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Broňa Brejová, Daniel G. Brown, Ian M. Harrower, and Tomáš Vinař
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Abstract. Many algorithms for motif finding that are commonly used
in bioinformatics start by sampling r potential motif occurrences from n
input sequences. The motif is derived from these samples and evaluated
on all sequences. This approach works extremely well in practice, and is
implemented by several programs. Li, Ma and Wang have shown that a
simple algorithm of this sort is a polynomial-time approximation scheme.
However, in 2005, we showed specific instances of the motif finding prob-
lem for which the approximation ratio of a slight variation of this scheme
converges to one very slowly as a function of the sample size r, which
seemingly contradicts the high performance of sample-based algorithms.
Here, we account for the difference by showing that, for a variety of dif-
ferent definitions of “strong” binary motifs, the approximation ratio of
sample-based algorithms converges to one exponentially fast in r. We
also describe “very strong” motifs, for which the simple sample-based
approach always identifies the correct motif, even for modest values of r.

1 Introduction

Motif finding is a combinatorial abstraction of the very important problem of reg-
ulatory sequence detection in bioinformatics. In motif finding, n discrete input se-
quences, each of length m, are given, as is a parameter L, called the motif length.
The most common goal is to find a contiguous substring of length L in each input
sequence, minimizing some function of these substrings (called the motif occur-
rences). One objective function is found in the Consensus-Pattern problem:

Definition 1 (Consensus-Pattern). Given are n sequences, s1, . . . , sn, each
of length m, over a finite alphabet Σ, and a parameter L. Find a contiguous
subsequence xi of length L from each sequence, and a consensus sequence x of
these subsequences, minimizing

∑
i=1...n dH(xi, x), where dH(x, y) is the Ham-

ming distance between two strings.

While this problem is NP-hard, there is a simple sample-based polynomial-time
approximation scheme for it. For a given value of r, the algorithm considers
all samples of r substrings of length L from the n sequences. A motif derived
from each such sample is then evaluated on all sequences, and the best motif is
chosen. This algorithm was shown by Li et al. [4] to have approximation ratio of
1 + O(1/

√
r) for constant-size alphabets. The algorithm also has O(L(nm)r+1)

runtime, which is polynomial if r is a constant.
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This bound is not especially useful, since the approximation ratio converges
to one only very slowly with increasing r. Yet, sample-based algorithms with
small values of r are very successful in practice for both motif finding in the
abstract and for regulatory sequence detection [2, 5, 6, 9]. One might imagine
that the bounds shown by Li et al. are weak, and the simple PTAS actually has
a much stronger guarantee. However, in 2005 we showed [1] that this is very
likely not the case. For a simple variation of the Li et al. PTAS (where the only
difference is whether the sampling is without replacement or with replacement),
we identified a collection of instances of the problem for which the approximation
ratio is 1+Θ(1/

√
r), suggesting that in order to achieve an approximation ratio

of 1 + ε, one needs a sample size of r = Θ(1/ε2), which is highly impractical.
Still, the instances of Consensus-Pattern for which we proved our previ-

ous bounds are very weak motifs. They are binary instances of Consensus-

Pattern; in each position of the motif instances, just over half of the entries
are the symbol zero, and just under half are the symbol one. Such motifs are
likely uninteresting, as they are no stronger than what we might expect to find
if we considered random binary noise.

We might prefer to consider motifs bounded away from uniform noise. For
such “strong” motifs, we can do much better: we show here that for various
definitions of strong motifs, the approximation ratio of the algorithm approaches
one exponentially fast as a function of r. In particular, for strong motifs, the
approximation ratio is at most 1 + O(f−r), for a function f that depends only
on the strength of the motif, instead of the approximation ratio of 1 + Θ(1/

√
r)

shown for the general case.
Here, we show such theorems for a variety of different definitions of “strong”

motifs. First, we consider binary motifs where at least a 1
2 + ε fraction of all

positions in the motif occurrences matches a given consensus of length L. While
occasionally, the sampling PTAS can have bad performance on such an instance,
we prove that for randomly chosen instances, the expected approximation ratio
converges to one exponentially fast as a function of the sample size r. If we
instead require consistently strong binary motifs, where each position of the
motif has at least (1

2 + ε)n matches in the motif occurrences, we can prove that
the PTAS performs well even in the worst case. In fact, for very strong consistent
motifs, the PTAS will always find the correct answer, even for small r.

