
Inferring the Recent Duplication History of a

Gene Cluster

Giltae Song1, Louxin Zhang2, Tomáš Vinař3, and Webb Miller1

1 Center for Comparative Genomics and Bioinformatics, 506B Wartik Lab,
Penn State University, University Park, PA 16802, USA

2 Department of Mathematics, National University of Singapore, Singapore 117543
3 Faculty of Mathematics, Physics and Informatics, Comenius University,

Mlynska Dolina, 842 48 Bratislava, Slovakia

Abstract. Much important evolutionary activity occurs in gene clus-
ters, where a copy of a gene may be free to evolve new functions. Com-
putational methods to extract evolutionary information from sequence
data for such clusters are currently imperfect, in part because accurate
sequence data are often lacking in these genomic regions, making the
existing methods difficult to apply. We describe a new method for recon-
structing the recent evolutionary history of gene clusters. The method’s
performance is evaluated on simulated data and on actual human gene
clusters.

1 Introduction

Gene clusters are formed by duplication, followed by substitution, inversion,
deletion, and/or gene conversion events. The resulting copies of genes provide
the raw material for rapid evolution, as redundant copies of a gene are free
to adopt new functions [1,2]. A copy may take on a novel, beneficial role that
is then preserved by natural selection, a process called neofunctionalization, or
both copies may become partially compromised by mutations that keep their
total function equal to that of the original gene, called subfunctionalization [3].
Another source of interest in gene clusters is that several human genetic diseases
are caused by a tendency for regions between two copies to be deleted [4]. A
major finding of the initial sequencing of the human genome is that 5% of the
sequence lies in recent duplications [5]. More recently, it has become clear that
duplicated regions often vary in copy number between individual humans [6].
A substantial fraction of what distinguishes humans from other primates, as
well as the genetic differences among humans, cannot be understood until we
have a clearer picture of the contents of gene clusters and of the evolutionary
mechanisms that created them.

One impediment to this understanding is that recently duplicated regions,
say those that retain over 95% identity (roughly, that duplicated in the last 10
million years) resist assembly by the current whole-genome shotgun approach
[7]. Even the so-called “finished” human genome sequence has 300 gaps, most
of which are caused by the presence of recent duplications. Moreover, much

F.D. Ciccarelli and I. Miklós (Eds.): RECOMB-CG 2009, LNBI 5817, pp. 111–125, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

112 G. Song et al.

available mammalian genomic sequence is only lightly sampled, and hence even
further from supporting analysis of gene clusters. Partly because of the lack of
accurate sequence data in gene clusters, practical computational tools for their
analysis still need to be developed.

We think of the analysis problem for gene clusters as requiring a marriage
of two somewhat distinct approaches, one dealing with large-scale evolutionary
operations (primarily duplication, inversion, segmental deletion, and gene con-
version) and the other with fine-scale evolution (substitutions and very small
insertions/deletions). Even the second part, though it is essentially just an ex-
tension of the familiar problem of multiple sequence alignment, is currently not
handled well by existing tools. Indeed, just defining what is meant by a proper
alignment of a gene cluster sequence is a matter of discussion (e.g., see [8,9]).
Although a comparison of several multi-genome alignment programs found rea-
sonable accuracy in single-copy portions of the genome [10], we have found their
performance on gene clusters to be inadequate [11]. Our observations about the
quality of current whole-genome alignments (e.g., those described in [12]) indi-
cate that it may be worthwhile to align gene clusters using methods designed
specifically for them, and then splice the results into the whole-genome align-
ments created by the other methods.

A number of ideas have been explored for reconstructing large-scale evolution-
ary history (as opposed to the sequence alignment problem, which deals with
substitutions and small insertions/deletions). Some of these attempt to recon-
struct the history of duplication operations on regions with highly regular bound-
aries (e.g., [13,14,15]), some allow inversion (e.g. [16,17]), and also deletions (e.g.
[18,19,20]). Typically, whenever more than one group has studied a given formu-
lation of the problem, the methods developed have been fundamentally different,
often with large differences in the resulting evolutionary reconstructions and the
computational efficiency of the methods.

In terms of formulation of the underlying problem, this paper is closest to [18]
and particularly [19]. However, the methods described here are quite different.
For instance, [19] uses probabilistic techniques whereas our approach is entirely
combinatorial.

2 Methods

2.1 Problem Statement and a Basic Algorithm

During genome evolution, a duplication event copies a segment to a new genomic
position. Genome sequencing and analysis suggest that a large number of gene
clusters in human and other mammalian genomes have been formed by dupli-
cation events, often very recent ones. We aim to identify the duplication events
that formed a given gene cluster by using a parsimony approach.

