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Abstract. Clusters of genes that evolved from single progenitors via re-
peated segmental duplications present significant challenges to the gen-
eration of a truly complete human genome sequence. Such clusters can
confound both accurate sequence assembly and downstream computa-
tional analysis, yet they represent a hotbed of functional innovation,
making them of extreme interest. We have developed an algorithm for
reconstructing the evolutionary history of gene clusters using only human
genomic sequence data. This method allows the tempo of large-scale evo-
lutionary events in human gene clusters to be estimated, which in turn
will facilitate primate comparative sequencing studies that will aim to
reconstruct their evolutionary history more fully.

1 Introduction

Gene clusters in a genome provide substrates for genomic innovation, as gene
duplication is often followed by functional diversification [1]. Also, genomic dele-
tions associated with nearby segmental duplications cause several human genetic
diseases [2]. One surprising discovery emerging from the sequencing of the hu-
man genome was the large extent of recent duplication in the human lineage.
Analysis of the human genome sequence revealed that 5% consists of recent
duplications [3]; subsequent studies have further found extensive copy-number
variation among individuals [4].

Recently duplicated genomic segments are exceedingly difficult to sequence
accurately and completely. Even the “finished” human genome sequence [5] con-
tains about 300 gaps, many of which reflect regions harboring nearly identi-
cal tandemly duplicated segments. The situation with mammalian genomes se-
quenced by a whole-genome shotgun sequencing strategy [6] is typically much
worse, with recently duplicated segments often grossly misassembled. The de-
velopment of computational methods for analyzing gene clusters has therefore
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Fig. 1. Dot-plots of self-alignments of the human UGT2 cluster exceeding thresholds of
percent identity chosen to roughly correspond to the divergence of the human lineage
from great apes (98%), old-world monkeys (93%), new-world monkeys (89%), prosimi-
ans (85%) and dogs and other laurasiatherians (80%). We estimate that 2, 27, 51, 59,
and 82 duplications respectively are needed to produce the current configuration from a
duplication-free sequence (no deletions were predicted), suggesting a sustained growth
of the cluster along the human lineage, with a burst of activity around the time that
humans and apes diverged from old-world monkeys. The sequence alignments were
computed using blastz [11] and post-processed as described in the text.

lagged far behind that for analyzing single-copy regions, due in part to the lack
of accurate sequence data. Even the basic problem of formally defining what
is meant by a multi-species sequence “alignment” of a region harboring a gene
cluster (much less actually generating an accurate alignment of such a region)
has only recently been addressed [7, 8]. While the recent testing of several align-
ment methods with comparative sequence data representing 1% of the human
genome [9] suggested adequate performance, a closer examination of the resulting
alignments for those regions containing tandem gene clusters (e.g., both globin
clusters) showed significant imperfections [10].

Here, we describe an algorithm for producing a theoretical ancestral sequence
and a parsimonious set of duplication and deletion events explaining the observed
state of a gene cluster. We start by setting a lower bound for the percent identity
in self-alignments of a gene cluster (e.g., 93%; Fig.1). This defines the set of du-
plications that have occurred in a given time interval (such as the last 25 million
years) and that have not subsequently been deleted. The ancestral configuration
of each gene cluster is then deduced at several evolutionary points, and predic-
tions are made about the parsimonious sets of duplications and deletions that
converted the ancestral configuration into the extant one.

Similar problems have been studied before. Elemento et al. [12] and Lajoie et
al. [13] developed algorithms for reconstruction of evolutionary histories of gene
families allowing tandem duplications and inversions. Their basic assumption
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is that a gene is always duplicated as a whole unit and duplicated copies are
always immediately adjacent to their sources. These assumptions are routinely
violated in the real data, and thus their methods have limited applicability in
genome-wide studies. In addition, Elemento et al. do not consider inversions,
while Lajoie et al. only consider single gene duplications. Jiang et al. [14] re-
cently used methods developed for repeat identification to infer ancestral “core
duplicated elements”. Their results provide useful insights about duplication
histories, but without detailed reconstructions. In this paper, we aim to pro-
vide event-by-event reconstructions of duplication and deletion histories using
local sequence alignments, allowing both tandem and interspersed duplications
(potentially with inversions).

We have applied our algorithm to 25 human gene clusters, in each case pre-
dicting the evolutionary scenarios corresponding to five major divergence points
along the lineage leading to human.5 Our results provide distributions of the
predicted sizes of rearranged segments. Also, using percent-identity thresholds
associated with large increases in the estimated number of duplications and dele-
tions, we can estimate dates of rapid cluster expansion.

In future work, we plan to use such estimates to examine a large number of
human gene clusters in conjunction with experimental data on gene-family size
in various primates, as generated by array comparative genome hybridization
(aCGH) [15, 16]. Our aim is to design a larger primate comparative sequencing
project that will more deeply examine the evolutionary history of a set of human
gene clusters. In turn, the availability of such comparative sequence data should
provide important insights about primate genome evolution and catalyze the
development of computational methods for analyzing gene clusters.

2 Problem Statement and Data Preparation

Our goal is to reconstruct the evolutionary history that has generated a gene clus-
ter in the human genome. Given the cluster’s DNA sequence in a single species,
we first identify all local self-alignments in both forward and reverse-complement
orientations using blastz [11]. We can visualize the identified alignments using
a dot-plot, and our goal is equivalent to providing a set of instructions for gen-
erating the observed dot-plot from a duplication-free sequence using a series of
evolutionary events (duplications and deletions).

We preprocess the initial dot-plot to satisfy the transitive closure property.
That is, if the dot-plot contains local alignments for region A and B, and for
region B and C, then the dot-plot must also contain a local alignment for region
A and C. We also maximize each alignment, i.e., we ensure that the alignments
cannot be extended at either end. Finally, a local alignment can be broken into
smaller pieces by mutations and interspersed repeats. We have developed an
accurate algorithm to determine the transitive closure of a dot-plot and to chain
alignments together if they are broken by these events.

5 We have also extended this analysis to 165 biomedically interesting clusters and the
results are presented in Appendix C.
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Since after preprocessing the alignments are maximized and have the tran-
sitive closure property, we can represent the original sequence by a sequence
of atomic segments that are separated by boundaries of the alignment (atomic
boundaries). We will denote the atomic segments by letters a, b, c, . . ., and their
reverse complements by a, b, c, . . .. The atomic segments that are aligned to each
other will have the same letter with different subscripts (e.g., xa1yb1c1zc2a2b2w
has 10 atomic segments, two of which are reverse complements; a1 and a2 are
aligned, and so are b1 and b2, and c1 and c2).

