functions in between these two extremes. For example, in the con-
text of gene finding, Gross et al. (2007) use a gain function that assigns a score
+1 for each correctly predicted coding region boundary and score —+ for pre-
dicted boundary that is a false positive. Indeed, one of the main objectives of
gene finding is to find exact positions of these boundaries, since even a small
error may change the predicted protein significantly. Parameter v in the gain
function controls the trade-off between sensitivity and specificity.

While the coding region boundaries are well defined in gene finding, and it is
desirable to locate them precisely, in other applications, such as transmembrane
protein topology prediction, we only wish to infer the approximate locations of
feature boundaries. The main reason is that the underlying HMMs do not contain
enough information to locate the boundaries exactly, and there are typically
many annotations of similar probability with slightly different boundaries. This
issue was recently examined by Brown and Truszkowski (2010) in a Viterbi-like
setting, where we assign gain to an annotation, if all feature boundaries in A
are within some distance W from the corresponding boundary in the correct
annotation A’. Unfortunately, the problem has to be addressed by heuristics,
since it is NP-hard even for W = 0.

In this paper, we propose a new gain function in which each feature boundary
in A gets score +1 if it is within distance W from the corresponding boundary in
A’; and score —y otherwise. Our definition allows to consider nearby boundary
positions as equivalent, as in Brown and Truszkowski (2010), yet it avoids the
requirement that the whole annotation needs to be essentially correct to receive

any gain at all. Another benefit is that our gain function can be efficiently
optimized in time linear in the length of the input sequence.

We apply our algorithm to the problem of detecting recombination in the
genome of the human immunodeficiency virus (HIV) with jumping HMMs (Schultz
et al., 2006). A jumping HMM consists of a profile HMM (Durbin et al., 1998) for
each known subtype of HIV. Recombination events are represented by a special
jump transitions between different profile HMMs. The goal is to determine for a
new HIV genome whether it comes from one of the known subtypes or whether
it is a recombination of several subtypes. However, the exact position of a break-
point can be difficult to determine, particularly if the two recombining strains
were very similar near the recombination point. Our gain function corresponds to
this problem very naturally: it scores individual predicted recombination points,
but allows some tolerance in their exact placement.

2 HERD: The Highest Expected Reward Decoding

In this section, we propose a new gain function and describe an algorithm for
finding the annotation with the highest expected gain. Our algorithm is a non-
trivial extension of the maximum expected boundary accuracy decoding (Gross
et al., 2007).

Hidden Markov models and notation. A hidden Markov model (HMM) is a gener-
ative probabilistic model with a finite set of states V' and transitions E. There is
a single designated start state s and a final state t. The generative process starts
in the start state, and in each round it emits a single symbol x; from the emission
probability distribution e,, ., of the current state v;, and then changes the state
to vi41 according to the transition probability distribution a,, ., ,. The genera-
tive process continues until the final state is reached. Thus, the joint probability
of generating a sequence X = z1,...,z, by a state path 7 = s,v1,...,0,,t
is Pr(m, X) = as., - H?:l €vz; * Qugwiyes Where v = t. In other words, the
HMM defines a probability distribution Pr(w, X) over all possible sequences X
and state paths m, or perhaps more appropriately, for a given sequence X, the
HMM defines a conditional distribution over all state paths Pr(w| X).

Our aim is to produce an annotation of an input sequence X, i.e. to label
each symbol of X by a color corresponding to its function (e.g., coding or non-
coding in the case of gene finding, or a virus subtype in case of recombination
detection). Position 4 in the annotation A = ay .. . a, is a boundary, if a; and a;41
are different colors. For convenience, we consider positions 0 and n as boundaries.
A feature is a region between two consecutive boundaries.

To use HMMs for sequence annotation, we color each state v by a color
c(v). Every state path m = s,v1,...,0,,t thus implies an annotation ¢(7w) =
c(v1)...c(vyn). In general, multiple states can have the same color, and several
state paths may produce the same annotation. Thus, HMMs also define a prob-
ability distribution over annotations A, where Pr(A|X) =3 _,Pr(7[X).

me(

AYo 000 e e @00 Ve o

A’ A.AOA. 000,000 OA.AO &.i
Fig. 1. Example of buddy pairs in two annotations over three colors (white, gray, black)
for W = 3. Boundaries are shown by arrows, buddy pairs are connected by lines. The

second boundary in A does not have a buddy pair due to condition (ii), whereas the
fourth and fifth boundary due to condition (iii). In this example, G(A, A") = 3 — 4~.