Formally, a duplication is an operation that copies a subsequence or its re-
verse complement into a new position. The original segment is called the source
region and the inserted copy after the duplication is called the target region. Sub-
sequently, the two regions evolve independently by point mutations and small

Inferring the Recent Duplication History of a Gene Cluster 113

S
R1 D1

R3

R4

R5

R6

R 7

R8

R9

R10

D2R 2

D 3

D 4

D 5

D 6

D 7

D 8

D 9

D10

D' 1

(a)

m1

m2

m3

m4

m7

m6

m5

m8

m9

m10

R1 D1

(b)

m6'

m10m4

m7

(c)

m6''

(d)

Fig. 1. An example of duplication inference. (a) The original matches in a sequence.
(b) The self-alignment of the original sequence. (c) The self-alignment after rolling back
a duplication. (d) The self-alignment after rolling back two duplications. See Section
2.3 for details.

insertions and deletions and thus in the present day sequence, the two regions are
generally not identical. However, they do form a strong local alignment (called
a match) in a self-alignment of any genomic region that contains them both.

We detect matches by aligning the genomic sequence with itself using the
program BLASTZ [21]. Let S be a genomic sequence containing a gene cluster.
First, we run BLASTZ to obtain all local self-alignments of S, which are visual-
ized as a dot plot (e.g. Figure 1(b)). These are then processed in a pipeline that
links local alignments separated by small gaps and/or interspersed repeats and
adjusts their endpoints to avoid inferring tiny spurious duplications. Finally, we
identify a set of matches. The problem of inferring the duplication history of
the gene cluster is then to find a duplication-free sequence T and the minimum
number of duplication events O1, O2, · · · , Ok such that

(i) The source and target regions of each Oi consist of one or more match
regions.

(ii) S = Ok(Ok−1(. . . (O1(T))), where Oi(S′) denotes the resulting sequence
after applying O to sequence S′.

Given a sequence of duplications O1, O2, . . . , Ok, we call the boundaries of all
source and target regions breakpoints. If duplication events occur randomly dur-
ing genome evolution, the two duplications are quite unlikely to share their
boundaries. So we assume that no two duplications have a common breakpoint
in a duplication history [22], except for tandem duplication. Tandem duplica-
tion (with or without reversal) copies a source region into a location adjacent
to its boundary. Thus, it is a special exception to the breakpoint uniqueness
assumption.

The algorithm focuses on identifying the latest duplication event in the du-
plication history of a gene cluster. Once this is inferred, its target region is
eliminated. These steps are repeated until the duplication-free sequence is re-
constructed.

Before determining the latest target region, we must identify matches that
have been split by a subsequent duplication. Consider a given match (R, R′). If

114 G. Song et al.

a duplication event inserts a segment A in the region R′, then the match (R, R′)
is split into two small matches (R1, R

′
1) and (R2, R

′
2). If this happens, we can

correctly identify the original duplication event forming the match (R, R′) only
if we first identify the one inserting A. Hence, using a kd-tree data structure,
we identify all the pairs of matches (R1, R

′
1) and (R2, R

′
2) such that R1 and R2

are adjacent but R′
1 and R′

2 are separated by a region A of some match. To
guarantee that (R1, R

′
1) and (R2, R

′
2) are not examined before removing A from

the sequence, we place [R1, A], [R′
1, A], [R2, A], [R′

2, A] into a suspend list. We
call the regions R1, R

′
1, R2, R

′
2 the suspended regions, and the region A on which

they depend the inserted region.

Definition 1. We say a region A is contained in a region B if all bases of A
are in B but not vice-versa. We say A and B overlap if they share at least one
base but neither contains the other.

Theorem 1. Assume a sequence S is transformed from a duplication-free se-
quence T by a series of duplication events. Then the target region of the latest
duplication event does not overlap with the source or target regions of any other
duplications, and it is not contained in any match regions of S.

The proof of Theorem 1 follows from the breakpoint uniqueness assumption.
Based on Theorem 1, we determine the latest duplication event in the history
of a gene cluster as follows. Suppose there are n matches in genomic sequence
S. We define the constraint graph G = (V, E) of these matches as follows. G is
directed and has 2n nodes representing the 2n regions of the matches. There are
three types of arcs. Let (R, R′) be a match. If R overlaps a region B of another
match, there is an arc from node R to node R′. Such an arc is called a type-1
arc. If R is contained in another match region C, there is an arc from node R
to node C, called a type-2 arc. Finally, if [R, A] is in the suspend list, there is
an arc from node R to node A, called a type-3 arc. The constraint graph for
Figure 1 is given in Figure 3.

By Theorem 1, there must be at least one node with out-degree 0 in a con-
straint graph. In each loop of the algorithm, we select a node v with out-degree
0 and remove the region corresponding to v from S. If there are several nodes
of out-degree 0, the one with the highest similarity level in the self-alignment is
selected as the latest duplicated region. By Theorem 2 below, the following algo-
rithm identifies the true number of duplication events and a plausible sequence
of such events in O(n2 log n).

procedure INFER-DUPS(S)
Input: A set of matches S in a self-alignment
Output: A set of duplication events
repeat

for all the pairs of matches (R1, R
′
1) and (R2, R

′
2) do

if R1 and R2 are adjacent but R′
1 and R′

2 are separated by a region A
of some match then

place [R1, A], [R′
1, A], [R2, A], and [R′

2, A] into the suspend list.