We say that the two adjacent atomic segments xy can be collapsed into a
single atomic segment z, if y is always immediately preceded by x, and x is always
immediately followed by y (we also consider x and y in the reverse orientation).
In such case, we can replace all occurrences of xy with z, and all occurrences of
yx with z. Since initially all alignments are maximized, our initial representation
will have no collapsible atomic segments.

We will be looking at sequences of duplication events in reversed order of
time, i.e., starting from the latest duplication. A duplication event copies region
P of the sequence (which can consists of several consecutive atomic segments) to
another location (possibly with reversal). Thus, we can always identify the latest
duplication by a pair of regions (P,D), where D is a region identical to P except
for atomic segment subscripts and perhaps orientation (e.g., (a1b1, b2a4)). If
correctly identified, we can unwind a duplication (P,D) by removing segment D
from the sequence, then collapsing all collapsible atomic segments. By unwinding
all duplications, we obtain an atomic segment representation of the ancestral
sequence. We are now ready to state our problem formally.

Definition 1 (Parsimonious reconstruction of duplication events). Given
a representation of the present-day DNA sequence by atomic segments, find the
shortest sequence of duplication events (P1,D1), (P2,D2), . . . , (Pk,Dk) such that
if we unwind these duplications, we obtain a sequence containing only a single
atomic segment.

3 Basic Combinatorial Algorithm

We first present a simple combinatorial algorithm that can correctly reconstruct
all the duplication events (except for their order and orientation) under the
following assumptions:

(1) A duplication event copies (possibly with reversal) a region of the sequence
to any location except inside the originating region.

(2) The sequence evolves only by duplications (including duplications with re-
versal and tandem duplications). In particular, there are no deletions.

(3) No atomic boundaries are reused as duplication boundaries, except in tan-
dem duplications. Here, boundaries of two aligned atomic segments (e.g. a1

and a2) are considered to be the same atomic boundary.
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These assumptions are much more permissible than those of Elemento et al.
[12], yet they are still often violated in the real data. Therefore, we also offer a
more practical solution based on the sequential importance sampling in the next
section. Note that assumption (3) is a stronger version of the commonly used
no-breakpoint-reuse assumption [17] and can be justified by the usual arguments.

Definition 2 (Candidate alignments). We call a pair of regions (P,D) a
candidate alignment if P and D are identical except for subscripts and orienta-
tion, and if, after removing D, the atomic segment pair flanking D and the two
pairs flanking each boundary of P can be collapsed.

For example, for xa1yb1c1zc2a2b2w, the alignment (a1, a2) is a candidate align-
ment. This is because after removing a2, the flanking atomic segment pair, c2b2

can be collapsed into a single atomic segment. Additionally, the atomic segment
pairs flanking boundaries of a1 (xa1 and a1y) can also be collapsed.

Lemma 1. In a sequence of atomic segments that arose by the process satisfying
the assumptions (1)-(3), the latest duplication is always among the candidate
alignments.

Lemma 1 suggests a simple and efficient basic algorithm for reconstructing a
sequence of duplications:

1. Find a candidate alignment (P,D).
2. Output (P,D) as the latest duplication and unwind (P,D) by removing D

from the sequence and collapsing all collapsible atomic segments.
3. Repeat until there is only a single atomic segment left.

Depending on the choice of candidate alignments in step 1, we can produce
several duplication histories that could lead to the present-day sequence as rep-
resented by the sequence of atomic segments. Lemma 1 shows that one of those
possible solutions is the real sequence of duplications. We can further show that
all the other solutions produced by the basic algorithm are equally good solutions
of the problem (proof relegated to Appendix A and B):

Theorem 1. If assumptions (1)-(3) are met then the basic algorithm will al-
ways succesfully recover a sequence of duplications that will collapse the whole
sequence into a single atomic segment, regardless of the order of choice of candi-
date alignments in step 1. Moreover, all of these solutions have the same number
of events and they represent all parsimonious solutions of the duplication event
reconstruction problem.

For example, to apply the basic algoritm to xa1yb1c1zc2a2b2w, we note that
alignment (a1, a2) is the only candidate alignment; (b1, b2) and (c1, c2) do not
satisfy the definition of candidate alignment at this moment. We remove a2 to
obtain a new sequence xa1yb1c1zc2b2w, and we remove the corresponding local
alignment (a1, a2). We collapse the new sequence into a simpler form ue1ze2w,
where u = xa1y,e1 = b1c1, e2 = c2b2. Now only one local alignment remains,
which can be resolved by repeating the above procedure. Since both e1 and e2

can be deleted, deleting either of them leads to a duplication-free sequence with
different configurations.
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4 Sequential Importance Sampling

The assumptions required for the basic algorithm to work are often violated in
practice. In particular, large scale deletions in the gene clusters violating assump-
tion (2) are likely to occur, and atomic boundary reuses violating assumption
(3) are not uncommon. Once a boundary reuse occurs, regardless of its causes,
we can no longer reconstruct the correct evolution history or even predict the
true number of events. Even if assumptions (1)-(3) are satisfied, there are al-
ways multiple ways of reconstructing the history of a gene cluster. The number
of the events will be the same, but the order of the events and the ancestral
duplication-free sequence will be different among solutions. To make inference
about the evolution history of a gene cluster, we need to summarize the feature
of interest from all possible histories. However, enumerating all possible histories
would be computationally expensive.

To address the atomic boundary reuse and to model deletions, we propose a
stochastic algorithm that first samples many possible histories of a gene cluster
from a target distribution, and then makes inference of evolutionary features
from the collected samples. We use the target distribution to define the scope of
histories and their relative contributions. For example, to make inference exclu-
sively from histories that have no atomic boundary reuse, the target distribution
can be uniform on all such histories and 0 otherwise. In practice, we will use
more flexible target distributions to accommodate practical complications. To
reconstruct a possible history from the target distribution, we use sequential im-
portance sampling (SIS) [18]. SIS sequentially samples one event at a time from
a pool of possible events until all local alignments in a dot-plot are resolved. We
represent a history of the gene cluster by a series of T events OT = (O1, . . . , OT )
reconstructed by SIS in reverse order of time. Here, both OT and T are unknown.
The basic algorithm is a special case in which every reconstructed event Oi cor-
responds to a candidate alignment. By repeating the SIS procedure, we obtain
many possible histories. We then summarize the desired features by taking a
weighted average, with weights calculated as the difference between the target
distribution and the actual sampling distribution.

Given a gene cluster X, we specify the target distribution of histories to be
π(OT |X) ∝ eaT+br, where T is the number of events, r is the number of reused
atomic boundaries, and a, b are two penalty parameters. We chose a = b = −5;
thus histories with fewer evolutionary events and boundary reuses will contribute
more to the inference. The penalty (−5) was chosen to allow suboptimal solu-
tions. When the penalty approaches −∞, only the most parsimonious solutions
with the least boundary reuse will influence the result. Note that we only need
to specify the target distribution up to a normalizing constant.