The highest expected reward decoding problem. To formally define our problem,
we first define a gain function G(A, A’) characterizing similarity between any
two annotations A and A’ of the same sequence. We assign a positive score to a
boundary in A if A’ contains a corresponding boundary sufficiently close so that
they can be considered equivalent. This notion of closeness is formalized in the
following definition (see also Figure 1).

Definition 1. Let A and A’ be two annotations of the same sequence. Bound-
aries i in A and j in A" are called buddies if (i) both of them separate the same
pair of colors ¢c1 and ca, (i) |i — j| < W, and (iii) there is no other boundary at
positions min{i, j},..., max{s, j} in either A or A’.

The intuition behind condition (iii) is that the buddies should correspond
to boundaries that are only slightly shifted from their correct position, but still
separate essentially the same pair of features. In the extreme case, such as the
boundaries between gray and black features in Figure 1, even a slight shift in
the boundary causes the flanking black features to become non-overlapping.
Condition (iii) in fact enforces that pairs of such non-overlapping features are
not considered as corresponding to each other. Moreover, condition (iii) also
enforces that each boundary in A’ is a buddy to at most one boundary in A and
vice versa.

Definition 2 (Highest expected reward decoding problem). Let gain
function G(A, A") assign score +1 to each boundary in A if it has a buddy in
A’ and score —v to boundaries in A without a buddy. In the highest expected
reward decoding (HERD), we seek the annotation A mazimizing the expected
gain B, x[G(A,A")] =>4 G(A, A") Pr(A’| X), where the conditional probabil-
ity Pr(A"| X) is defined by the HMM as 3 ... o)—a Pr(m, X)/Pr(X).

Note that our objective E 4/ x[G(A, A")] can be further decomposed. In par-
ticular, from linearity of expectation, E 4/ x[G(A, A")] = } ;e p(a) L1y(pa,i), where
B(A) is the set of all boundaries in A, pa; is the posterior probability in the
HMM that the boundary 7 in A has a buddy, and R,(p) =p — - (1 —p) is the
expected score (reward) for a boundary with posterior probability p.

The HERD algorithm computes posterior probabilities and expected rewards
for all possible boundaries and then uses dynamic programming to choose an
annotation with the highest possible sum of expected rewards in its boundaries.
The details of the algorithm are described below.

A eocoo eo p(i,0,e 3 2)
= Pr(a;—a.. Z-_H:ood |X)
+Pr(a;—1 —002 | X)
+ Pr(a;.. z+1—o'|X)

° +Pr(a;. Z+2—020|X)

ce

o
O O e @0 .
O e e e e

Fig. 2. Illustration of annotations contributing probability to p(i,c1, c2,wr,wr) for
W =3.

Expected reward of a boundary. To compute the posterior probability p4 ; that
a boundary 7 in A has a buddy in A’ sampled from the HMM, it is sufficient to
examine only a local neighborhood of boundary i in A. In particular, let ¢; and
co be the two colors separated by this boundary and ny and ny be the lengths
of the two adjacent features. If ny, < W, the leftmost possible position of the
buddy in A" is i —ng + 1, otherwise it is i — W + 1; a symmetric condition holds
for the rightmost position. Therefore, if A has a buddy in A’, it must be in the
interval [i —wr +1,i+wpr— 1], where wy, = min{W, nr}, and wr = min{W, nr}.
If we denote by p(i, c1, c2, wr, wg) the sum of probabilities of all annotations A’
that have a buddy for boundary ¢ in the interval [{ — wy 4+ 1,7 + wg — 1] (see
Figure 2), the expected reward of boundary i will be R+ (p(3, c1, c2, wi, wR)).