Inferring the Recent Duplication History of a Gene Cluster 115

end if
end for
G← CONSTRUCT-CONSTRAINT-GRAPH (S)
Identify the regions of out-degree 0 in G, and remove the one with the
highest similarity value from S.
if the removed region is an inserted region in the suspend list then

merge the corresponding suspended regions in S.
end if
S ← S −M , where M is the set of matches that disappear with removal
of the region

until S = φ
end procedure

function CONSTRUCT-CONSTRAINT-GRAPH (S)
for all the pairs of matches (A, A′) and (B, B′) do

if A overlaps B then
type-1 arc of A→ A′ and B → B′

else if A is contained in B (or vice versa) then
type-2 arc of A→ B (or B → A)

else if A (or B) is a suspended region with C in the suspend list then
type-3 arc of A→ C (or B → C)

end if
end for
end function

Theorem 2. Suppose a sequence S evolves from a duplication-free sequence T
in k duplications. If the breakpoint uniqueness assumption holds, the algorithm
identifies a series of k duplications and a duplication-free sequence T ′ such that
T ′ transforms to S by the identified k duplications.

2.2 Handling Tandem Duplication

Our model assumption of breakpoint uniqueness may be violated by tandem
duplication. Copy-and-paste transposons are an example of frequent reuse of
duplication breakpoints. To infer duplication history more accurately, a way of
handling this tandem duplication is required. Suppose we have a tandem du-
plication that copies A into a location adjacent to its boundary. It produces
a match (A, A′) where A′ is adjacent to A. If the copied location of A′ is not
involved in any other matches, the tandem duplication does not affect the al-
gorithm. But if A′ split other matches, the target region is contained in the
split matches, which violates Theorem 1. For instance, let m be a match, where
m = (BAD, B′′A′′D′′). After the tandem duplication in A occurs, m is split
into two matches m1 and m2, where m1 = (BA, B′′A′′) and m2 = (A′D, A′′D′′)
(see Figure 2). This causes the algorithm to fail to detect the target region A′

because A′ is contained in both regions of m1 and m2. Fortunately, we observe a
property that one region of m1 has a boundary adjacent to a region of m2 while

116 G. Song et al.

B

A

A''D B'' D'' B A A' A''D B'' D''

Fig. 2. An example of the self-alignment change caused by a tandem duplication event

the other region of m1 overlaps the other region of m2. Also, the boundaries of
the overlapped part of m1 and m2 correspond to region A′′. Thus, the tandem
duplication can be detected as follows. If two matches (R1, R

′
1) and (R2, R

′
2),

where R1 and R2 are adjacent but R′
1 and R′

2 are overlapped (or vice versa), the
part where R′

1 overlaps R′
2 is denoted as a temporary match (A, A′′) such that

A′′ is the overlapped region of R′
1 and R′

2. If there exists a match of (A, A′) where
A and A′ are adjacent, then [R1, A], [R′

1, A], [R2, A], [R′
2, A], [R1, A

′], [R′
1, A

′],
[R2, A

′], and [R′
2, A

′] are all placed in the suspend list. In addition, while con-
structing the constraint graph, if A is contained in a suspended region whose
inserted region is A, the drawing of a type-2 arc from A is skipped if A forms a
match with the adjacent region.

One potential problem is whether the case we detect as tandem duplication
can be generated by other scenarios. Suppose we have three matches m1, m2,
and m3 where m1 = (BA, B′′A′′), m2 = (A′D, A′′D′′), m3 = (A, A′), and that
A and A′ are adjacent. To simplify, we assume that the out-degree of m1, m2,
and m3 in the constraint graph constructed with the other matches is 0. If we
consider only parsimonious solutions for this case, the only other scenario is
separate duplications of both m1 and m2. But m1 and m2 cause the violation
of the breakpoint uniqueness assumption. If tandem duplication is regarded as
a special case of breakpoint reuse, inferring a tandem duplication of m3 and a
duplication of a merged match of m1 and m2 makes more sense.

This modification can be extended for tandem duplications which copy a
segment more than once into its adjacent location. The tandem duplications
of more than one copy are detected as follows. Assume the same source region
is involved in all of the copies. If there are n(≥ 2) matches such that m1 =
(A1, An+1), m2 = (A1A2, AnAn+1), ... , mn = (A1...An, A2...An+1), then mi(2 ≤
i ≤ n) is converted into m′

i where m′
i = (Ai, An+1). Then, the latest region for

this iteration can be identified by running the rest of the algorithm normally.
There is another event that may be confused with tandem duplication. This is

a duplication that copies a source region into a location within itself. To handle
these correctly, we replace the two matches formed by this type of duplication
with one match. This step is motivated by the following. Let m1 and m2 be
two matches, and suppose we observe AA′B′B or AB′A′B, where m1 = (A, A′),
m2 = (B′, B) and B′A′ is the reverse complement of sequence A′B′. AA′B′B
might arise from two duplication events: an event duplicating A and another
duplicating B. It could also arise from a single duplication that copies AB within

Inferring the Recent Duplication History of a Gene Cluster 117

itself. The two-event explanation violates the breakpoint uniqueness hypothesis,
and is also less parsimonious than a single event. Therefore, our algorithm infers
that AA′B′B arose from a single event that copied and inserted AB within
itself. In the same manner, AB′A′B also arose from a single event that copied
and inserted AB within itself in the reverse orientation. In order to infer one
event for two matches in AA′B′B, the two matches m1 and m2 are replaced with
a new match m′ = (AB, A′B′). The two matches in AB′A′B are also replaced
in the same way. We call this type of duplication intraposed duplication.