Directly sampling histories from the target distribution is often intractable,
and thus SIS is used. Suppose we already reconstructed t most recent events,
we sample the next event Ot+1 from a trial distribution gt(Ot+1 | Ot). Our goal
in choosing the trial distribution is to allow easy sampling while resembling the
target distribution as closely as possible. By sampling events until all alignments
are resolved, we obtain a possible history OT , and by repeating this procedure we
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collect many possible histories. However, the collected histories will not follow
the target distribution π(OT |X), but instead

∏T−1
t=0 gt(Ot+1 | Ot). To correct

this bias, we calculate weight w = π(OT |X)/
∏T−1

t=0 gt(Ot+1 | Ot) determining
how much reliance we shall put on each reconstructed history. Finally, given m

histories O
(1)
T1

,O
(2)
T2

, . . . ,O
(m)
Tm

and their weights w1, . . . , wm, we make a statistical
inference about evolutionary features by approximating the expectation of any

function u(OT ) of histories as E[u(OT )] =
(

∑m
i=1 wiu(O

(i)
Ti

)
)

/ (
∑m

i=1 wi). For

example, u(OT ) = T gives the number of events.

The choice of the trial distribution directly determines the efficiency of his-
tory reconstruction. For example, if assumptions (1)-(3) are met, we can let
gt(Ot+1 | Ot) be uniform on all events Ot+1 that involve a candidate alignment
and 0 on all other events. As a result, the SIS algorithm will efficiently and
precisely produce the same number of events as the basic algorithm.

We used simulations to choose a set of good trial distributions. In particular,
we used gt(Ot+1 | Ot) = (L−ℓ)−k−2f(s, δ)/Z for duplication, and gt(Ot+1 | Ot) =
(L + ℓ)−1e−ℓ/λf(s, δ)/Z for deletion. For duplication Ot+1 = (P,D), k ∈ {0, 1,
2, 3} denotes the number of reused atomic boundaries, i.e. the number of non-
collapsible atomic segment pairs that flank D and the boundaries of P after
removing D. Furthermore, L and ℓ denote the current sequence length and the
duplication size, respectively. For deletion, ℓ and L denote the actual and the
expected deletion size, respectively. We only consider deletions without atomic
boundary reuse, and λ = 10000. Intuitively, we prefer to sample longer dupli-
cations and shorter deletions in each SIS step. We also prefer alignments with
higher percent identity and those that resolve more local alignments, which is
represented by function f(s, δ) = e(δ−(100−s))/5 of the alignment percentage
identity s ∈ [0, 100] and the number δ of alignments resolved by Ot+1.

We only consider a deletion event if the atomic segment pair flanking a dele-
tion site appears elsewhere in the sequence. Otherwise, no deletion information
is available. For example, suppose a1b1 flanks a deletion site, and we observe
a2 and b2 elsewhere, then the region between a2 and b2 can be inserted in be-
tween a1b1 to unwind a deletion. The relative orientation between a1 and b1

must match that between a2 and b2, and a1b1 must not be located between a2

and b2. If all conditions are met, we calculate the percentage identity s from the
flanking alignments (a1, a2) and (b1, b2), and the deletion event can be recon-
structed. Finally, Z denotes the normalizing constant for the trial distribution.
Compared with the normalizing constant for the target distribution, Z is much
easier to calculate, because we can easily enumerate all possible events given Ot.

5 Application to Human Gene Clusters

We have identified 457 duplicated regions in the human genome assembly hg18,
based on alignments from UCSC browser self-chains [19] of length at least 500 bp,
with at least 70% identity, and with both segments located within 500 Kbp of
each other. The regions were defined by clustering overlapping duplications; only
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Table 1. Estimated numbers of duplications and deletions in 25 human gene clusters
following divergence from great apes (GA), old world monkeys (OWM), new world
monkeys (NWM), prosimians (LG), and dogs and other laurasiatherians (DOG).

Name (possible disease association) Location GA OWM NWM LG DOG gaps

PRAMEF chr1p36.21 7 23 32 48 63 3
HIST2H (asthma; atrial fibrillation) chr1q21.1-2 21 41 68 101 107 6
FCGR (systemic lupus erythematosus) chr1q23.3 3 3 5 6 6 0
CFH (macular degeneration) chr1q31.1 4 6 18 22 25 0
CCDC;CFC1 (left-right laterality defects) chr2q21.1 3 5 12 12 15 0
UGT1A (neonatal hyperbilirubinemia) chr2q37.1 0 2 13 17 23 0
UGT2 (prostate cancer) chr4q13.2-3 2 27 51 59 82 1
SMA;SMN (motor neuron disease) chr5q13.2 23 25 25 25 25 0
HIST1H;BTN (coronary heart disease) chr6p22.2-1 0 1 9 19 35 0
HLA;TRIM (multiple sclerosis) chr6p22.1-21.33 0 2 29 45 58 0
HLA;BAT (type 1 diabetes) chr6p21.33 0 4 12 17 28 0
HLA-D (rheumatoid arthritis) chr6p21.32 0 1 14 21 26 0
HLA-D;COL11A (acute lymphoblastic leukemia) chr6p21.32 0 0 0 7 14 0
CCL;CTF2;PMS2 (rheumatoid arthritis) chr7q11.23 21 31 38 40 45 1
IFN (cervical cancer) chr9p21.3 0 11 15 20 41 0
SFTPA (tuberculosis) chr10q22.3 6 7 8 10 12 1
OR5;HB;TRIM (thalassemia; sickle cell anemia) chr11p15.4 4 6 10 10 27 0
KLR (immunological diseases) chr12p13.2 0 1 1 2 3 0
CHRNA;KIAA (schizophrenia) chr15q13.3-1 15 38 47 56 58 2
CYP1;DKFZ (lung cancer; macular degeneration) chr15q24.1-3 2 14 23 26 28 0
LOC (rheumatoid arthritis) chr16p11.2 3 6 6 6 8 0
NF1;EVI2 (intestinal neuronal dysplasia; autism) chr17q11.2 3 9 10 10 10 0
CYP2 (lung cancer; esophageal cancer) chr19q13.2 0 5 14 17 19 0
KIR;LILR (hepatitis C; liver cancer) chr19q13.42 0 16 30 43 65 0
WFDC chr20q13.12 0 0 0 1 2 0

regions of substantial size (at least 50 Kbp) and non-trivial complexity (at least
two duplications) were retained. These regions cover ∼215 Mbp (7%) of the
human genome. We targeted 165 biomedically interesting clusters (∼111 Mbp)
that either overlap genes associated with a human disease (genetic association
database [20]), or contain groups of similarly named genes [21].

