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Abstract

DNA sequences which have undergone repeated duplications provide a sig-
nificant challenge to DNA sequence analysis. Such sequences are believed to
be a major source of evolutionary innovation, possibly being responsible for
the rapid evolution of human species, and are of great interest to molecular
biologists. Their analysis is difficult due to the many repeating regions which
cause existing techniques to become unusable.

Some of the new approaches to analyzing these sequences rely on finding
the atomization of a set of related DNA sequences. Currently, there are no
known algorithms that would produce atomizations of required quality and
precision. This thesis proposes a new atomization algorithm and attempts
to estimate its effectiveness. We have tested our approach both real and
simulated data and, the results are compared to an existing atomization
algorithm.

Keywords: bioinformatics, DNA sequence analysis, evolution, ancestral re-
construction, simulation.
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Chapter 1

Introduction

Bioinformatics is a growing field of computer science applied to problems
of molecular biology. One of its biggest areas of research is the analysis
of biological sequences and in particular the sequences of DNA. Problems
in bioinformatics are motivated by complicated molecular processes, there-
fore, they usually do not resemble classical problems of theoretical computer
science, and they require very specialised solutions.

This thesis will discuss the problem of atomization of DNA sequences.
An atomization of a DNA sequence is an abstraction used in recent research
for finding evolutionary history of related mammalian species. Some authors
simply assume the existence of an atomization algorithm (Bertrand et al.,
2008; Ma et al., 2008; Zhang et al., 2009), others attempted to provide a
trivial implementation (Vinar et al., 2009), but their solution produced poor
results. In this work, we look for a better algorithm that could be successfully
applied to real-world data.

This chapter will explain the terminology and basic concepts necessary
for understanding the problem. It will also formally and informally describe
the problem of atomization and mention the motivation behind the problem.

1.1 Structure of a DNA molecule

Cells of all known living organisms contain molecules of DNA which carry
their genetic information. DNA molecules are large polymers made of struc-
tural units called nucleotides. Nucleotides of a DNA molecule are arranged
in a sequence, and for this reason the DNA molecules are also called DNA
strands. Each nucleotide of a DNA strand contains one of the four DNA
bases: adenine, cytosine, guanine or thymine (abbreviated A, C, G and T).
The nucleotides are internally non-symmetric, therefore it is possible to tell
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the orientation of a DNA strand and to distinguish its beginning from its
end.

For our purposes, the relevant information contained in the DNA is rep-
resented in the order of the bases on DNA strand. We will describe this in-
formation by the corresponding DNA sequences – strings of characters from
the alphabet {A,C,G, T}. A segment of a DNA sequence is a substring of
the sequence. A site of a DNA sequence is a specific position in the sequence.
For example, we could say that every site of a DNA sequence contains one
of the DNA bases. Thus we will call the elements of a DNA sequence sites
and the elements of the alphabet {A,C,G, T} the bases.

Molecules of DNA are usually found in pairs forming the well-known
double helix structure. The double helix consists of two DNA strands of
equal lengths running in opposite directions. The strands are aligned so that
the i-th nucleotide on one strand is connected by a hydrogen bond to the
(n+1− i)-th nucleotide on the other strand. The two aligned nucleotides are
called a DNA base pair, and they always contain complementary DNA bases
– adenine (A) is paired with thymine (T) and cytosine (C) is paired with
guanine (G). Two DNA strands that form a double helix are called comple-
mentary, and two DNA sequences are complementary if they correspond to
complementary DNA strands.

In this work, we will describe species in terms of their genetic information
and the correcponding DNA sequences. It should be noted that there is, in
fact, no such thing as “the” genetic information of a species because every
two individual organisms, even of the same species, usually carry different
DNA. However, DNA sequences of organisms from the same species typically
differ only in a small fraction of sites. Therefore, we will simply pick one rep-
resentative of the species and assume that all organisms of the same species
carry the same genetic information.

1.2 Evolution of DNA sequences

According to the evolutionary theory, biological species evolve over time and
their evolution is caused by mutations of their genetic information. If we had
an opportunity to observe a DNA sequence of evolving species, we would see
a series of evolutionary events that modify the sequence. There are five basic
types of evolutionary events we will take into account when modeling the
evolution of DNA sequences.