Our results document that while for arbitrary instances of motif finding, the
simple sample-based PTAS may have poor convergence properties, for the kinds
of motifs that people care about, the approximation ratio converges exponen-
tially fast to the correct answer.

2 Background

The Consensus-Pattern problem, for an alphabet Σ, can be answered by
enumerating all |Σ|L possible choices of the consensus pattern, and finding the
best matches to each possible pattern, but such an enumeration is not effi-
cient. Instead, one type of efficient heuristic for this problem first enumerates a
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polynomial number of candidate consensus patterns, and then finds the best
match to each candidate in each of the n sequences, in O(nmL) time per
candidate.

One set of candidates is all L-letter substrings of the input strings; there are
(m−L+1)n of them, yielding an algorithm with O(L(nm)2) runtime. Or, we can
expand this idea to consider the result of looking at a sample of r substrings of
the input. For each such sample, we compute a candidate motif as a consensus of
the sample by identifying the most common letter at each position of the motif,
breaking ties arbitrarily.

In this paper, we consider two algorithms based on this idea. The first uses
samples with replacement, implying that a single substring can occur in the
sample multiple times. There are ((m − L + 1)n)r such samples; if we try all of
them, this yields an algorithm with O(L(nm)r+1) runtime. We will refer to this
as the PTAS algorithm. Li et al. [4] have shown that this simple algorithm is
indeed a polynomial-time approximation scheme (a PTAS): the approximation
ratio of the algorithm converges to one as the sample size r grows. Unfortunately,
the convergence rate they could prove is very slow: they show the approximation
ratio is at most 1 + 4|Σ|−4√

e(
√

4r+1−3) .

We will also study a slight modification of the PTAS, in which we consider
only samples without replacement. We will refer to it as the SWOR algorithm,
for “sampling without replacement”. In our previous work [1], we gave specific
instances of the problem for which the approximation ratio of the SWOR algo-
rithm is 1 + Θ(1/

√
r) as a function of r. We conjectured that the same lower

bound also holds for PTAS, which asymptotically matches the upper bound of
Li et al.

2.1 Notation and Observations

To simplify our analysis, we will always assume that the input sequences s1, . . . ,
sn consist solely of the optimal motif occurrences, that is, m = L. While
Consensus-Pattern is trivial in these cases, since the optimal motif is the
consensus string of the input sequences, both PTAS and SWOR are still well-
defined and may not always optimize the objective function. In fact, we showed
in our earlier work [1] that if one of these algorithms is run on just the motif oc-
currences themselves, it will do no better than if run on longer sequences. Upper
and lower bounds on the approximation ratio that we show for such instances
are still applicable to longer sequences.

We will assume that the sequence alphabet Σ is the set {0, 1}; all of our results
here are for binary motifs. If m = L, we can always transform the instance of
the problem so that the optimal motif is the string 0L, by relabelling characters
in each column that has more ones than zeros. We will use this transformation
in some of our results.

Finally, we note that since PTAS always explores more samples than SWOR,
its approximation ratio is always at least as good as that of SWOR. There-
fore, any upper bound for the approximation ratio of SWOR also applies to
PTAS.
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2.2 Concentration Bounds

Most of our bounds are obtained by applying the Hoeffding bound [3], which
gives concentration bounds on the sum of independent random variables, and
an extension of it to certain classes of dependent variables due to Panconesi and
Srinivasan [8]. In this section, we summarize the probabilistic bounds we use.
We begin with the following variant of the Hoeffding bound from McDiarmid’s
survey [7, p. 199]; a similar bound can be found in [3, Theorem 1].