Clusters were processed through a pipeline that included: (1) self-alignment
by blastz; (2) production of subsets of the alignments roughly corresponding
to duplications in the human lineage after divergence from great apes (≥ 98%
identity), old-world monkeys (93%), new-world monkeys (89%), lemurs (85%),
and dogs (80%); (3) adjusting alignment endpoints to avoid predicting spurious
tiny duplications; (4) chaining (i.e., local alignments of similar percent identity
broken by small insertions/deletions or post-duplication insertion of interspersed
repeats. For each of the resulting 825 combinations of gene cluster and divergence
threshold, we estimated the number of duplications or deletions in the human
lineage subsequent to the divergence. Selection of the results is shown in Table 1.

Table 1 reveals large differences in the evolutionary tempo among the gene
clusters. For instance, the cluster of SMN genes appears to have been quiescent
through almost all of primate evolution, then experienced an explosion of dupli-
cations in the last six million years. On the other hand, the cluster containing
HLA-D appears to have changed little for 50 million years, while that contain-
ing UGT2 may have accumulated duplications fairly consistently throughout
primate evolution, but with a surge of activity about 10-40 MYA.

We also estimated the size, spacing, and orientation of duplication events.
Fig.2 shows estimated distributions of the size of the duplicated region and the
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Fig. 2. Distribution of duplication lengths (left) and distances between the original
and duplicate segments (right) for duplications with at least 93% sequence identity.

spacing between the original and duplicated segments for duplications with at
least 93% identity. For those duplication events, the copy was in the reverse
orientation relative to the original segment in 39% of the cases.

We used these observed distributions and inversion rates to simulate the
evolution of gene clusters, providing data to evaluate our pipeline. Starting from
a 500 Kbp sequence, we simulated the formation of gene clusters via 10-100
duplications. For each event, we chose a random left end and length from the
observed distribution. The procedure then chose an insertion point at a distance
selected from the observed spacing distribution, and a copy of the “source”
interval (or its reverse complement at a frequency of 0.39) was inserted. We
also simulated deletions with frequency equal to 2% of the duplication rate (the
observed frequency), using random left ends and length drawn from the empirical
distribution. By simulating N = 10, 20, 30, . . . , 100 events, we created 10 gene
clusters for each N . The results of our pipeline were compared to the actual
number of simulated events. Fig.3 shows that our algorithm accurately predicted
the true number of events for the simulated gene clusters. The predicted numbers
of events were slightly larger (4% on average) than the true number of events.

6 Discussion

We have designed and implemented a method to predict the duplication history
of a gene cluster using sequence data from only one species. Our goal was to
measure the tempo of cluster expansions throughout primate evolution for every
human gene cluster, so as to help prioritize the selection of notably interesting
gene clusters for more detailed comparative genomics studies. Our future plans
include performing comparative sequence analysis of a series of human gene
clusters, which will involve isolating and accurately sequencing the orthologous
genomic regions in multiple primates.

It will be fascinating to compare cluster dynamics in certain lineages to ob-
served phenotypic differences among primates. For instance, Hurle et al. [22]
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Fig. 3. Left: Actual versus reconstructed number of events with standard errors. Right:
Proportion of breakpoint reuses within the reconstructed histories. For each simulated
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look for correlations between differences in the WFDC cluster and several pheno-
types, including female promiscuity. Note that Table 1 indicates a lack of recent
WFDC expansions in the human lineage. Another potential use is illustrated by
the PRAME cluster, where three gaps remain in the human assembly (Table
1). The rhesus cluster was straightforward to assemble because it lacks recent
duplications [23], paving the way for evolutionary studies to help understand the
cluster’s function.

In addition, such sequence data should reveal differences among primate
species of possible relevance for selecting species for further biomedical studies.
Sequence data has already been gathered from primate orthologs of the HLA
cluster, showing a large expansion in the macaque lineage [24, 23], and effects of
differences among the rhesus, cynomolgus, and pigtail macaque MHC clusters
may be relevant for clinical studies of AIDS progression [25, 26]. Similarly, the
KLR cluster has been sequenced in marmoset by Averdam et al. [27] to help de-
termine the value of that species as a primate model for immunological research.
Our planned systematic project will provide a deeper understanding of primate
genome evolution than would piecemeal studies of this sort.

The data should also fuel the development of computational methods for
handling the complexities associated with comparative sequence data that in-
clude closely related duplicated segments. The approach described here is just
one way of approaching this fascinating class of problems.
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A Proof of the Basic Algorithm

Proof of Theorem 1: Denote the present day sequence of atomic segments
S and the series of k duplications that created this sequence O1, O2, . . . , Ok.
To prove the claim, we will first show that for any candidate alignment (P,D),
sequence S can also be created by a sequence of duplications O′

1, O
′

2, . . . , O
′

k of
the same length (also satisfying assumptions (1)-(3)), where the last duplication
O′

k is (P,D). All claims of the theorem are a direct consequence of this claim,
proven simply by induction on the number of duplication events.

Now consider a candidate alignment (P,D) in sequence S. If we look at the
duplication history in reverse, we can show that D will be always a D-segment
of some candidate alignment until one of the following happens (see Lemma 2):
(A) either D is deleted by unwinding a duplication (P ′,D), or (B) all the P -
segments matching D are unwound, and the role D-segment is in fact gained by
a duplication (D,P ′).

In case (A), we can find a segment P ′′ matching D such that there exist a
sequence of k duplications that will create sequence S, where (P ′′,D) is the latest
duplication (Lemma 3). Since both (P ′′,D) and (P,D) are candidate alignments
in S, we can replace (P ′′,D) with (P,D) in the last duplication and still obtain
the same sequence S with k duplications.

In case (B), the role of the D-segment has been gained by a duplication
Oi = (D,P ′) at time i. Immediately after this event, (D,P ′) must be a candidate
alignment (Lemma 1). Since (P ′,D) is also a candidate alignment, we can replace
O1, . . . , Oi with some sequence of duplications O′

1, . . . , O
′

i such that we obtain
the same intermediate atomic segment sequence at time i, where O′

i = (P ′,D)
(Lemma 4). Using the sequence of duplications O′

1, . . . , O
′

i, Oi+1, . . . , Ok, we re-
duce case (B) to case (A), for which we have already proven the claim. �

We present the proofs of the following supporting lemmas in Appendix B.

Lemma 2. If we consider duplication operations in reverse order, the D-segment
of a candidate alignment will remain a D-segment of some (not necessarily the
same) candidate alignment until either this D segment is removed from the
sequence by unwinding a duplication (P,D), or all segments matching D are
deleted, in which case the segment gains the role of D-segment by duplication
(D,P ).