• Single-base substitutions. These modify a single site of the DNA se-
quence by exchanging the base appearing at this site for a different
one.
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• Insertions. An arbitrary DNA sequence is inserted between two ad-
jacent sites of the original sequence. The resulting sequence will be
longer than the original sequence.

• Deletions. A contiguous subsequence is deleted from the DNA se-
quence. The resulting sequence will be shorter than the original se-
quence.

• Duplications. Just like insertions, but the inserted sequence is not ar-
bitrary: it is a copy of an existing DNA sequence, called the source
sequence. The source sequence can be either a contiguous subsequence
of the original DNA sequence, or it can be located on the comple-
mentary DNA strand, in which case it is a contiguous subsequence of
the complementary DNA sequence. The duplication is then either a
same-strand duplication, or a cross-strand duplication. The molecular
mechanism underlying duplications will not allow the copied sequence
to be inserted inside the source region (or the corresponding comple-
mentary region in case of a cross-strand duplication).

• Speciations. These are a bit different from the rest of the evolutionary
events in that they do not modify the DNA sequence. A speciation
occurs when a single species splits into two species. The sequences of
the two new species will evolve independetly, both species starting from
the original DNA sequence.

We will refer to the insertions, deletions and duplications as large-scale evo-
lutionary events.

There is an evidence which suggests that most of the present-day species
evolved from a single common ancestral species by a number of speciations
(Darwin, 1859). We could visualise this process by a large binary tree called
the phylogenetic tree. In a phylogenetic tree, the present-day species appear
in leaves, the ancestral species appears in the root of the tree and every
internal node represents a speciation. We can create a phylogenetic tree for
any subset of the present-day species in a similar way – Figure 1 provides
an example of such phylogenetic tree.

1.3 The atomization problem

Let S = {s1, . . . , sn} be a set of DNA sequences which evolved from the
same ancestral sequence a. We can define the phylogenetic tree on the set
S just like we defined it for species, with sequence a in the root of the
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Figure 1: The phylogenetic tree of mammalian species as discussed in
Dawkins (2004). Image source: Hsu (2008).

tree, and sequences s1, . . . , sn in its leaves. In this tree, there were n − 1
speciations during the evolution from a, each represented by an internal
node of the tree, and possibly a number of other evolutionary events. Each
of these other evolutionary events must have occured on one of the edges of
the phylogenetic tree. The ancestral DNA sequence a, the phylogenetic tree,
and the list and order of all evolutionary events on each edge of the tree,
constitute the evolutionary history of set S. If we knew this evolutionary
history, we could determine what sequences s1, . . . , sn look like.

In a real world, however, we usually only have the DNA sequences of
present-day species, and want to find their evolutionary history. Obviously,
the sequences of set S do not carry enough information for reconstruction of
their complete evolutionary history. For a non-empty set S there is always
an infinite number of possible evolutionary histories that all lead to the same
set of present-day DNA sequences. But we can at least try to estimate which
of the potential histories seem the most probable. Several authors attempted
to approach the problem of the evolutionary history reconstruction with the
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use of atomic segments (Bertrand et al., 2008; Ma et al., 2008; Vinar et al.,
2009; Zhang et al., 2009). This section will describe the concept of atomic
segments and atomization.

1.3.1 Intuitive description

Reconstruction of evolutionary history is based on one key observation. If we
have a set of DNA sequences which are evolutionary not very distant (mean-
ing that the number of events in the evolutionary history is relatively small),
the sequences may look similar, or share similar looking regions. This hap-
pens because after a speciation, the two resulting sequences are completely
identical, and if there is only a small number of other evolutionary events,
parts of both sequences may remain unchanged. Of course, it is entirely pos-
sible that two identical sequences evolved from two different and completely
unrelated ancestral sequences, and they only look the same by pure coinci-
dence. However, this is extremely improbable, and we are willing to make
the sacrifice of not reconstructing such histories correctly.