Theorem 1 (Hoeffding’s bound [7]). Let X1, . . . , Xn be independent random
variables, with 0 ≤ Xk ≤ 1 for each k. Let X =

∑
Xk, let μ = E[X ], let p = μ/n

and let q = 1 − p. Then for any 0 ≤ t < q,

Pr[X − μ ≥ nt] ≤
((

p

p + t

)p+t (
q

q − t

)q−t
)n

.

Panconesi and Srinivasan [8] have extended the Hoeffding bound to sums of
dependent variables that satisfy certain conditions.

Theorem 2. Let X1, . . . , Xn be (not necessarily independent) binary random
variables with Pr[Xk = 1] = p for each k. If for every subset A of {1, . . . , n} and
for every k /∈ A,

Pr

⎡

⎣Xk = 1

∣
∣
∣
∣
∣
∣

∧

j∈A

(Xj = 1)

⎤

⎦ ≤ Pr[Xk = 1], (1)

then Hoeffding’s bound from Theorem 1 also holds for X =
∑

Xk.

Proof. This is an application of Panconesi and Srinivasan’s framework [8] for
Chernoff-Hoeffding bounds of sums of dependent variables. Binary variables sat-
isfying equation (1) are 1-correlated in the notation of Panconesi and Srinivasan.
For such variables, we can apply the Hoeffding bounds directly, as though the
variables were independent.

In particular, let X̂1, . . . , X̂n be independent random variables with Pr[Xk =
1] = p. The variables X =

∑
k Xk and X̂ =

∑
k X̂k have the same expectation,

μ = np, and equation (1) implies that Pr [∧j∈A(Xj = 1)] ≤
∏

j∈A Pr(X̂i = 1).
Thus, these random variables satisfy the conditions of Theorem 3.2 in [8], and
we obtain

Pr[X − μ ≥ εμ] ≤ E[ehX̂ ]
eh(1+ε)μ ,

where ε and h are positive real numbers. As in the proof of Hoeffding’s bound
in McDiarmid [7, p. 199], we can prove E[ehX̂ ] ≤ (1−p+peh)n. By substituting
ε = t/p, we obtain

Pr[X − μ ≥ tn] ≤
(
e−h(p+t)(1 − p + peh)

)n

;

setting eh to (p+t)(1−p)
p(1−p−t) , we obtain the desired result. ��
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Note that independent variables satisfy equation (1) with equality, so Theorem 1
is a special case of Theorem 2.

We will consider dependent binary random variables that are zero with some
probability p > 0.5 and we will be interested in the probability that fewer than
yn of the random variables are zero for some 0.5 ≤ y < p. Theorem 1 can be
easily applied to this case, as is shown in the following lemma.

Lemma 1. Let X1, . . . , Xn be binary random variables with Pr[Xk = 0] = p for
each k, where p ≥ 0.5. If these variables satisfy the condition of Theorem 2, and

1 − p ≤ y < p then Pr[
∑

k Xk ≥ (1 − y)n] ≤ βy
n, where βy =

(
1−p
1−y

)1−y (
p
y

)y

.

Proof. The expectation of the variable X =
∑

k Xk is μ = (1 − p)n. By
Theorem 2, we easily obtain desired inequality:

Pr[X ≥ (1 − y)n] = Pr[X − μ ≥ (p − y)n]

≤
((

1 − p

1 − p + (p − y)

)1−p+(p−y) (
p

p − (p − y)

)p−(p−y)
)n

= βy
n. ��

Note that in the previous lemma, βy < 1 for all p and y such that 0 < y <
p < 1. Therefore the probability that fewer than yn out of n variables are zeroes
decreases exponentially as a function of n. For y = 0.5 we obtain the following
special case.

Lemma 2. Let X1, . . . , Xn be binary random variables with Pr[Xk = 0] = p for
each k, where p ≥ 0.5 + ε. If these variables satisfy the condition of Theorem 2
then Pr[

∑
k Xk ≥ n/2] ≤ αn, where α =

√
4p(1 − p).

3 Strong Motifs

We begin our analysis by considering motifs for which we know the number of
zeros and ones in the motif instance. We do not necessarily fix the optimal motif
to be 0L.