2.3 Illustration of the Method

To demonstrate how the method works, we consider a genomic sequence S con-
taining 10 matches mi, 1 ≤ i ≤ 10. The dot plot of the self-alignment of S is
shown in Figure 1(b).

First, we observe that the regions of m1 and m2 form a segment AA′B′B,
where m1 = (A, A′) and m2 = (B′, B), so we infer that they were formed by an
intraposed duplication event that inserted a copy of segment AB within itself.
We replace m1 and m2 with a new match m′

1, whose regions are R′
1 = AB

and D′
1 = A′B′ respectively. Furthermore, the following two facts are true. Let

mi = (Ri, Di) for 3 ≤ i ≤ 10.

– D6 and D8 are adjacent, while R6 and R8 are separated by D′
1. Hence,

[R6, D
′
1], [D6, D

′
1], [R8, D

′
1], [D8, D

′
1] are added to the suspend list.

– D6 and D7 are adjacent, while R6 and R7 are separated by R10. Hence,
[R6, R10], [D6, R10], [R7, R10], [D7, R10] are added to the suspend list.

The constraint graph G for the 9 matches is shown in Figure 3(a). Note that
there are no arcs leaving node D′

1, so m′
1 is selected as the latest duplication

event. After D′
1 is removed from the sequence S, m6 and m8 are merged into

a match m′
6 in the resulting sequence S′. In addition, since R3, R5 and R9 are

contained in D′
1, the matches m3, m5 and m9 do not exist in S′. Overall, in

the self-alignment of S′ shown in Figure 1(c), only four matches remain, which
are m4, m

′
6, m7, m10. The constraint graph for these four matches is shown in

Figure 3(b). Since there are no arcs leaving node R10, we select m10 as the latest
duplication event. After removal of R10, m′

6 and m7 are merged into a match m′′
6

and m4 disappears in the resulting sequence S′′. As a result, only m′′
6 remains

in the self-alignment of S′′. In summary, we identify 3 duplication events that
give rise to the matches in the given genomic sequence S.

2.4 Influence of Deletion and Inversion Events

Deletion events can affect the inference of duplications, so it is important to
consider them simultaneously. In order to infer deletions, we use the following
procedure. Assume an input sequence S has two segments ABC and A′C′ for
some non-empty segments A, B, C, A′, and C′. We may infer two duplication
events that copy A and C respectively, or one duplication that copies ABC
and one hypothetical deletion event that deletes B′. Since our goal is to find

118 G. Song et al.

R6

D1'

D6

R8

D8 R1'

R7

R10

D7

R3

R9

R5

D3

D9
D10

D5 R4

(a)

R7

R10

D7 R6'D6' R4

D4

D10

(b)

Fig. 3. The constraint graphs of matches in Fig. 1(b) and 1(c). Arcs of type 1, 2, and 3
are represented by dotted, solid, and dashed lines, respectively. In (a), matches m1 and
m2 have been replaced with m′

1 according to the procedure for intraposed duplications
discussed in Section 2.2, node D4 is omitted because it is identical to D3. D4 reappears
in (b) after m3 has been eliminated.

a parsimonious duplication history for the cluster, we infer a duplication event
and a deletion event from segments ABC and A′C′ when B is relatively short
compared to the length of A and C. In our implementation, we detect all possible
deletion events by using k-d tree data structure before entering each loop of
inferring duplication events.

In the case of inversions, if the inversion does not split any matches generated
by duplication events (i.e., it contains the whole region of one or more other
matches, or occurs in a region that does not have any matches), then it does
not affect the inference of duplication events. Moreover, if the inversion occurs
within a match, it can be detected. If it splits other matches by involving source
or target regions of duplication events, two duplications are inferred rather than
one, but the duplicated regions can be removed correctly.

3 Results

3.1 Human Gene Clusters

We first applied our method to 25 gene clusters in the human genome. For a
genomic region containing each gene cluster, we constructed its self-alignment
and identified matches using five different thresholds of similarity level: 98%,
93%, 89%, 85%, and 80%, in the same way as [19]. These five similarity lev-
els correspond roughly to the sequence divergence between humans and great
apes (GA), old-world monkeys (OWM), new-world monkeys (NWM), lemurs
and galagos (LG), and dogs (DOG), respectively. With the matches at different
similarity levels, we inferred duplication and deletion events that occurred in
different periods in the human lineage. The inferred numbers of duplication and
deletion events in these periods are summarized in Table 1.