Consider following simple evolutionary histories. If the history only con-
tained speciations, all present-day sequences would look the same. Imagine
there is a single deletion on one of the edges of the phylogenetic tree. This
deletion splits the DNA sequence into three parts: the deleted region, and
the two remaining segments to the left and to the right of the deleted region.
If we call these regions A, B, and C then the sequence before the deletion
is ABC and the sequence after the deletion is AC. Now, depending on the
particular phylogenetic tree, all present-day sequences will be either AC or
ABC. Segments A, B, and C are, in this case, what we call the atomic seg-
ments, or atoms and the way we split the present-day sequences into atomic
segments is called the atomization.

In the trivial example above, all the sequences of S would consist of
a single atom. In the example with a single deletion, all sequences would
be split into either two or three atoms. Note that the evolutionary events
affect the atomization of all sequences, not only the ones that appear in the
same subtree as the given event. Each of the large-scale evolutionary events
introduces a number of breakpoints, which split any existing atomic segments
into smaller ones. For insertions and deletions these are the boundaries of the
inserted or deleted regions. For duplications these are also the boundaries of
the source region. Substitutions do not affect the atomization.

Consider once more the atomization into atoms AC and ABC. We in-
tuitively understand that atoms denoted by letter A are “the same” in all
of the sequences. This will be formalized by the concept of atomic classes.
Every atom will belong to an atomic class and atoms of the same class will
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represent DNA segements which evolved from the same ancestral segment.
In our example, there would be three atomic classes: A, B, and C. Dupli-
cations make it possible to see multiple atoms of the same class in a single
sequence. For example, an evolutionary history with a single duplication and
no other large-scale events would imply atomizations ABCBD and ABCD,
where B is the atomic class of the duplicated segment. A special provision is
needed for cross-strand duplications: we will need to define for each atomic
class its complementary class. If the duplication in the previous example
would have been a cross-strand duplication, the atomization would then be
ABCBD where B and B are complementary atomic classes.

1.3.2 Formal definition

In this subsection, we will give a definition of a correct atomization of a set
of sequences S, corresponding to a given evolutionary history H. We start
off by defining the atomization in general.

Definition 1.1. An atomization of a set S of DNA sequences consists of:

• Partitioning of each element of S into DNA segments called the atomic
segments.

• Partitioning of the set of all atomic segments into 2k (possibly empty)
sets C1, . . . , Ck, C1, . . . , Ck.

Sets C1, . . . , Ck, C1, . . . , Ck are the atomic classes. Classes Ci and Ci are
called complementary. All of the classes C1, . . . , Cn must be non-empty while
classes C1, . . . , Cn can be potentially empty.

A partitioning of a DNA sequence into atomic segements means splitting
the sequence into substrings which can be concatenated into the original
sequence. We will call the place where one atom ends and another one begins
(and also the beginning and the end of the sequence) an atomic boundary or
a breakpoint.

If we know the evolutionary history H of a set S, we also know the
ancestral sequence a, and we can reconstruct all DNA sequences that ap-
peared during the evolution of a into sequences s1, . . . , sn. We will call these
sequences the intermediate sequences of evolutionary history H. The se-
quences s1, . . . , sn and the ancestral sequence a are also considered to be
intermediate sequences of H. The easiest way to define the correct atomiza-
tion corresponding to an evolutionary history H is to extend the atomization
to all intermediate sequences of H.
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Definition 1.2. An atomization of the set of intermediate sequences of an
evolutionary history H is a correct atomization of intermediate sequences of
H if all of the following conditions are met:

• For each speciation, the two resulting intermediate sequences have ex-
actly the same atomization as the original sequence just before the spe-
ciation occured.

• For each deletion, the boundaries of the region in the original sequence
which is about to be deleted are also atomic boundaries. The resulting
sequence must have the same atomization as the original sequence, ex-
cept for the atoms between the two boundaries which should not appear
in the resulting sequence.

• For each insertion, the boundaries of the inserted region in the resulting
sequence are also atomic boundaries. The original sequence must have
the same atomization as the resulting sequence except for the atoms
between the two boundaries which should not appear in the original
sequence.

