Publication details

Brona Brejova, Daniel G. Brown, Tomas Vinar. The most probable annotation problem in HMMs and its application to bioinformatics. Journal of Computer and System Sciences, 73(7):1060-1077. 2007. Early version in WABI 2004.
Preprint, 335Kb | Download from publisher | Early version | BibTeX


Hidden Markov models (HMMs) are often used for biological sequence
annotation. Each sequence feature is represented by a collection of
states with the same label. In annotating a new sequence, we seek the
sequence of labels that has highest probability. Computing this most
probable annotation was shown NP-hard by Lyngsoe and Pedersen. We
improve their result by showing that the problem is NP-hard for a
specific HMM, and present efficient algorithms to compute the most
probable annotation for a large class of HMMs, including abstractions
of models previously used for transmembrane protein topology prediction
and coding region detection.  We also present a small experiment showing
that the maximum probability annotation is more accurate than the
labeling that results from simpler heuristics.