The human leukocyte antigen (HLA) gene cluster is known to be involved in
narcolepsy [23] and celiac disease [24]. In addition, HLA has been observed in

Inferring the Recent Duplication History of a Gene Cluster 119

Table 1. Inferred numbers of large-scale duplications and deletions in human gene
clusters following divergence from various mammalian clades. GA = great apes (at
least 98%); OWM = old world monkeys (93%); NWM = new world monkeys (89%);
LG = lemurs and galagos (85%); DOG = dogs (80%). Cluster locations are indicated
as coordinates in the March 2006 human genome sequence assembly.

Name Location GA OWMNWM LG DOG

CYP4 chr1:47048227-47411959 1, 0 4, 1 4, 1 5, 1 10, 1
LCE chr1:150776235-151067237 0, 0 0, 0 5, 1 6, 1 9, 2
CR, DAP3 chr1:153784948-154023311 0, 0 3, 2 12, 2 19, 5 21, 7
FC chr1:159742726-159915333 1, 2 1, 2 3, 2 4, 2 4, 2
CR1 chr1:205701588-205958677 1, 0 7, 0 8, 3 8, 3 10, 3
CCDC, CFC1 chr2:130461934-131153411 3, 0 5, 0 7, 5 7, 5 10, 5
CXCL, IL8 chr4:74781081-75209572 0, 0 0, 0 0, 0 2, 1 17, 8
PCDH chr5:140145736-140851366 0, 0 0, 0 0, 0 1, 0 36, 0
HLA chr6:29786467-30568761 0, 0 2, 0 27, 3 38, 5 50, 6
HLA-D chr6:33082752-33265289 0, 0 0, 0 0, 0 4, 3 6, 8
OR2 chr7:143005241-143760083 6, 1 8, 1 8, 1 10, 1 16, 1
AKR1C chr10:4907977-5322660 0, 0 3, 2 4, 3 9, 4 28, 4
GAD2 chr10:26458036-27007198 0, 0 4, 0 6, 1 15, 2 17, 2
PNLIP chr10:118205218-118387999 0, 0 0, 0 1, 0 2, 1 5, 2
OR5, HB, TRIM chr11:4124149-6177952 6, 0 7, 0 9, 0 9, 0 24, 2
LST3, SLCO1B chr12:20846959-21313050 0, 0 0, 0 0, 0 9, 2 21, 3
C14orf chr14:23177922-23591420 1, 0 4, 0 5, 2 6, 2 8, 3
CYP1A1 chr15:71687352-74071019 2, 0 12, 2 21, 3 23, 4 25, 4
ACSM chr16:20234773-20711192 2, 0 4, 2 4, 2 4, 2 5, 2
LGALS9, NOS2A chr17:22979762-23370074 0, 0 2, 0 2, 2 2, 2 3, 2
OR, ZNF chr19:8569586-9765797 4, 0 6, 0 14, 0 23, 0 33, 0
NPHS1, ZNF chr19:40976726-43450858 0, 0 6, 1 12, 1 16, 2 23, 4
CYP2A chr19:46016475-46404199 0, 0 5, 0 11, 3 14, 3 16, 3
DGCR6L, ZNF74 chr22:18594272-19312230 3, 0 4, 0 5, 1 5, 1 5, 1
SLC5A, YWHAH chr22:30379202-31096691 0, 0 3, 1 4, 1 6, 1 7, 1

the association with prostate cancer [25] and breast cancer [26]. For the HLA
gene cluster, the MCMC method of [19] estimated 15 duplications in the lineage
between NWM and LG, but our method inferred only 11 duplications, 4 fewer
events than the MCMC method (The numbers of the inferred events in the
lineage are highlighted in bold in Figure 4(a) and Figure 4(b)).

The aldo-keto reductase (AKR) 1C gene cluster is involved in steroid hormone
and nuclear receptors and associated with prostate disease, endometrial cancer,
and mammary carcinoma [27]. For this gene cluster, Figure 4(c) and Figure 4(d)
show the inference results; our method identified 3 duplications between GA and
OWM while the MCMC inferred 5 duplications.

Another interesting observation is that several gene clusters were probably
formed by recent gene duplications. For instance, we examined three Cytochrome
P450 (CYP) gene clusters, which are associated with lung cancer [28] and
esophageal cancer [29]. About 65% of the duplication events inferred for these

120 G. Song et al.

GA OWM NWM LG DOGhuman

12 duplications

25

2

11

(a)

GA OWM NWM LG DOGhuman

14 duplications

27

2

15

(b)

GA OWM NWM LG DOGhuman

19 duplications

1

3

5

(c)

GA OWM NWM LG DOGhuman

19 duplications

2

5

6

(d)

GA OWM NWM LG DOGhuman

2 duplications

2

9
10

2

(e)

GA OWM NWM LG DOGhuman

2 duplications

6
5

3

(f)

Fig. 4. Duplication events inferred (a) for the HLA gene cluster by the deterministic
method, (b) for the HLA gene cluster by the MCMC method, (c) for the AKR1C gene
cluster by the deterministic method, (d) for the AKR1C gene cluster by the MCMC
method, and (e) for the CYP1A1 gene cluster and (f) the CYP2A gene cluster by the
deterministic method

clusters occurred in the evolutionary period between the divergence of humans
from new-world monkeys and from great apes. Duplication events inferred for
CYP1A1 and CYP2A are mapped onto the phylogeny in Figure 4(e) and
Figure 4(f), respectively.