• For each duplication, the same conditions must hold as in the case of an
insertion. Additionally, the boundaries of the source region must be also
atomic boundaries, and the number of atoms in the source region must
be the same as the number of atoms in the inserted region. For same-
strand duplications, the atomic classes of atoms in the source region
must be the same as the atomic classes of atoms in the inserted region
in the same order. For cross-strand duplications, the atomic classes of
atoms in the source region must be complementary to the atomic classes
of atoms in the inserted region in reverse order.

• For each single-base substitution, the atomizations of the original and
the resulting intermediate sequence must be the same.

• This atomization is minimal.

The condition of minimality means that there exists no atomization which
satisfies all the other conditions, and contains smaller total number of atoms.
If there are multiple atomizations with this property, minimal is the one with
the highest number of atomic classes. Note that the condition of minimality
does not guarantee uniqueness of correct atomization.

Definition 1.3. An atomization A of a set of sequences S is a correct atom-
ization corresponding to an evolutionary history H if there exists a correct
atomization of the intermediate sequences of H which segments the sequences
of S the same way as A does.
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In the last, definition we say that two atomizations segment a set of se-
quences in the same way. This means that each sequence is in both atomiza-
tions partitioned into the same atoms, and every pair of atoms which belong
to the same or complementary atomic classes in one atomization also belong
to the same or complementary atomic classes in the other atomization.

In real evolutionary histories, we expect to see many large-scale events
that are in fact very short, mainly insertions and deletions. We do not want
to consider all of them in the correct atomization because the atomization
then becomes cluttered with tiny atoms that are not very useful for further
processing. For example we could decide that we will consider every insertion
and deletion which is less than 10 base pairs long as too short. We can modify
the definition of correct atomization to distinguish between long and short
events. The long events must satisfy the conditions of the original definition
and the short events will have a new set of conditions:

• For each short deletion, the original and resulting sequences must have
the same atomization except for atoms overlapping the deleted region.
These will be shorter or completely missing from the resulting sequence
due to some of their sites being deleted.

• For each short insertion and duplication, the original and resulting se-
quences must have the same atomization except for atoms overlapping
the inserted region. These will be shorter or completely missing from
the original sequence due to some of their sites not being inserted into
the sequence yet.

The original definition of correct atomization is then a special case of the
modified definition with all evolutionary events considered long. It is not
clear whether a correct atomization must always exist. We will show in
Chapter 4 an algorithm for finding a correct atomization given an evolu-
tionary history which will imply that at least one correct atomization must
always exist.
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Chapter 2

Approaching the problem

Our objective is to find an algorithm that would produce a correct atomiza-
tion for a given set of sequences with an unknown evolutionary history. As
we have discussed in the previous chapter, this is, strictly speaking, impos-
sible to achieve. Almost any atomization could be a correct one for some
very improbable evolutionary history. We will use a parsimony approach
to decide which atomization to choose. An atomization which explains the
similarities between input sequences in a simple way using a small number
of evolutionary events is more probable than a complicated atomization.

We will base our solution on the fact, that the atoms of the same atomic
class should have originated from the same ancestral region. Thus, we expect
that two atoms of the same class should have similar sequence of bases. The
only differences will be due to single-base substitutions and short large-scale
events occuring in the course of their evolution. If the input DNA sequences
are not too evolutionarily distant, we should still be able to recognize regions
of the same atomic class.

2.1 Local alignments

In bioinformatics, the concept of “similarity” of DNA sequences is formalized
by the notion of global and local alignments. A global alignment of two
sequences is a way of arranging the elements of the sequences to match each
other in the best possible way. Take a look at Figure 2 for an example of a
global alignment. Gaps represented by dashes are inserted into one or both
sequences so that they have the same length. The gaps are inserted in such
way that as many columns as possible contain pairs of identical bases. More
generally, every possible combination of bases or gaps is assigned a score and
the highest scoring alignment is chosen. Simple scoring schemes could assign
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--GGCCATAATGAC

TAGTCCAT---CAC

Figure 2: A global alignment of sequences GGCCATAATGAC and TAGTCCATCAC.
Dashes represent gaps inserted into the sequences. This alignment has seven
pairs of matching bases, two pairs of mismatched bases, and five gaps.

positive values to matching bases and negative values to bases that differ
or are matched with gaps. An efficient dynamic programming algorithm
exists for finding the best global alignment given any such scoring scheme
(Needleman and Wunsch, 1970). The scoring does not necessarily have to be
defined per pairs of bases. We could use any scoring function which assigns
a score to two aligned sequences. However, not for every such function will
exist an efficient global alignment algorithm.