Definition 2 (Strong motifs of fixed content). A strong motif of fixed
content p is a binary motif embedded into n sequences, where the total number
of zeros in all n occurrences is pnL.

Theorem 3. For any value of r and p > 0.5, the worst-case approximation ratio
of both PTAS and SWOR on strong motifs of fixed content at least p is the same
as on arbitrary motifs.

Proof. Consider the worst-case motif for a particular algorithm and value of r.
Let p′ be the number of zeros in this motif. If p > p′, we pad such an instance with
enough columns, filled entirely with zeros, to make an instance of Consensus-

Pattern that has at least pnL zeros. We have simply expanded the value of L.
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The overall score of both the motif found by the algorithm and of the optimal
motif is exactly the same as if we had not padded the instance with the extra
columns. ��

We have previously shown [1] that for any value of r, we can produce an instance
of Consensus-Pattern for which SWOR has approximation ratio at least 1 +
Θ(1/

√
r). This bound therefore transfers also to strong motifs of fixed content.

Thus, this definition of strong motifs does not give any better upper bound on
the approximation ratio of the PTAS for motif finding than we had previously.
The reason is that we allow many columns that are intensely weak and many
columns that are very strong. In Section 4, we study motifs with more consistency
among columns.

In the remainder of this section, we show that despite this negative result
there are few bad instances of strong motifs, and if we choose a random strong
motif of fixed content, the expected approximation ratio is much lower than in
the worst case.

3.1 Randomly Chosen Strong Motifs

A random motif of fixed content p is an instance of the problem chosen uniformly
from all

(
nL
pnL

)
instances of the problem with exactly pnL zeros and (1 − p)nL

ones. In such motifs, the zeros and ones may not be distributed uniformly, so
some columns may contain more ones than zeroes. We call such columns bad
columns ; all other columns are good columns.

To analyze the expected approximation ratio of PTAS or SWOR on such ran-
domly chosen motif, we divide all instances into bad instances and good instances.
Bad instances have more than Lαr/2 bad columns, where α =

√
4p(1 − p).

Lemma 3 shows that such instances are exponentially rare, and do not influence
the expected approximation ratio much. Good instances have at most Lαr/2 bad
columns. In Lemma 4, we will show that for such instances, the approximation
ratio is low.

Lemma 3. The probability that a random binary motif of fixed content p is a
bad instance is at most αr/2.

Proof. Let Xi,j be a binary random variable representing the symbol in row i
and column j of the motif instance. For a given column j, let the number of ones
be Xj =

∑
i Xi,j . Column j is bad if Xj is more than n/2. Each one in a column

reduces the probability of others, so the variables corresponding to this column
satisfy the conditions of Lemma 2, so Pr[Xj > n/2] ≤ αn. Since n ≥ r, this
probability is also at most αr. By linearity of expectation, the expected number
of bad columns is at most Lαr.

Since a bad motif contains more than Lαr/2 bad columns, we are bounding
the probability that the number of bad columns is more than α−r/2 times its
mean. This can be no greater than 1/α−r/2, by the Markov inequality. ��

Lemma 4. The expected cost of a motif returned by PTAS (or SWOR) on a
randomly chosen good instance is less than nL

(
1−p+2pαr

1−αr/2

)
.



100 B. Brejová et al.

Proof. Let Xj be a random variable representing the number of ones in column j.
Consider a random sample without replacement of r rows. Let Yj be the number
of ones in column j of this sample. The consensus of the sample is one when
Yj ≥ r/2. Finally, let Aj be the score of the consensus character of this random
sample in column j.

We want to bound E[Aj |G], where G is the event that the motif instance is
good. Since Aj is always non-negative, this conditional expectation is at most
E[Aj ]/ Pr[G]. In Lemma 3 we have shown that Pr[G] ≥ 1 − αr/2.

Consider the event Zj that column j is good and the random sample has
consensus zero. As for Lemma 3, Lemma 2 gives that Pr[Xj > n/2] ≤ αr , and
Pr[Yj ≥ r/2] ≤ αr . Therefore the probability of Zj is at least 1 − 2αr.