Probability p(i,c1, co, wr,, wr) can be expressed as a sum of simpler terms,
one for each possible position j of the buddy in A’:

i

p(i,c1, 00, Wr, WR) = Z Pr(aj ;41 =ciea 771 | X)
j=i—wr+1
1+wr—1

+ Z Pr(a; ji1=c1? " lea | X).
j=it+1

Note that if the buddy is at position j < ¢, this position needs to have color
c1 and all successive positions up to ¢ + 1 need to have color ¢y, otherwise there
would be a different boundary between ¢ and j in A’. However, positions outside
of interval [j, 44 1] can be colored arbitrarily. Similarly for the buddy at position
j > 1, all positions from 4 up to j need to have color ¢; and position j 4+ 1 color
co. Also note that all terms in the sum represent disjoint sets of annotations,
and therefore we are justified to compute the probability of the union of these
sets by a sum. All terms of this sum can be computed efficiently, as described at
the end of this section.

Finding the annotation with the highest expected reward. Once the expected
rewards R, (p(i,c1,c2, wr, wr)) are known for all possible boundaries, we can
compute the annotation A with the highest expected gain by dynamic pro-
gramming. We can view the algorithm as the computation of the highest-weight

directed path between two vertices in a directed acyclic graph, where each path
corresponds to one annotation and its weight to the expected gain.

In particular, the graph has a vertex (i, ¢, w) for each position ¢, color ¢, and
window length w < W. This vertex represents a boundary at position ¢ between
an unspecified color on the left and the color ¢ on the right, where the adjacent
feature of color ¢ has length exactly w if w < W, or at least W otherwise. If
w < W, we will connect vertex (i, ¢, w) with vertices (i + w, ¢/, w’) for all colors
¢ and lengths w’ < W. Each such edge will have weight R (p(i +w, ¢, ¢, w, w")),
representing the expected reward of boundary at position i +w. If w = W, we
connect vertex (i, ¢, w) with vertices (i + w”, ¢, ¢/, w’) for all w”’ > W, w' < W
and color ¢ by long-distance edges. The weight of such edges will be R+ (p(i +
w”, e, d, W,w')).

To finish the construction, we will assume that positions 0 and n + 1 are
labeled by special colors ¢, and c¢ and that these two features have corresponding
nodes in the graph. We also add a starting vertex (—1, ¢4, 1) and connect it to
vertices (0,c,w) according to normal rules. The annotation with the highest
reward corresponds to the highest-weight path from vertex (—1,cs, 1) to vertex
(n,cf,1).

In this graph, the number of long-distance edges is quadratic in the length
of sequence X, leading to an inefficient algorithm. Fortunately, the cost of a
long-distance edge from (i, ¢, w) to (i +w”, ¢, ¢, w’) does not depend on index 4,
only on ¢ + w”. Therefore, every long-distance edge can be replaced by a path
through a series of special collector vertices of the form (i,¢) for a position i
and color c. There is an edge of weight 0 from (4, ¢, W) to (i + W, ¢) for entering
the collector path at an appropriate minimum distance from i, edge of weight
0 from (4,¢) to (i + 1,¢) for continuing in the collector path, and an edge of
weight R (p(i,c,d/, W,w")) for leaving the collector path from vertex (i,c) to
vertex (i,c/,w’). This modified graph has O(nWC) vertices and O(nW?2(C?)
edges, where n is the length of the sequence, W is the size of the window, and
C is the number of different colors in the HMM.

Implementation details and running time. The only remaining detail is the com-
putation of the posterior probabilities of the form Pr(a; ;14 = c1c2® | X) and
Pr(a;.. it+w = ¢’ca | X) needed to compute p(i, ¢, ¢, w, w’). We will show how to
compute the first of these two quantities, the second is analogous.

First, we use the standard forward algorithm (Durbin et al., 1998) to compute
F[i,v], the sum of the probabilities of all state paths ending in state v after
generating the first ¢ symbols from X. We use a modified backward algorithm
(Durbin et al., 1998) to compute B¢, v,w], the sum of the probabilities of all
state paths generating symbols z; ...z, that start in state v and generate the
first w symbols in the states of color ¢(v). Values Bl[i, v, 1] are computed by the
standard backward algorithm, and Bli,v,w] for 1 < w < W is computed as
follows:

Bli,v,wl= Y Bli+1Lv,w—1] eyz, v
v— v

c(v) = (V')

Finally, the desired posterior probability is obtained by combining forward and
backward probabilities over all transitions passing from color ¢; to color ¢ at
position i:

Pr(a;. itw =12 | X) = Z Fli,v] - ay, - Bli + 1,0, w]/ Pr(x).
v—=
c(v) = ¢
c(v') = ¢

The standard forward algorithm works in O(n|E|) time, our extended back-
ward algorithm takes O(nW|E|) time. Posterior probabilities are summarized
from these quantities also in O(nW|E|) time. Finally, we construct and search the
graph in O(nW?2(C?) time. Thus the overall running time is O(nW|E|+nW?2C?).
Note that the time is linear in the sequence length, which is very important for
applications in genomics, where we analyze very long genomic sequences.

3 Application to Viral Recombination Detection

Most HIV infections are caused by HIV-1 group M viruses. These viruses can
be classified by a phylogenetic analysis into several subtypes and sub-subtypes.
However, some HIV genomes are a mosaic of sequences from different subtypes
resulting from recombination between different strains (Robertson et al., 2000).
Our goal is to classify whether a newly sequenced HIV genome comes entirely
from one of the known subtypes or whether it is a recombination of different
subtypes, which is important for monitoring the HIV epidemics.

Schultz et al. (2006) propose to detect recombination by jumping HMMs. In
this framework, multiple sequence alignment of known HIV genomes is divided
into parts corresponding to individual subtypes or sub-subtypes, and a profile
HMM is built for each. A profile HMM (Durbin et al., 1998) represents one
column of alignment by a match state, insert state and delete state. Emission
probabilities of the match state correspond to the frequencies of symbols in that
alignment column. The insert state represents sequences inserted immediately
after the column, and the delete state is a silent state allowing to bypass the
match state without emitting any symbols, thus corresponding to a deletion. A
jumping HMM also contains low probability jump transitions between profile
HMMs corresponding to individual subtypes, as shown in Figure 3.

To use a jumping HMM for recombination detection, we color each state
by its subtype. Then, boundaries in the annotation correspond to recombina-
tion breakpoints. Schultz et al. (2006) use the Viterbi algorithm and report the
annotation corresponding to the most probable state path. However, the same

Fig. 3. A small example of a jumping HMM with two profile HMMs. For readability,
jumping transitions between match states (M) and insert (I) or delete (D) states are
not shown.

annotation can be obtained by many different state paths corresponding to dif-
ferent alignments of the input sequence to the profile HMMs. Even though in the
latest version of their software (Schultz et al., 2009) they augment the output by
displaing the posterior probabilities, they still output only a single annotation
obtained by the Viterbi algorithm. Since we are not interested in the alignment,
only in the annotation, it is more appropriate to use the most probable anno-
tation instead of the most probable path. However, the problem of finding the
most probable annotation is NP-hard for many HMMs (Brejova et al., 2007),
and jumping HMMs, due to their complicated structure with many transitions
between states of different color, are likely to belong to this class.

The HERD bypasses this computational difficulty by maximizing a different
gain function that scores individual breakpoints rather than the whole annota-
tion. Compared to the Viterbi algorithm, our algorithm considers all possible
state paths (alignments) contributing to the resulting annotation. In addition,
our algorithm considers nearby potential recombination points as equivalent,
since in practice it is difficult to determine the exact recombination point, par-
ticularly in strongly conserved regions or between related subtypes.

The use of jumping HMMs on HIV genomes is relatively time consuming,
as a typical HIV genome has the length of almost 10,000 bases, and the jump-
ing HMM has 7,356,740 transitions. Schultz et al. (2006) use the beam search
heuristic to speed up the Viterbi algorithm. Unfortunately, this heuristic is not
applicable in our case, and our algorithm is also asymptotically slower than
the Viterbi algorithm by a factor of W. To reduce the running time, we use a
simple anchoring strategy, similar to the heuristics frequently used in the global
sequence alignment (Kurtz et al., 2004). We have selected 19 well-conserved por-
tions of the HIV multiple alignment as anchors, and align the consensus sequence
of each anchor to the query sequence. In the forward and backward algorithm,
we constrain the alignment of the query to the profile HMMs so that the position
of the anchor in the query aligns to its known position in the profile HMM. We
also extend the algorithm described above to handle silent states by modifying
the preprocessing stage.