A local alignment of two sequences A, B is a global alignment of any two
sequences a, b which are substrings of A and B respectively. We could theo-
retically align any two substrings of A and B and call them a local alignment,
but usually we are only interested in high scoring alignments. This way, we
filter out sequences that are too different or only similar by coincidence, and
keep sequences that are likely evolutionary related. We could also decide to
look for maximal alignments – ones that cannot be extended or shortened to
obtain a better scoring alignment. An efficient dynamic programming algo-
rithm for finding such local alignments is described by Smith and Waterman
(1981).

Unfortunately, the dynamic programming algorithm is quadratic in length
of the input sequences. Since DNA sequences are usually very long, this
algorithm can not be used in practice. Modern tools for finding local align-
ments use a combination of the dynamic programming algorithm and heuris-
tic methods (Altschul et al., 1990). In this work, we will use a popular tool
for finding local alignments, LASTZ (Harris, 2010), which is an improved
version of the program BLASTZ (Schwartz et al., 2003). This program also
searches the complementary sequences to identify local alignments between
complementary DNA strands. We will need this feature to identify atoms of
complementary classes. See Figure 3 for an example of the output of program
LASTZ.

2.2 The trivial algorithm

We can now formalize our assumption about similarity of atoms of the same
atomic class: every pair of atoms belonging to the same or complementary
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atomic classes should be classified by LASTZ as a significant local alignment.
To find atoms of the same class, we would run LASTZ for every pair of the
input sequences, and examine the results. But since LASTZ only looks for
maximal alignments, our assumption does not imply that every such pair of
atoms will be present in the output of LASTZ. We should rather expect to see
segments with the same atomizations. For example, if we tried to align two
sequences with correct atomizations ABCDE and FBCDG, LASTZ would
find the local alignment of the two BCD segments rather than the idividual
alignments of Bs, Cs, and Ds.

We will also assume that all produced alignments start and end at atomic
boundaries. If this condition does not hold, the alignments are not be maxi-
mal. Using the same example, an alignment that would start in the middle
of atom B could be extended to the left so that the boundary coincides with
the start of the atom B. This will cause more matching bases to appear
in the alignment and the alignment will have a higher score. On the other
hand, suppose an alignment starts in the middle of the atom A in the first
sequence and in the middle of the atom F in the second sequence. We could
shorten this alignment so that its boundary coincides with the beginning of
the atom B. This way we will lower the number of mismatched bases and
should again obtain a better score.

We can now describe the trivial algorithm which relies on these assump-
tions. At first, all the input sequences are considered to consist of a single
atom, each being of a different atomic class. The algorithm processes the local
alignments one by one. For each alignment, it makes sure that all conditions
we have described are fulfilled. First condition states, that the beginning and
end of the alignment in both sequences is at an atom boundary. If this is
not the case, one of the ends falls inside of an atom. We split the atom into
two new atoms together with all other atoms of the same or complementary
atomic classes. Second condition states that the two aligned regions must be
atomized in the same way (or complementary ways in the case of cross-strand
alignments). The algorithm first checks if all atomic boundaries in one region
correspond to atomic boundaries in the other region and creates new atomic
boundaries if necessary. This is again achieved by splitting atoms. Finally,
we check whether the aligned atoms belong to the same atomic classes. If
they are from different classes, the algorithm merges these two classes.

After processing all the alignments, we will end up with an atomization
that satisfies all aforementioned assumptions. We will not go into technical
details of the various parts of the algorithm or prove its correctness. This is
because the algorithm, in fact, does not work for real DNA sequences. After
running it on several sequences with rich duplication history, we have found
out that the resulting atomization would consist of atoms of average length
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of approximately four bases. Such atomization is useless for most purposes.
This is exactly the reason why we introduced the modified definition of cor-
rect atomization: to remove tiny atoms that are unimportant for further
processing of the sequences.