3.2 Validation Test on Simulated Data

Starting from a 500-kb duplication-free sequence, we generated gene clusters
by applying a series of duplication events based on the length and distance
distributions for duplication and deletion events that we observed in the human
genome. We generated 50 gene clusters formed from n duplications for each
n = 10, 20, . . . , 100.

On these clusters, our method outperformed the MCMC method reported in
[19] in terms of both the total number of inferred duplication events and the
number of true duplications detected correctly as indicated in Figure 5(a) and
Figure 5(b). On average, our method estimated only 3% events more than true
events. A duplication event is expressed as a 3-tuple consisting of a source in-
terval, a target location, and an orientation. If these values for an inferred event
exactly match one of the true events, the event is defined to be correctly detected,
i.e. a true event. We count how many of the inferred events were correctly de-
tected. The fraction of true events detected correctly by our method (91% on
average) is much higher than the MCMC method (80% on average).

It is worth noting that duplication breakpoints can be reused in the simulation
dataset, since it is generated according to the observed distributions (Figure 5(c))

Inferring the Recent Duplication History of a Gene Cluster 121

0

20

40

60

80

100

120

140

10 20 30 40 50 60 70 80 90 100

True Number of Events

True
Deterministic
MCMC

(a)

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

True Number of Events

Deterministic
MCMC

(b)

0%

2%

4%

6%

8%

10%

12%

14%

1~5 6~10 11~15 16~20 21~25 26~30 31~

Number of Events

(c)

Fig. 5. (a) and (b) show the simulation results to evaluate detection of duplication; (a)
numbers of reconstructed events and (b) fraction of true events detected correctly. (c)
is the rate of breakpoint reuse by the inferred duplications in the human gene clusters.

without constraining the breakpoints to avoid reuse. However, the inferred events
are still very close to true events.

4 Discussion and Conclusion

We have developed a combinatorial algorithm that reconstructs recent duplica-
tion and deletion operations in a gene cluster from a single present-day sequence.
We have compared our combinatorial method with a probabilistic method for
the same problem [19], and shown that the relative performance of the combi-
natorial algorithm is quite good. In addition, a simulation study has validated
that our method is very effective for identifying the duplication history.

We are exploring several extensions of this method. The results should be
cross-checked against other primate genomes; another, more ambitious goal is
to identify the orthology relationship among genes in each gene cluster in the
species. Gene conversion should be also considered for more accurate orthology
detection rather than using only the overall similarity in the alignment data.

Our goal is to find methods for analyzing large-scale evolutionary operations
that integrate well with the specific needs of our current approach for producing
whole-genome alignments [12]. We are still in an exploratory stage where the aim
is to investigate as many promising avenues as possible. This paper describes a
new method whose accuracy, computational efficiency, and focus on an individual
species make it a particularly strong contender.

Acknowledgement. GS and WM are supported by Grant HG02238 from NHGRI
and LX Zhang is supported by NUS ARF grant R-146-000-109-112. The authors
thank Yu Zhang, Cathy Riemer, and Bob Harris for helpful discussions.

References

1. Ohno, S.: Evolution by Gene Duplication. Springer, Berlin (1970)
2. Lynch, M., Conery, J.S.: The evolutionary fate and consequences of duplicate genes.

Science 290, 1151–1155 (2000)

122 G. Song et al.

3. Force, A., et al.: Preservation of duplicate genes by complementary, degenerative
mutations. Genetics 151, 1531–1545 (1999)

4. Lupski, J.R.: Genomic rearrangements and sporadic disease. Nat. Genet. 39(suppl.
7), 43–47 (2007)

5. Lander, E.S., et al.: Initial sequencing and analysis of the human genome. Na-
ture 409(6822), 860–921 (2001)

6. Wong, K.K., et al.: A comprehensive analysis of common copy-number variations
in the human genome. Am. J. Hum. Genet. 80(1), 91–104 (2007)

7. Green, E.D.: Strategies for the systematic sequencing of complex genomes. Nat.
Rev. Genet. 2(8), 573 (2001)

8. Blanchette, M., et al.: Aligning multiple genomic sequences with the threaded
blockset aligner. Genome Res. 14(4), 708–715 (2004)

9. Raphael, B., et al.: A novel method for multiple alignment of sequences with re-
peated and shuffled elements. Genome Res. 14(11), 2336 (2004)