In the case of the event Zj , we are skewed towards having more zeroes than
expected, and therefore

E[Aj |Zj] = E[Xj |Zj ] ≤ E[Xj ] = n(1 − p).

If we are not in Zj , the cost of the column is at most n. Therefore, the expected
cost of a single column is

E[Aj |G] ≤ Pr[Zj] · E[Aj |Zj] + Pr[Z̄j ] · E[Aj |Z̄j ]
Pr[G]

≤ (1 − 2αr)n(1 − p) + 2αrn

1 − αr/2 = n · 1 − p + 2pαr

1 − αr/2

By linearity of expectation, the expected cost over all columns is at most
L · E[Aj |G], and at least one sample in the SWOR algorithm must give us a
motif which has at most this cost. ��

With this in mind, we can bound the performance of the PTAS for random
motifs of fixed content p.

Theorem 4. When applied to a random motif of fixed content p > 0.5+ ε, both
PTAS and SWOR have expected approximation ratio at most 1+αr/2 · 18−16p+2p2

1−p2

for sufficiently large r, where α =
√

4p(1 − p).

Proof. For sufficiently large r, αr/2 is at most (1 − p)/2. For good instances,
the number of ones in good columns is at least Ln(1 − p − αr/2), which gives
a non-negative lower bound on the optimal motif cost. Therefore, according
to Lemma 4, the approximation ratio for such instances can be bounded by

1−p+2pαr

(1−αr/2)(1−p−αr/2) .
We have previously shown [1] that any sampling algorithm has approximation

ratio no more than 2 on all instances. We will use this upper bound for bad
instances. This gives an overall bound of no greater than 1−p+2pαr

(1−αr/2)(1−p−αr/2) +

2αr/2. Rearranging, we obtain the upper bound 1+αr/2 · 4−3p−5αr/2+4αr/2p+2αr

(1−αr/2)(1−p−αr/2) .

For sufficiently large r, αr/2 ≤ (1 − p)/2, and we obtain the desired bound. ��
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This theorem shows that if either PTAS or SWOR is applied to a random strong
motif of fixed content p > 0.5, the expected approximation ratio is 1 + O(αr/2).
This bound converges exponentially quickly to one as a function of r.

As a function of p, the bound on the approximation ratio is decreasing, as
long as p > 0.5 and r ≥ 4. This property will be important in the next section.

3.2 Strong Motifs of Fixed Expected Content

Perhaps more natural as a model of random motifs is the case where each of
the L positions in all n sequences is chosen independently of all others, with
probability p.

Definition 3 (Strong motif of fixed expected content). A strong motif
of fixed expected content p is a random motif where each position is zero with
probability p, and one with probability 1 − p independently of other positions.

This stochastic model can generate bad instances of the problem again, but it
is very rare that such instances occur, and we can again always bound their
approximation ratio by 2, so their contribution to the expected approximation
ratio is small.

Theorem 5. For strong binary motifs of expected content p > 0.5, where p is a
fixed constant, the expected approximation ratio of the PTAS and SWOR is at
most 1 + O(γr), for some constant γ < 1 that depends on p, but not r.

Proof. Let q = 1/4+p/2. According to Lemma 1, for a strong motif of expected
content p > 1/2, the probability that the actual motif generated has fewer than
qnL zeros is less than βq

nL, where βq is less than one. This is certainly less than
βq

r, since nL ≥ r. For these weak motifs, we use the upper bound of 2 on the
approximation ratio.

The remaining instances are strong motifs of content at least q. We can treat
the process as first picking the motif content π ≥ q, then picking a random
motif of that fixed content. For a fixed content π, we can apply the bound
given in Theorem 4. Since this bound decreases with increased strength of the
motif, we can use the upper bound obtained with Theorem 4 for content q for
all values of π. Therefore the overall approximation ratio of the algorithm is at
most 1 + αq

r/2 · 18−16q+2q2

1−q2 + 2βq
r/2, αq =

√
4q(1 − q), for sufficiently large r,

and by setting γ =
√

max{αq, βq}, we obtain the desired bound. ��

3.3 Many Motifs Are Weak

We finish this section by noting that for any value of r, we can pick an instance
size n for which in fact most motifs are weak, and for which we conjecture
that the PTAS has poor convergence. If we let p = 0.5, and sample from the
distribution of all binary motifs with expected content p, then all motif instances
are equiprobable, so theorizing about the common behaviour of the algorithm
also applies to common motif instances. A random motif of this content with
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n = r2 sequences is expected to have a constant fraction of columns in which the
fraction of zeros in the column is between 1/2 + 1/