The reason, why the trivial algorithm produces such poor results, is sim-
ple. LASTZ can not find the exact boundaries of all atoms using only the
scoring function. The alignment algorithm looks for places in the sequence
where the scoring function attains a local maximum. But chances that this
is exactly at a boundary of an evolutionary event are low. The exact infor-
mation about event boundaries is simply not present in the sequence.

Consider the following example. There are three atoms a, b, c of the same
atomic class, and LASTZ correctly aligns a to b, b to c, but in the alignment
of a to c incorrectly adds one more site to the end of both aligned sequences.
The algorithm will split the atom right after a into a single-base atom and
the rest of the original atom. But not only this one atom – it will split all
atoms of the same atomic class. And it will also split the atom next to c and
all atoms of the same atomic class.

An even worse situation would occur, if the alignment of a to c correctly
found a but incorrectly shifted c by one site, for example to the right. This
would cause all three atoms to be entirely split into single-base atoms, only
because a single local alignment was off by one site. But in reality, LASTZ
will almost never find two alignments that would share the same boundary.
It could be wrong by a couple of bases in every alignment, or even produce
alignments that, in fact, do not correspond to atoms of the same class at all.
We will have to allow our algorithm to tolerate mistakes such as these.

2.3 Integer programming

A method that can easily deal with approximate data to produce approximate
results is linear optimization, or linear programming. As we will shortly see,
we can formulate the problem of atomization as an integer programming
problem. This means, we can transform our problem into a problem of
maximizing a certain linear function of integer variables under the conditions
given by a set of linear inequalities of the same variables.

To start with, we can look at LASTZ alignments in a slightly differ-
ent way: they provide the information for every pair of sites of the input
sequences and their complementary sequences, whether these two sites pre-
sumably originated from the same ancestral site, or not. In reality, one would
expect this relation to be transitive; however, due to possible mistakes in the
local alignments there will be relations between some sites missing, and there
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will also be spurious relations. Under the pressure of such mistakes, the triv-
ial algorithm will fail.

Thus our task will be to find a small modification of the original relation
produced by LASTZ so that it is transitive. Such modified relation will then
imply the atomization of the input sequences.

We will solve this problem by integer programming. The integer program
will contain N2 binary variables xij for 1 ≤ i, j ≤ N , where xij = 1 means
that sites i and j should be aligned in the modified relation. The necessary
linear inequalities are these:

0 ≤ xij ≤ 1

xij + xjk ≤ xik + 1

The first condition states, that xij are binary variables. The second condition
ensures transitivity. We want to maximize the number of elements of the
relation that remained unchanged with respect to the original relation implied
by the LASTZ alignments. To make sure that we do not again end up with
millions of tiny atoms, we can also try to minimize the number of atomic
boundaries. To accomplish this, we will add N − 1 more binary variables zi
for 1 ≤ i < N . Value zi = 1 means, that there is an atomic boundary at
position i. The corresponding inequalities are:

0 ≤ zi ≤ 1

x(i+1)(j+1) − xij ≤ zi

xij − x(i+1)(j+1) ≤ zi

The first inequality again states, that zi is a binary variable. The other two
inequalities force zi = 1 if the site on one side of the boundary is aligned to
a site near boundary j, but the site on the other side of the boundary is not
aligned to the corresponding other site near boundary j. This means that
the atom either ends at this position, or there is a gap in the alignment. This
version, therefore, does not properly count atoms with gaps. The objective
function which we want to maximize looks like this:

p

 ∑
rij=1

xij +
∑
rij=0

(1− xij)

− q∑
zi

Numbers p and q are constants which we can choose to balance the number
of atoms versus the resemblance to the original relation, rij is the original
relation itself.
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But again, there is a fundamental problem with this approach. The num-
ber of inequalities that specify transitivity is N3. Even for the smallest
sequences, N is at least 105, which means we have at least 1015 inequalities.
Even if each inequality could be represented by a single byte, this would be
still far too much to hold in a computer memory. One way we could improve
this situation would be by lowering N . This can be done by grouping adja-
cent sites into longer segments and treating these segments as if they were
just individual sites. Variables xij would then indicate, whether the segments
i and j are aligned or not. The summands in the objective function would be
weighted according to the lengths of the segments. With this modification,
we are not losing any information, and we can decrease N by any factor we
like. The only condition is, that we must be able to tell which segments
were aligned in the original relation rij. This is, in fact, a very restrictive
condition. To split the sequences into segments satisfying this condition, we
would use an algorithm very similar to the trivial algorithm from the previ-
ous section. And, as we already know, this will lower N only by a very small
factor.