10. Margulies, E., et al.: Analyses of deep mammalian sequence alignments and con-
straint predictions for 1% of the human genome. Genome Res. 17(6), 760–764
(2007)

11. Hou, M.: unpublished data (2007)
12. Miller, W., et al.: 28-way vertebrate alignment and conservation track in the UCSC

genome browser. Genome Res. 17, 1797–1808 (2007)
13. Elemento, et al.: Reconstructing the duplication history of tandemly repeated

genes. Mol. Biol. Evol. 19(3), 278 (2002)
14. Zhang, L., et al.: Greedy method for inferring tandem duplication history. Bioin-

formatics 19, 1497–1504 (2003)
15. Sammeth, M., Stoye, J.: Comparing tandem repeats with duplications and excisions

of variable degree. TCBB 3, 395–407 (2006)
16. Bertrand, D., Lajoie, M., El-Mabrouk, N., Gascuel, O.: Evolution of tandemly re-

peated sequences through duplication and Inversion. In: Bourque, G., El-Mabrouk,
N. (eds.) RECOMB-CG 2006. LNCS (LNBI), vol. 4205, pp. 129–140. Springer, Hei-
delberg (2006)

17. Ma, J., et al.: The infinite sites model of genome evolution. PNAS 105(38), 14254–
14261 (2008)

18. Jiang, Z., et al.: Ancestral reconstruction of segmental duplications reveals punc-
tuated cores of human genome evolution. Nat. Genet. 39(11), 1361–1368 (2007)

19. Zhang, Y., et al.: Reconstructing the evolutionary history of complex human gene
clusters. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955,
pp. 29–49. Springer, Heidelberg (2008)

20. Zhang, Y., et al.: Simultaneous history reconstruction for complex gene clusters in
multiple species. In: Pacific Symposium on Biocomputing 2009, pp. 162–173 (2009)

21. Schwartz, S., et al.: Human-mouse alignments with BLASTZ. Genome Res. 13(1),
103–107 (2003)

22. Nadeau, J.H., Taylor, B.A.: Lengths of chromosomal segments conserved since
divergence of man and mouse. Proc. Natl. Acad. Sci. USA 81(3), 814–818 (1984)

23. Nakayama, J., et al.: Linkage of human narcolepsy with HLA association to chro-
mosome 4p13-q21. Genomics 65, 84–86 (2000)

24. Sollid, L., et al.: Evidence for a primary association of celiac disease to a particular
HLA-DQ α/β heterodimer. J. Exp. Med. 169, 345–350 (2000)

25. Haque, A., et al.: HLA class II protein expression in prostate cancer cells. Journal
of Immunology 178, 48.22 (2007)

26. Chaudhuri, S., et al.: Genetic susceptibility to breast cancer: HLA DQB*03032 and
HLA DRB1*11 may represent protective alleles. PNAS 97, 11451–11454 (2000)

Inferring the Recent Duplication History of a Gene Cluster 123

27. Penning, T., et al.: Aldo-keto reductase (AKR) 1C3: Role in prostate disease and
the development of specific inhibitors. Mol. Cell. Endocrinol. 248, 182–191 (2006)

28. Crofts, F., et al.: Functional significance of different human CYP1A1 genotypes.
Carcinogenesis 15, 2961–2963 (1994)

29. Sato, M., et al.: Genetic polymorphism of drug-metabolizing enzymes and suscep-
tibility to oral cancer. Carcinogenesis 20, 1927–1931 (1999)

Appendix

A Types of Duplication

Let
S = s1s2 . . . sn

be a genomic sequence of length n, where si ∈ {A, C, G, T }. For any a, b and c
such that 1 ≤ a ≤ b ≤ n and 1 ≤ c ≤ n, a forward duplication that copies the
segment sasa+1 . . . sb and inserts it between sc−1 and sc is written [a, b] + c. It
transforms S into the following sequence

S′ = s1s2 . . . sc−1 sasa+1 . . . sb scsc+1 . . . sn.

If c = b + 1, the forward duplication [a, b] + c forms a tandem duplication in the
resulting sequence

s1s2 . . . sa−1 sasa+1 . . . sb sasa+1 . . . sb sb+1 . . . sn.

Tandem duplications are observed in many important gene clusters in eukaryotic
genomes. If a < c < b, then [a, b]+ c copies within itself and produces a segment
AABB where A and B are non-empty segments in the resulting sequence

s1s2 . . . sa−1 sa . . . sc−1 sa . . . sc−1 sc . . . sb sc . . . sb sb+1 . . . sn.

Abackwardduplication inserting the reverse-complement sequence−sb−sb−1 . . .−
sa between sc−1 and sc is written [a, b]− c. If c = b + 1, the backward duplication
[a, b]− c produces a palindrome. Let A denote the reverse complement of sequence
A. If a < c < b, [a, b]− c produces a segment ABAB.

B Overlap Relationship

To explain the algorithm, we consider the overlap relationship between two du-
plication events. Let A be a region of a duplication event and let B be a region
of another duplication event in S. A base of location i in S is denoted si.