√
r and 1/2 + 2/

√
r; that is,

a significant fraction of the columns will be weak to the point where a random
sample without replacement of r motif instances has a constant probability of
picking the incorrect symbol for that column. Further, the expected cost of a
random motif will be of the order of (1/2 + Θ(1/

√
r))nL.

A random sample (without replacement) will incorrectly assign the symbols
in a constant fraction of the motif’s columns, giving an expected cost increase on
the order of Θ(1/

√
r)nL over the optimum, and an overall approximation ratio

of 1 + Ω(1/
√

r). We conjecture that this bound applies to all samples, and that
the overall performance of the best sample is also 1 + Ω(1/

√
r).

4 Consistently Strong Motifs

In the previous section, we were not able to guarantee a good performance of the
PTAS in the worst case. This was because some instances of strong motifs may
have contained many columns with approximately the same number of zeros and
ones. Here, we study the performance of the PTAS on consistently strong motifs,
where each motif column has a large number of zeros in it.

Definition 4 (Consistently strong motif). A consistently strong motif of
content p > 0.5 is a binary motif embedded into n sequences, where each column
of the motif has at least pn zeros.

We first note the performance of the algorithms PTAS and SWOR on a single
column of a consistently strong binary motif.

Lemma 5. Suppose that we choose a random sample of r rows (with or without
replacement) from a motif instance in which a particular column has pn zeros
and (1−p)n ones, for p > 0.5. The expected cost of the consensus character of the
sample in this column is at most n((1−p)(1−αr)+αr), where α =

√
4p(1 − p).

Proof. First, we want to bound the probability that the random sample without
replacement has fewer zeroes than ones in this column, in which case the con-
sensus character will be one. This situation satisfies conditions of Lemma 2 and
the probability that at least half of the sample will be ones is at most αr.

Note that for any constant p > 0.5 + ε, for some positive ε, this bound on the
probability of erring in a single column converges to zero exponentially fast in r.
Therefore, such samples will not have much influence on the expected cost, and
we can bound their cost from above by n. The cost of a sample with consensus
zero is exactly n(1 − p). Therefore, the expected cost is at most n[(1 − p)(1 −
αr) + αr]. ��

Theorem 6. For sufficiently large r, both PTAS and SWOR, applied to a con-
sistently strong motif of content p > 0.5, have approximation ratio at most
1 + αr · p

1−p , where α =
√

4p(1 − p).
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Proof. Let pi be the content of zeros of the i-th column of the motif. According
to Lemma 5, the expected cost e(pi) of the i-th column is at most n((1−pi)(1−
αpi

r)+αpi
r), where αpi =

√
4pi(1 − pi). The optimal cost of the same column is

o(pi) = n(1−pi). From the linearity of expectation, the expected approximation
ratio of a consensus of a random sample of r rows over all columns of the motif
is R =

∑ L
i=1 e(pi)∑
L
i=1 o(pi)

.
Note, that for sufficiently large r (in particular, r > 2/(2p − 1)), the function

e(p′)/o(p′) is decreasing with increasing value of p′ for p′ ≥ p. Therefore, e(pi) ≤
e(p)o(pi)/o(p), and thus

R ≤ e(p)/o(p) ≤ n((1 − p)(1 − αr) + αr)
n(1 − p)

= 1 + αr · p

1 − p
.

At least one sample must achieve this bound, by the first moment principle.
Since SWOR examines all samples without replacement, the sample found by
SWOR achieves the bound. ��

If p > 0.5 + ε for some constant ε > 0, then this ratio converges exponentially
quickly to one.