Lemma 3. Let S be a sequence of atomic segments created by k duplications
O1, . . . , Ok, and let Oi = (P,D) for some i. If D is a D-segment of a candidate
alignment in all intermediate sequences after duplication Oi, as well as in S
(possibly with different P -segments, say P ′), we can always find a sequence of
duplications O′

1, . . . , O
′

k leading to S such that O′

k = (P ′,D).

Lemma 4. Let S be a sequence of atomic segments created by k duplications
O1, . . . , Ok, where the last duplication is Ok = (D,P ). If (P,D) is also a can-
didate alignment, there exists a sequence of k duplications O′

1, . . . , O
′

k such that
the last operation is O′

k = (P,D), and it creates the same sequence of atomic
segments S.
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B Proofs of Supporting Lemmas

Lemma 5. For a candidate alignment (P,D), with D = u|a1 · · · b1|v and P =
x|a2 · · · b2|y, the D segment will not overlap with any other alignments unless
(P,D) is a forward tandem duplication.

Proof. Without loss of generality, we assume there is a copy of u|a1 in the se-
quence, say u3|a3. If u3|a3 lies within or outside either |a1 · · · b1| or |a2 · · · b2|,
it will remain in the sequence after removing D. Since x|a2 is collapsible af-
ter removing D, u3|a3 must equal to x|a2, which means u = u3 = x, but this
contradicts with the maximum alignment assumption.

Alternatively, either u3|a3 or x|a2 is deleted when removing D. If u3|a3 is
deleted by D, it must lie on the boundary b1|v of D, i.e., either b1|v ≡ u3|a3 or
b1|v ≡ a3|u3; either way we will have the atomic pair flanking D non-collapsible
after removing D. On the other hand, if x|a2 is deleted by D, we must have
either a forward tandem duplication u|a1 · · · b1|a2 · · · b2|y or a backward tandem
duplication v|b1 · · · a1|a2 · · · b2|y. The latter leads to a contradiction because u =
a2 means u3|a3 = a2|a, and hence v|a2 is not collapsible after removing D. �

Lemma 6. D1 of a candidate alignment (P1,D1) cannot lie within either P2

or D2 of another candidate alignment (P2,D2), but they can represent the same
region, i.e., D1 ≡ D2.

Proof. By Lemma 5, the statement is true if (P1,D1) is not a forward tandem
duplication. When (P1,D1) is a forward tandem duplication, without loss of
generality, assume (P1,D1) has the form D1|P1 = u|a1 · · · b1|a2 · · · b2|y. Suppose
there is another candidate alignment (P2,D2), in which either P2 or D2 covers
D1. If D1 completely lies within either P2 or D2 and shares no boundaries with
them, then there is a second copy of b1|a2, say b3|a3 in the sequence. After
removing D1, we should have u|a2 collapsible, which is impossible due to b3|a3.
On the other hand, suppose D1 lies within either P2 or D2 and they share
the boundary u|a1; then the same arguments apply. Instead, if D1 shares the
boundary b1|a2 with either P2 or D2, there are two situations:

Situation 1: P2 covers D1. In this case, after removing D2, we should have
b1|a2 collapsible, which is impossible due to b2|y in P1.

Situation 2: D2 covers D1. In this case, we must have D2 = p|c1 · · ·ua1 · · · b1|a2,
in which the segment a1 · · · b1 is D1, and P2 = w|c2 · · ·u4a4 · · · b4|z. After
removing D2, we have p|a2 collapsible, which means p = u. After removing
D1, we should have u|a2 collapsible, which means (p|c1) = (u|c1) = (u|a2),
and thus c1 = a2. However, this means w|c2 = w|a2 in P2 must also equal to
u|a2, and thus w = u = p, which contradicts with the maximum alignment
assumption.

�

Definition 3 (Coupling). Two candidate alignments (P1,D1) and (P2,D2)
are coupled if P1 ≡ D2 and P2 ≡ D1.
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Lemma 7. D1 in a candidate alignment A = (P1,D1) cannot share boundaries
with P2 in another candidate alignment B = (P2,D2), unless either D1 ≡ D2 or
A is coupled with B.

Proof. Let D1 ≡ u|a1 · · · b1|v, P1 ≡ x|a2 · · · b2|y, and D2 ≡ p|c1 · · · d1|q, P2 ≡
w|c2 · · · d2|z. Without loss of generality, we assume that D1 shares boundaries
with P2. There are two situations:

Situation 1 : D1 is adjacent to P2, in which case we have (w|c2)≡(b1|v). Since
w|c2 is collapsible after removing D2, we should have b2|y in P1 equal to
b1|v, and thus y = v. However, this contradicts with the maximum align-
ment assumption. The exception is that either b1|c2 or b2|y is deleted when
removing D2. The former indicates D1 ≡ D2 by Lemma 6. For the latter, if
b2|y is completely removed by D2, there is another copy of b2|y in P2, which
still indicates y = v and leads to a contradiction. If D2 only removes b2 in
b2|y, then D2 covers P1 by Lemma 6. In this case, we have either of the
following:

1. D2 and P1 are in the same orientation:
In this case, d1 = b2 and q = y. Since b2|y is collapsible after removing
D1, and b2|y = d1|q, we must have d2|z in P2 equal to d1|q, which con-
tradicts with the maximum alignment assumption. The only exception
is that b2|y is deleted when removing D1. In this case, (P1,D1) is either
coupled with (P2,D2), or is a forward tandem repeat in the form P1|D1.
The latter is impossible, otherwise after removing D1, we should have
b2|c2 collapsible, so b2|c2 = p|c1, which contradicts with the maximum
alignment assumption.

2. D2 and P1 are in different orientations:
In this case, p ≡ y and b2 ≡ c1 = c2. However, it indicates that b1|c2 =
b2|b2 at the boundary of D1|P2 is not collapsible after removing D2, and
thus (P2,D2) is not a candidate alignment. The only exception is when
b1 of b1|c2 at the boundary of D1|P2 is deleted when removing D2, which
is impossible due to Lemma 6.