1. If there exist i, j, k, l (1 ≤ i < k ≤ j < l ≤ n) such that

A = sisi+1 . . . sj , B = sksk+1sk+2 . . . sl

or vice versa, we say that A overlaps B.

124 G. Song et al.

2. If there exist i, j, k, l (i < k < j < l) such that

B = B1B2 = sisi+1 . . . sk sj+1sj+2 . . . sl ,

A = sk+1sk+2 . . . sj ,

A is said to be inserted into B.
3. If there exist i, j, k, l (i ≤ k < j ≤ l) such that

A = sisi+1 . . . sk sk+1sk+2 . . . sj sj+1sj+2 . . . sl

= sisi+1 . . . skBj+1sj+2 . . . sl,

we say that A contains B.
4. A region is said to be disjoint from other regions if it does not overlap with

any other regions, is not inserted into and does not contain any other regions.

C Proof of Theorem 2

We prove it by induction on the number n duplications. The results are trivial
when n = 1 and 2. Assume it is true for n ≤ k − 1 and S evolves from a
duplication-free sequence T by k duplications O1, O2, ..., Ok. Let D be the region
first selected by the algorithm such that D forms match M = (R, D) or M =
(D, R). Then, D does not overlap with other matches and is not contained in
any other matches since the out-degree of D is 0 in the constraint graph. Let M
be generated by duplication Oi. We consider the following cases.

Case 1. If i = k, it means that M is generated by the latest duplication. Assume
the resulting sequence is S′′ when D is removed from S. If D is a target region of
Ok, T transforms into S′′ by O1, O2, ..., Ok−1. By induction, the algorithm will
reduce S′′ to a duplication-free sequence T ′′ such that T ′′ transforms into S′′ by
k − 1 duplications. Therefore, T ′′ transforms into S by k duplications.

If D is a source region of Ok, R is a target region. Since D does not overlap
with any other matches and D is not contained in other matches, D cannot
be involved in any other duplications. Thus, T includes D, i.e. D is in the
duplication-free sequence. Let S′ be the resulting sequence after removing D from
S and let T ′ be the resulting sequence after removing D from T and inserting
R in the corresponding position of S. By assumption, T ′ transforms into S′ by
O1, O2, ..., Ok−1. By induction on S′, the algorithm outputs a duplication-free
sequence T ′′ such that it transforms into S′ by k − 1 duplications. Since S′

transforms into S by duplication that creates D, the removal of D guarantees
to find a solution of the same number of true events.

Case 2. If i < k, we consider the following sub-cases.

Sub-case 2.1. Suppose both of D and R in M have out-degree 0. If D is removed
by the algorithm, all the regions involved in duplications oj , i < j ≤ k do
not overlap D. Thus, o1, o2, ..., oi−1, oi+1, ..., ok, oi also transform T into S. This
reduces to Case 1.

Sub-case 2.2. If D is a target region of Oi and its out-degree is 0 and R does
not have out-degree 0, D is removed by the algorithm. Then, since D is a target

Inferring the Recent Duplication History of a Gene Cluster 125

region, the resulting sequence S′ after the removal of D in S can be generated
from T by k − 1 duplications O1, O2, ..., Oi−1, Oi+1, ..., Ok. Thus, by induction,
algorithm reduces S′ to a duplication-free sequence T ′′. Obviously, T ′′ evolves
into S in k duplications.

Sub-case 2.3. If D is a source region of Oi and its out-degree is 0 and R does not
have out-degree 0, D is removed by the algorithm. Since D is not contained in
other match regions, D is a subsequence of the original duplication-free sequence
T . In this case, since the breakpoint uniqueness assumption holds, D is not
inserted in any match region, and hence it must be in T . Let T ′ be the resulting
sequence after removal of D and insertion of R in T . Then, T ′ evolves into S
by k − 1 duplications. By induction, the algorithm identifies a duplication-free
sequence T ′′ that evolves into S by k−1 operations. By modifying T ′′ by inserting
R and removing D, we derive a duplication-free sequence that evolves into S in
k duplications.

D Figures

Length

F
re

qu
en

cy

0 50000 100000 150000 200000

0
50

10
0

15
0

20
0

(a)

Distance

F
re

qu
en

cy

0 500000 1500000 2500000 350000

0
50

10
0

15
0

20
0

(b)

Deletion Length

F
re

qu
en

cy

0 1000 2000 3000 4000 5000

0
5

10
15

20

(c)

Fig.A-1. Distribution of (a) duplication length, (b) distance between the source and
target regions for duplications, and (c) deletion length

	Inferring the Recent Duplication History of a Gene Cluster
	Introduction
	Methods
	Problem Statement and a Basic Algorithm
	Handling Tandem Duplication
	Illustration of the Method
	Influence of Deletion and Inversion Events

	Results
	Human Gene Clusters
	Validation Test on Simulated Data

	Discussion and Conclusion
	Types of Duplication
	Overlap Relationship
	Proof of Theorem 2
	Figures

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