AP AR A
s (1) (1)
—3—C—0 O—0®

@&

Fig.4. A toy HMM emitting symbols over the binary alphabet, where the numbers
inside states represent the emission probability of the symbol 1. States s and t are
silent. The HMM outputs alternating white regions of mean length 20 and gray regions
of mean length 34. The distribution of symbols is constant in the white regions, while
in the gray regions it changes towards the end. The gray regions are flanked by a two-
symbol signal 11 on both sides. The HMM was inspired by models of CT-rich intron
tails in gene finding (Brejova et al., 2007).

4 Experiments

A toy sequence annotation HMM. We have first tested our algorithm on data
generated from a toy HMM in Figure 4. This HMM has multiple state paths
for a given annotation, and we have previously demonstrated that the most
probable annotation is more accurate than the annotation corresponding to the
most probable state path found by the Viterbi algorithm (Brejova et al., 2007).
Table 1 shows different measures of accuracy for several decoding algorithms
on 5000 randomly generated sequences of mean length about 500. We report re-
sults for two sets of parameter values of the model, however, the trends observed
in the table generally hold also for the other combinations of p; and ps. As we
have shown earlier, the extended Viterbi algorithm (EVA) (Brejova et al., 2007)
for finding the most probable annotation generally outperforms the Viterbi al-
gorithm. The HERD with parameters W = 5 and v = 1 is more accurate when
the performance is measured by its own gain function, which is not surprising,
since the data and baseline predictions are generated from the same model as is
used for annotation. On the other hand, the HERD colors fewer bases correctly
and tends to place boundaries on average further away from the correct ones
than the EVA. This is also not unexpected, as the HERD explicitly disregards
small differences in the boundary position. We have also measured sensitivity
and specificity in predicting individual features. Here the HERD works better
than the EVA for some parameter settings (e.g. p1 = p2 = 0.9 in the table), but
not for others. We have also run the HERD with W = 1, which is equivalent
to maximum expected boundary accuracy decoding (Gross et al., 2007). The
accuracy of this decoding is very poor for v = 1, but markedly improves for
lower penalty v = 0.1. The reason is that for W = 1, we sum over fewer state
paths and therefore the posterior probability of a boundary rarely reaches the
threshold 1/2 necessary to achieve positive expected reward at v = 1.
HIV recombination detection. Table 2 shows the accuracy of the HERD on pre-
dicting recombination in HIV genomes. In all tests, we have used the sequence
data and the jumping of Schultz et al. (2006), though in most tests we have
increased the jump probability P; from 1072 to 107°. With the original value,
the HERD rarely predicts any recombination, since the posterior probability

Table 1. The accuracy on synthetic data generated from the HMM in Figure 4. (i)
Fraction of the bases colored by the same color by the algorithm and the correct
annotation (baseline). (ii) Gain G(A, A) of the prediction compared to the baseline.
For evaluation, the parameters of the gain function were set to W = 5 and v = 1,
even though in some tests we have used different parameters in the algorithm. (iii) A
feature is predicted correctly if there is a corresponding feature of the same color in the
baseline with both boundaries within the distance of less than 5. Specificity (sp.) is the
fraction of all predicted features that are correct, and sensitivity (sn.) is the fraction of
baseline features that are correctly predicted. (iv) Mean distance between the baseline
and predicted boundary for all correctly predicted features.

Algorithm % bases Gain Feature Feature Avg.
correct™® () sp.(iii) sn.(% dist.
HMM parameters p; = 0.9, p2 = 0.9
HERD W =5,v=1 88.7% 12.7 75.9% 66.9% 1.8
HERD W =1,v=1 47.5% 3.0 55.1% 17.8% 0.0
HERD W =1,y=0.1 90.4% 2.4 51.8% 66.0% 0.9
Viterbi 89.4% 8.9 66.3% 47.3% 0.7
Extended Viterbi 91.2% 10.3 69.9% 56.2% 0.8

HMM parameters p; = 0.7, p2 = 0.8

HERD W =5,v=1 77.6% 5.9 54.8% 39.3% 1.37
HERDW =1,v=1 47.5% 3.0 55.0% 17.7% 0.0
HERD W =1,y=0.1 79.6% 2.7 382% 43.9% 0.9
Viterbi 75.0% 3.6 51.2% 25.7% 0.4
Extended Viterbi 79.7% 41 49.0% 31.3% 0.6

of a breakpoint has to be at least 1/2 for v = 1 to receive a positive score,
and with the lower jumping probability, we usually do not reach such a level of
confidence. We have conducted the tests on a 1696 column region of the whole
genomic alignment, starting at position 6925. This restriction allowed us to test
higher number of sequences than Schultz et al. (2006) reasonably fast.