Situation 2: D1 covers P2. After removing D2, (d2|z) ≡ (b1|v) in P2 is collapsi-
ble. However, this contradicts with v 6= y, unless either b1|v in P2 or b2|y in
P1 is deleted when removing D2.
1. if b1|v in P2 is deleted, then we either have a forward tandem repeat

P2|D2, or a reverse tandem repeat P2|D2. For the former, we must have
u = w and a = c following similar arguments as in Lemma 6. As a
result, when removing D2, w|c2 is collapsible and thus x = w = u,
which contradicts with the maximum alignment assumption. The only
exception is when (P1,D1) and (P2,D2) are coupled. For the latter,
we have a reverse tandem repeat P2|D2. Similarly, we can show that
y = p = u and d = c. Therefore, w|c in P2 equals to w|d, and will remain
intact after removing D2. However, after removing D2, we should have
d|p collapsible, and thus w = p, which contradicts with the maximum
alignment assumption unless (P1,D1) and (P2,D2) are coupled.
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2. if b2|y in P1 is deleted, then first, b2|y cannot be completely deleted by
D2, otherwise there is another copy of b2|y remaining in P2, and the same
arguments that v 6= y can be applied to show a contradiction; second,
the y of b2|y cannot be deleted by D2 as proved in Situation 1; third, if
the b2 of b2|y in P1 is removed by D2, we have D2 ⊃ P1, which leads to
coupling because D1 ⊃ P2.

�

Lemma 8. Given two candidate alignments (P1,D1) and (P2,D2), if at least
one of them is not a forward tandem repeat, then D1 will neither overlap with
nor be adjacent to D2. D1 and D2 can be coupled (i.e., D1 ≡ P2 and D2 ≡ P1),
separated or representing the same region.

Proof. Let D1 ≡ u|a1 · · · b1|v, P1 ≡ x|a2 · · · b2|y, and D2 ≡ p|c1 · · · d1|q, P2 ≡
w|c2 · · · d2|z. By Lemma 5 and Lemma 6, D1 cannot overlap with, cover, or lie
within D2, unless both alignments are forward tandem repeats or if D1 ≡ D2.
As a result, we only need to show that D1 and D2 are not adjacent to each
other unless they are coupled. Without loss of generality, assume D1 and D2 are
adjacent in the form D1|D2 = u|a1 · · · b1|c1 · · · d1|q.

Situation 1: w|c2 in P2 remains intact after removing D1. After removing D1,
u|v = u|c1 should be collapsible, and thus u = w. On the other hand, w|c2

in P2 is collapsible after removing D2 and u|a1 will remain intact, so we
have (u|a1) = (w|a1) = (w|c2), which contradicts with Lemma 5. The only
exception is that w|c2 in P2 is deleted when removing D2, which indicates
either (P2,D2) is coupled with (P1,D1), or (P2,D2) is a forward tandem
repeat in the form D2|P2. The latter is impossible, because q = c1, and after
removing D1, we have u|c1 collapsible (because D1 is adjacent to D2), which
means u = d and thus z = c1 = q, in which case (P2,D2) is not maximized.

Situation 2: w|c2 in P2 is completely deleted when removing D1. In this case,
we must have a copy of w|c2 in P1, and thus the same arguments for Situation
1 apply.

Situation 3: w|c2 in P2 is partially deleted when removing D1, i.e., either w
or c2 is removed. In this case, P2 must share boundaries with D1, which is
impossible due to Lemma 7, except for the coupling relationship or when
D1 ≡ D2.

�

Lemma 9. A candidate alignment (P1,D1) cannot be partially deleted or ex-
tended when removing another candidate alignment (P2,D2). Instead, either P1

or D1 can be completely deleted by D2. If P1 is deleted by D2, then there is a
third candidate alignment (P3,D1). If D1 is deleted by D2, then D1 ≡ D2.

Proof. Let A ≡ (P1,D1) and B ≡ (P2,D2) denote the two candidate alignments.
By Lemma 8, D1 and D2 may be identical, coupled, or separated. The exception
is when both A and B are forward tandem repeats, in which case the statement
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holds true. If D1 ≡ D2, removing D2 will completely delete D1. If D1 and D2

are coupled, removing D2 will completely delete P1. If D1 and D2 are separated,
deleting D2 will only affect (P1,D1) if D2 strictly covers P1. This is because
neither D2 overlaps with P1 nor D2 lies within but share boundaries with P1,
according to Lemma 6, and by Lemma 7, D2 cannot be adjacent to P1. Assume
D1 and D2 are separated, and let D1 ≡ u|a1 · · · b1|v, P1 ≡ x|a2 · · · b2|y, and
D2 ≡ p|c1 · · · d1|q, P2 ≡ w|c2 · · · d2|z. Since P1 is strictly within D2, we must
have a copy of P1, denoted by P3 ≡ x3|a3 · · · b3|y3 in P2, which will remain
intact after deleting D2. As a result, the third alignment C = (P3,D1) must be
a candidate alignment. �

Using Lemma 5-9, we are now ready to prove Lemma 2-4 in Appendix A.

Proof of Lemma 2: By Lemma 9, a candidate alignment (P1,D1) cannot
be partially removed or extended when removing other candidate alignments.
We thus only need to show that, when reconstructing duplication in the reverse
order, D1 will continue to be the D segment of some candidate alignments until
either D1 is deleted or all segments matching with D1 are deleted.

Let D1 ≡ u|a1 · · · b1|v and P1 ≡ x|a2 · · · b2|y. Assume D1 becomes an in-
valid D segment after removing a candidate alignment (P2,D2). If removing
D2 deletes P1, then there is a third candidate alignment (P3,D1). If both P1

and D1 remain intact after removing D2, then by Lemma 7 and Lemma 8, the
flanking segments of P1 and D1 will remain intact as well. Let D2 ≡ p|c1 · · · d1|q
and P2 ≡ w|c2 · · · d2|z, removing D2 will produce a new atomic pair p|q. To
invalidate the D-segment role of D1, at least one of x|a2, b2|y, u|v pairs must
become non-collapsible due to p|q. If u|v is affected, without loss of general-
ity, we assume p = u. Since u|v is collapsible after removing D1, p|c1 in D2

must equal to u|v and thus c1 = v. As a result, w|c2 = w|v in P2 must equal
to u|v, indicating p = w = u. This contradicts with the maximum alignment
assumption. The only exception is when P2 and D2 are adjacent in the form
P2|D2 ≡ z|d2 · · · c2|c1 · · · d1|q, and thus p = u = c2. However, since and v = c1,
we have u|v = c2|c1 non-collapsible. Similar arguments can be applied to show
contradictions when either x|a or b|y becomes non-collapsible due to p|q. In con-
clusion, D1 will always be the D segment of some candidate alignment until
either D1 is deleted or all segments matching with D1 are deleted. �

Proof of Lemma 3: We will prove this lemma by induction on the number
of duplication events. First, the lemma holds trivially for the sequences with a
single duplication (which must be (P,D)). Now, let us assume that the lemma
holds for all duplication sequence of length less than k. We want to prove that
it also holds for a sequence of duplication O1, . . . , Ok of length k.