4.1 Very Strong Consistent Motifs

We finish by noting that some motifs are so strong that the PTAS is guaranteed
to find them exactly.

We saw in the proof of Lemma 5 that we can bound the probability of making
an error for any column, when we sample r motif instances of that column. If
the column has frequency pi of zeros, the error probability was at most αpi

r,
where αpi =

√
4pi(1 − pi).

If we have a motif whose columns are strong enough so that the sum of the
αpi

r is at most one, the standard union bound gives that the probability that
at least one sample column has more ones than zeros is less than 1. Thus, there
must exist a sample of r motif instances whose consensus is exactly the correct
L-letter-long motif. Since the PTAS is exhaustive, we will examine this sample,
and it will be found by the algorithm.

In particular, a motif strong enough that the value of αpi
r is always less than

1/L will always be found by the PTAS.

Theorem 7. The PTAS always finds the correct motif when its input is a con-

sistently strong binary motif of length L with probability p ≥ 1
2 +

√
1−L−2/r

2 .

Proof. This is shown by noting that 1
2 +

√
1−L−2/r

2 is the root in the range (0.5, 1]
of (4p(1−p))r/2 = 1/L, corresponding to the value where αp goes below 1/L. ��

This value quickly shrinks for values of r that are not especially large: for a
length 10 binary motif, if all columns are at least 80% zeroes, examining all
samples of size 11 is certain to find the true motif, while samples of size 5 are
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all that is needed for motifs of that length where p = 0.9. Indeed, for a fixed
value of L, if the motif is consistently strong with probability at least 0.5+ f(r),
where f(r) is a specific function that is only O(1/

√
r), the PTAS will find the

optimal motif.
For random motifs, the situation is not as good; obviously, a random motif

with probability p might turn out not to be strong. But, for p large enough,
the probability of producing a motif that is weak enough that the algorithm
has positive probability of failing can easily be estimated, and again converges
exponentially rapidly to zero as a function of p or of r, for a fixed motif length L.

5 Conclusion and Open Problems

We have shown a variety of characterizations of “strong” binary instances of
Consensus-Pattern for which the simple sampling-based polynomial-time ap-
proximation scheme of Li et al [4] has an approximation ratio guarantee that
converges to one exponentially fast as a function of r, the sample size. This
result is in contrast with our previous work, which showed specific instances
of Consensus-Pattern for which a variation of the Li et al. PTAS can only
achieve 1 + Θ(1/

√
r) approximation ratio.

The difference is quite significant; to achieve 1 + ε approximation ratio us-
ing the general bound requires samples of size Ω(1/ε2), giving runtimes of
O(L(nm)Ω(1/ε2)), whereas for strong motifs we show that a sample size of
O(log(1/ε)) is sufficient.

Our bounds apply to random binary motifs of specific strength, or to those for
which the probability that any specific position is a zero is fixed to be a constant
bounded above 0.5. While it is possible to obtain a difficult-to-solve instance of
the problem by chance, such instances are exponentially rare, and as such, do
not affect the algorithm’s behaviour significantly.

Finally, we show that for strong instances, small samples can guarantee that
the motif found is optimal. While the bounds achieved are not practical, this
again suggests that motif finding is an easy problem when applied to strong
instances, and only hard when applied to irrelevant, weak problem instances.

Open problems. How tight are the bounds for very strong consistent motifs given
in Section 4.1? Can we find specific strong instances of Consensus-Pattern

for which the sample-based PTAS finds a wrong motif and for which the value
of r is close to the one shown in the theorem, or is the bound very loose?

In all our theorems, we have considered only binary alphabet. Our results ex-
tend to non-binary alphabets; however, we still require that one of the alphabet
symbols has frequency more than 0.5. The problem of regulatory sequence detec-
tion is most commonly applied to DNA and protein sequences, and it makes sense
to consider instances in which the most common letter in each column is signifi-
cantly more common than other letters, but still does not achieve frequency more
than 0.5. To prove exponential convergence for such instances likely requires a
variation on the Chernoff-Hoeffding bounds for multi-outcome variables.
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