The first set of tests was done on 62 real HIV sequences without known
recombination. These sequences were selected from the subtypes Al, B, C, D,
F1 (10 sequences from each subtype) and G, A2, F2 (5, 3, and 4 sequences
respectively) and omitted from the training set (except for the subtypes A2,
F1 and F2 which have very few samples). As we can see in Table 2, the Viterbi
algorithm always predicts the correct result. Our algorithm on the jumping HMM
with the original low jumping probability P; = 102 also produces correct answer
every time. However, the value of P; = 107° leads to spurious recombinations
predicted in 11.3% of sequences, thus lowering the accuracy.

The second set of sequences contains artificial recombinants. Each of them
was created as a combination of two sequences from two different subtypes by
alternating regions of length 300. The set contains recombinants between sub-
type pairs A-B, A-C, A-G, B-C, B-G and C-G, 50 sequences from each pair.
Our algorithm performs slightly better with respect to the total number of cor-
rectly labeled bases and average distance to the correct boundary, and also it

Table 2. The accuracy on the HIV recombination data. The meaning of the columns
is the same as in Table 1, except that we use W = 10 and v = 1 in the definition of
the gain function and correctly predicted features.

Algorithm % bases Gain Feature Feature Avg.
correct® (%) sp.() gn) digt,

Sequences without recombination

HERD, W =10,y =1,P; = 107 100.0% 2.0 100.0% 100.0% 0.0

HERD, W =10,y =1,P; =107° 93.7% 1.5 83.9% 83.9% 0.0

Viterbi 100.0% 2.0 100.0% 100.0% 0.0

Sequences with artificial inter-subtype recombination

HERD W =10,y =1,P; =107° 95.7% 261 63.1% 58.9% 2.4

HERD W =1,y =0.1,P; =107° 81.6% 117 37.7% 302% 1.4

Viterbi 95.4% 2.1 53.4% 47.9% 1.8

Sequences with artificial intra-subtype recombination

HERD W =10,y =1,P; =107° 91.6% 1.7 46.5% 41.9% 2.7

Viterbi 88.0% 1.3 32.8% 26.1% 2.7

finds individual features (recombinant regions) with much greater sensitivity and
specificity if we allow some tolerance in the boundary placement. For W = 1, the
HERD has a very low accuracy even for lowered penalty v = 0.1. This suggests
that our generalization of the maximum expected boundary accuracy decoding
to the case W > 1 is crucial in this setting.

In the third test, we have used the same procedure to create 170 artificial
recombinants between sequences of two sub-subtypes of the same subtype (Al
and A2, F1 and F2), and from the two subtypes (B and D) at a small phylogenetic
distance that is more typical for sub-subtypes. The overall accuracy is lower in
this test, because it is more difficult to distinguish recombination among more
closely related sequences. The HERD is still much more accurate at the feature
level and also more accurate than the Viterbi algorithm on the base level.

One issue with our tests is that we have used a lower jump probability
P; =107 for sequences without recombination and a higher value P; = 1075
for sequences with recombination. This distinction is justified by the fact that
although recombinant sequences are generally rare, suggesting a low jumping
probability, they usually have several recombination points, whose detection
then requires a higher value of P;. In practice, when faced with a sequence
of unknown origin we propose to first test whether the sequence is likely to be a
recombinant, perhaps by a likelihood ratio test with nested models (Felsenstein,
2004) in which P; is optimized for the input sequence in one model and set to
0 for the null model. If the sequence appears to contain recombination, we can
then apply the HERD with the higher value of P; to determine the breakpoints.