If Ok = (P,D), then lemma holds trivially. Therefore, assume that Ok 6=
(P,D), and thus (P,D) is among one of O1, . . . , Ok−1. Let Sk−1 be the atomic
segment sequence created by O1, . . . , Ok−1, then according to the induction hy-
pothesis, there exists a segment P ′ and a sequence of duplication O′

1, . . . , O
′

k−1 =
(P ′,D) that also creates Sk−1.
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Let S be the sequence created by the sequence of duplication O′

1, . . . , O
′

k−1, Ok,
i.e., converted from Sk−1 via one additional duplication Ok. Suppose that Ok =
(P1,D1), then D1 6= D and P1 6= P ′ under the no atomic boundary reuse as-
sumption. Since D is a D-segment in S under the Lemma assumption, we can
always find two alternative events O′′

k−1 = (P ′

1,D1) and O′′

k = (P ′′,D) to replace
O′

k−1 = (P ′,D) and Ok = (P1,D1) (i.e., to switch orders of deleting D and D1),
such that S can also be created by the sequence of duplication O′

1, . . . , O
′′

k−1, O
′′

k .
This is a direct result of Lemma 9 and the fact that D1 6= D. Therefore, S can
be created by k duplications with the last operation being (P ′′,D), even if D is
generated by duplication i(< k) in the real history. �

Proof of Lemma 4: Let P ≡ x|a . . . b|y and D ≡ p|a . . . b|q. If both (P,D) and
(D,P ) are candidate alignments in S, then by Lemma 5, no other alignments
will cover either P or D unless (P,D) is a forward tandem repeat. If (P,D) is
not a forward tandem repeat, (x|a), (b|y), (p|a), (b|q) must all be unique pairs in
the atomic segment sequence S. In addition, we should have x|a collapsible after
removing D, and thus x must be unique in S. Similar arguments can show that y,
p, and q are also unique in S. As a result, the two segments P and D are bounded
within unique atomic segments and thus forms “two islands”. So any previous
duplication related with P or D segments must be completely inside of either
P or D, and they do not share boundaries with P or D. The same conclusion
applies even if P and D are adjacent to each other. Therefore, to change the
latest duplication from Ok = (D,P ) to O′

k = (P,D), we simply “redirect” all
the duplications that are inside of D to be inside of P , and keep the rest the
same. This will create a new sequence of duplication O′

1, . . . , O
′

k−1, O
′

k = (P,D)
that creates S.

�
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C Duplication Complexity of Selected Gene Clusters

Name Location GA OWM NWM LG DOG gaps

PRAMEF chr1:12750851-13626366 7 23 32 48 63 3
PADI chr1:17423413-17600526 0 0 0 0 0 0

chr1:22775285-23112635 0 0 0 0 0 0
chr1:25443774-25537798 0 1 1 1 1 0

CYP4 chr1:47048227-47411959 1 5 5 6 11 0
chr1:86662627-86892926 0 0 1 1 1 0

GBP chr1:89244904-89692274 0 5 7 9 22 0
AMY chr1:103898363-104119006 4 10 14 14 14 0

chr1:110861483-111018698 0 0 0 0 0 0
chr1:119739258-119963386 0 0 3 19 20 0

HIST2H chr1:144651745-148125604 21 41 68 101 107 0
chr1:150451947-150599304 0 1 1 1 1 0

LCE chr1:150776235-151067237 0 0 6 7 11 0
SPRR chr1:151220060-151272246 0 0 0 0 1 0
SPRR chr1:151278447-151390171 0 0 1 7 8 0

chr1:153784948-154023311 0 5 14 24 28 0
FCRL chr1:155406878-156042315 0 2 11 30 40 0
CD1 chr1:156417524-156593228 0 0 0 0 1 0
OR chr1:156634961-157053841 0 0 0 0 1 0

chr1:157512882-157835664 0 0 0 0 1 0
FC chr1:159742726-159915333 3 3 5 6 6 0

chr1:167848867-167968738 0 0 0 0 0 0
CFH chr1:194914679-195244603 4 6 18 22 25 0

chr1:205701588-205958677 1 7 12 12 13 0
ZNF chr1:245215980-245486993 2 2 2 2 5 0
OR chr1:245680906-246912147 1 6 23 48 55 0

chr2:79106193-79240545 0 0 0 1 1 0
CCDC; CFC1 chr2:130461934-131153411 3 5 12 12 15 0

chr2:166554904-167039157 0 0 0 1 3 0
chr2:208680310-208736768 0 1 2 2 2 0
chr2:232893923-233063157 0 3 13 21 24 0

UGT1A chr2:234140385-234334547 0 2 13 17 23 0
chr3:38566866-38926662 0 0 0 0 1 0

ZNF chr3:44463068-44751808 0 1 1 2 2 0
CCR chr3:45917359-46425558 0 0 0 0 1 0

chr3:48977485-49396481 0 0 1 1 1 0
OR5 chr3:99254906-99898694 0 1 10 14 27 0

chr3:134863859-134969704 0 0 0 1 1 0
chr3:152413859-152539276 0 0 0 0 0 0
chr3:196822567-196963470 1 1 1 1 1 1
chr4:38451248-38507567 0 0 0 0 0 0

UGT2 chr4:68830737-70547917 2 27 51 59 82 1
CXCL chr4:74781081-75209572 0 0 0 3 26 0
ADH chr4:100215375-100612366 0 0 3 8 10 0
SMN chr5:68787010-70696078 23 25 25 25 25 0
PCDH chr5:140145736-140851366 0 0 0 1 37 0
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Name Location GA OWM NWM LG DOG gaps

chr6:10322043-10743230 0 1 1 1 1 0
HIST1H; BTN chr6:25833812-26617296 0 1 9 19 35 0
HIST1H chr6:27561049-27970197 1 1 3 4 11 0
ZNF; OR chr6:28161149-29664934 0 0 10 19 33 0
TRIM chr6:29786467-30568761 0 2 29 44 58 0
BAT chr6:31267292-31607879 0 4 12 17 28 0
HLA-D chr6:32514542-32891079 0 1 14 21 26 0
HLA-D chr6:33082752-33265289 0 0 0 7 14 0
GSTA chr6:52711832-52960243 0 7 13 27 33 0
TAAR chr6:132951558-133008844 0 0 0 0 0 0

chr6:160794897-161275095 0 0 9 17 18 0
chr6:169347092-169825478 0 0 0 0 0 0

LOC chr7:71966977-72466918 1 5 8 8 8 0
CCL; CTF2; PMS2 chr7:73565093-76526339 21 31 38 40 45 1

chr7:86869277-87034269 0 0 0 1 1 0
chr7:98915207-99500181 0 0 10 20 26 0
chr7:142134143-142186482 0 1 4 4 4 0
chr7:142469761-142919050 0 0 0 0 0 0

OR chr7:143005241-143760083 7 9 9 11 17 0
ZNF chr7:148389924-149094267 0 4 9 15 17 0
GIMAP chr7:149794678-150079280 0 4 4 5 5 0
DEF chr8:6769157-6902786 1 1 1 1 13 0
DEFB10; DEFB chr8:7069563-7953918 5 8 8 10 14 1

chr8:22933046-23139154 0 0 6 21 30 0
chr8:82518183-82604430 0 0 0 0 0 0

ZNF; ZNF chr8:145901725-146244938 0 0 0 0 2 0
IFN chr9:21048760-21471698 0 11 15 20 41 0
OR13 chr9:106305453-106535416 0 0 2 2 3 0
OR chr9:124279100-124603579 0 0 1 1 2 0

chr9:134962296-135122729 0 0 0 0 0 0
AKR1C chr10:4907977-5322660 0 5 7 13 32 0

chr10:26458036-27007198 0 4 7 17 19 0
chr10:53701853-54315804 0 0 0 1 1 0

SFTPA chr10:80936018-81672884 6 7 8 10 12 1
chr10:88319645-89246594 2 2 3 3 3 0

IFIT chr10:91051661-91168336 0 0 0 0 1 0
chr10:96426730-96897127 1 2 18 18 20 0
chr10:118205218-118387999 0 0 1 3 7 0
chr10:135086124-135244057 2 2 2 2 2 0
chr11:1065614-1239359 0 0 0 0 0 1

OR5; HB; TRIM chr11:4124149-6177952 4 6 10 10 27 0
OR chr11:6745853-6899767 0 0 1 1 2 0

chr11:24900251-25670383 0 0 0 0 1 0
OR4 chr11:48193633-48622537 0 0 7 17 20 0

chr11:48865105-49870196 1 12 15 15 18 0
OR chr11:54833085-56562513 0 1 14 46 61 0
OR chr11:57390332-58032285 0 1 1 1 2 0
OR chr11:58833693-59274730 0 0 2 2 6 0

chr11:66900400-67551984 0 2 4 4 4 0



21

Name Location GA OWM NWM LG DOG gaps

MMP chr11:102067847-102343167 0 0 0 0 0 0
OR chr11:123129479-123988274 0 3 5 7 15 0

chr12:9099391-9319709 0 0 0 0 0 0
KLR chr12:10446112-10497748 0 1 1 2 3 0
TAS2R chr12:10845284-11475585 0 6 26 36 64 0

chr12:20846959-21313050 0 0 0 11 24 0
KRT chr12:50852169-51586146 0 2 4 8 15 0
OR chr12:53795147-54317866 0 0 1 2 2 0

chr12:55040623-55490902 0 0 0 0 2 0
chr12:111828405-111931464 0 0 0 0 0 0

ZNF; ZNF chr12:132011584-132289534 0 0 0 0 0 0
chr13:19614743-19695656 0 0 0 0 0 0
chr13:51634776-51849914 0 1 1 2 2 0

OR chr14:19250951-19781765 0 0 0 1 3 0
RNASE chr14:20319257-20525050 0 3 6 8 8 0

chr14:20692977-21208956 1 1 1 2 3 0
C14orf chr14:23177922-23591420 1 5 8 9 11 0

chr14:24044573-24173288 0 0 0 0 0 0
C14orf chr14:73073807-73175062 0 1 1 3 3 0
SERPINA chr14:93850088-94034351 0 0 1 1 1 0
SERPINA chr14:94099676-94182828 0 0 0 0 0 0

chr14:105101878-105397048 2 17 20 20 21 0
CHRNA; KIAA chr15:26168691-30570226 15 38 47 56 58 2
CYP1; DKFZ chr15:71687352-74071019 2 14 23 26 28 0

chr16:1211147-1279180 0 2 2 2 2 0
ZNF chr16:3105811-3428601 0 0 0 0 4 0

chr16:20234773-20711192 2 6 6 6 7 0
LOC chr16:28560127-29404514 3 6 6 6 8 0
MT chr16:55181257-55275655 0 0 0 4 18 0

chr16:85101437-85170740 0 0 0 0 0 0
chr16:88526416-88690103 0 0 0 0 1 0

OR chr17:2912380-3289105 1 3 4 5 10 0
chr17:6501152-6854467 0 1 1 1 1 0

MYH chr17:10145620-10499991 1 2 7 11 25 0
chr17:22979762-23370074 0 2 4 4 5 0

NF1; EVI2 chr17:25940349-27337990 3 9 10 10 10 0
CCL chr17:29605831-29711075 0 0 0 0 0 0
CCL chr17:31334805-31886998 4 7 7 8 9 1
KRT chr17:36069761-37038364 0 9 13 20 30 0

chr17:59292402-59355509 0 4 5 5 5 0
ABCA chr17:64375713-64805977 0 1 1 1 3 0
CD300 chr17:70033428-70220651 0 0 0 0 2 0
DS chr18:26828138-26991601 0 0 0 0 0 0
DS chr18:27160523-27356213 0 0 0 0 0 0

chr18:41459658-41573640 0 0 0 0 0 0
SERPINB chr18:59406881-59805500 0 1 2 2 3 0

chr19:230508-1050902 0 0 0 0 1 0
chr19:6377406-7037708 1 4 5 6 8 0

ZNF; OR chr19:8569586-9765797 3 5 15 24 34 1
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OR chr19:14771021-15113863 0 0 0 3 11 0
CYP4F chr19:15508827-15669145 0 0 0 1 9 0
CYP4F; OR10H chr19:15699700-15970865 0 1 2 7 26 0

chr19:39695418-40633289 0 2 13 20 25 0
ZNF chr19:40976726-43450858 0 7 13 18 27 0
CYP2 chr19:46016475-46404199 0 5 14 17 19 0
ZNF chr19:49031476-49676451 0 1 5 9 33 0

chr19:49840790-50069615 0 0 0 0 0 0
chr19:55457577-55842758 0 0 0 2 4 0

KLK chr19:56014236-56276734 0 0 1 1 3 0
KIR; LILR chr19:59404199-60117280 0 16 30 43 65 0
CST chr20:23560786-23885538 0 12 19 26 35 0
C20orf chr20:31084573-31402526 0 1 1 1 1 0
WFDC chr20:43531807-43853954 0 0 0 1 2 0

chr20:44190604-44564928 0 0 0 0 0 0
KRTAP chr21:30642250-30735038 0 0 0 1 2 0
KRTAP chr21:30774233-30910843 0 0 0 1 1 0
KRTAP1 chr21:44783567-44947268 0 0 4 9 15 0

chr22:18594272-19312230 3 4 6 6 6 1
chr22:20705392-23410020 3 26 52 74 118 0
chr22:30379202-31096691 0 4 5 7 8 0

APOBEC3 chr22:37674922-37828933 0 4 12 19 26 0