We have also run our algorithm on 12 naturally occurring recombinants,
using W = 10, v = 1.5, and P; = 107°. Here, we have used the whole length of
the sequence. Due to the small number of sequences and uncertain annotation,
we do not report the accuracy statistics. Nonetheless, on six sequences, the
HERD found the correct set of recombining subtypes (on annotated regions).

Two of them the HERD annotated better than Viterbi (CRF08, CRF12). On
the remaining six, the HERD predicted at least one erroneous subtype and often
misplaced breakpoints or jumped frequently, but the Viterbi algorithm also made
numerous mistakes on the two of these sequences.

5 Conclusion

In this paper, we have introduced a novel decoding algorithm for hidden Markov
models seeking an annotation of the sequence in which boundaries of individ-
ual sequence features are at least approximately correct. This decoding is par-
ticularly appropriate in situations where the exact boundaries are difficult to
determine, and perhaps their knowledge is not even necessary.

We apply our algorithm to the problem of recombination detection in HIV
genomes. Here, the Viterbi decoding considers for a given annotation only a
single alignment of the query to the profile HMMs and only one placement
of breakpoints. In contrast, we marginalize the probabilities over all possible
alignments and over nearby placements of recombination boundaries. As a result,
we are able to predict individual recombinant regions with greater sensitivity and
specificity.

Our experiments also suggest venues for future improvement. First of all, the
accuracy results vary with the choice of parameters P;, W, and ~. It remains an
open question how to choose these parameters in a principled way. We have also
observed that our algorithm does not perform as well as the Viterbi algorithm in
finding the exact boundaries. Perhaps this could be solved by a gain function in
which a boundary with a more distant buddy gets a smaller score. Similarly, our
algorithm performs in some tests slightly worse in terms of base-level accuracy,
and this shortcoming perhaps could be addressed by adding a positive score for
every correctly colored nucleotide to the gain function. In general, the framework
of maximum expected gain decoding is very promising, because it allows to tailor
decoding algorithm to a specific application domain.

Acknowledgements. We would like to thank Dan Brown and Jakub Truszkowski
for helpful discussion on related problems. Research of TV and BB is funded by
European Community FP7 grants IRG-224885 and IRG-231025.

Bibliography

Brejova, B., Brown, D. G., and Vinar, T. (2007). The most probable annotation
problem in HMMs and its application to bioinformatics. Journal of Computer
and System Sciences, 73(7):1060-1077.

Brown, D. G. and Truszkowski, J. (2010). New decoding algorithms for hidden
Markov models using distance measures on labellings. BMC Bioinformatics,
11(S1):540.

Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological sequence
analysis: Probabilistic models of proteins and nucleic acids. Cambridge Uni-
versity Press.

Felsenstein, J. (2004). Inferring phylogenies. Sinauer Associates.

Forney Jr., G. D. (1973). The Viterbi algorithm. Proceedings of the IEEE,
61(3):268-278.

Gross, S. S., Do, C. B., Sirota, M., and Batzoglou, S. (2007). CONTRAST: a
discriminative, phylogeny-free approach to multiple informant de novo gene
prediction. Genome Biology, 8(12):R269.

Hamada, M., Kiryu, H., Sato, K., Mituyama, T., and Asai, K. (2009). Prediction
of RNA secondary structure using generalized centroid estimators. Bioinfor-
matics, 25(4):465-473.

Kall, L., Krogh, A., and Sonnhammer, E. L. L. (2005). An HMM posterior
decoder for sequence feature prediction that includes homology information.
Bioinformatics, 21(S1):1251-257.

Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu,
C., and Salzberg, S. L. (2004). Versatile and open software for comparing
large genomes. Genome Biology, 5(2):R12.

Robertson, D. L. et al. (2000). HIV-1 nomenclature proposal. Science,
288(5463):55-56.

Schultz, A.-K., Zhang, M., Bulla, I., Leitner, T., Korber, B., Morgenstern, B.,
and Stanke, M. (2009). jpHMM: improving the reliability of recombination
prediction in HIV-1. Nucleic Acids Research, 37(W):W647-651.

Schultz, A.-K., Zhang, M., Leitner, T., Kuiken, C., Korber, B., Morgenstern, B.,
and Stanke, M. (2006). A jumping profile Hidden Markov Model and applica-
tions to recombination sites in HIV and HCV genomes. BMC' Bioinformatics,
7:265.