As an interesting side note, the integer program with grouping was first
tested without us realizing, that the grouping algorithm produces the same
results as the trivial atomization algorithm. We used data generated by the
simulator used by Vinar et al. (2009) and aligned the data with LASTZ. We
wrote a simple program to generate the inequalities and tried to solve the
integer program using the integer program solver CPLEX (IBM, 2010). The
number of generated inequalities for some of the test cases was surprisingly
low, and we were able to find a solution. For input sequences with N between
105 and 3 · 105, the number of generated inequalities was between 106 and
109 and the smallest cases could be solved in a few seconds.

However, when testing on real data, we encountered the same problems
as described in the previous section with the trivial algorithm. As we later
found out, the simulator we used was missing one important feature: simu-
lating short insertions and deletions, which would introduce gaps in the local
alignments. We had decided to not use this simulator anymore. But since
solving the integer problem took is some cases relatively low time, using in-
teger programming still seems to be a viable option. A possible improvement
could be to specify only a random subset of all the inequalities and hope,
that the solver will find a solution satisfying all of the conditions. If it does
not, more conditions would be added to the input.
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Figure 3: A dot plot visualisation of the local alignments found by LASTZ
in the IFN regions of Rhesus Macaque and human genomes. The x-axis
corresponds to a 183895 sites long part of the IFN region on chromosome 2
in the Rhesus Macaque genome. The y-axis is a 211954 sites long part of
the IFN region on chromosome 18 in the human genome. The lines mark
local alignments, lines with inverted slope corresponding to alignments on
the complementary strand.
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Chapter 3

Proposed solution

The trivial algorithm mentioned in the previous chapter struggles with one
problem. It is the fact, that alignments produced by LASTZ do not end
precisely at the correct atomic boundaries. In this chapter, we will describe
an improvement to the trivial algorithm which circumvents this problem.

The idea is to find atomic boundaries which appear very close to each
other and merge them. Such boundaries are likely the result of multiple
LASTZ alignments identifying the same atomic boundary in the correct at-
omization, but with small errors.

3.1 Modifying the trivial algorithm

Firstly, we need to change the order in which we process the alignments. The
trivial algorithm takes alignments one by one. For each alignment, it creates
new atomic boundaries at the beginning and at the end of both aligned
regions, and it copies atomic boundaries that do not have a matching pair
(see Figure 4). Every new atomic boundary splits an existing atom into two.
The trivial algorithm makes sure that all the other atoms of the same atomic
class are also split, at the same position.

At the start of the algorithm, all atoms are of different atomic classes.
Two atoms become atoms of the same atomic class only when we merge
atomic classes, and this happens only when two atoms of different atomic
classes are aligned to each other by one of the input alignments. Therefore,
two atoms a, b are at the end in the same atomic class if and only if there
exists a sequence of atoms a, a1, . . . , an, b such that a is aligned to a1, a1 is
aligned to a2, etc. until finally, an is aligned to b by the input alignments.

The atomic boundaries and atomic classes, which the trivial algorithm
keeps track of, are, in fact, a sort of transitive closure of the input alignments.
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Before: ...gcccggCCCGACGAGAAGGCCGACtcagga...

...gagcatCCGGACGAGAAGTCCCACagcaaa...

After: ...gcccggCCCGACGAGAAGGCCGACtcagga...

...gagcatCCGGACGAGAAGTCCCACagcaaa...

Figure 4: When processing the alignments in the trivial algorithm, every
atomic boundary is copied from one aligned sequence to the other, and new
atomic boundaries are created at the beginning and at the end of the align-
ment. Uppercase characters denote the aligned regions, lowercase characters
are the rest of the sequence. Vertical lines show the locations of atomic
boundaries.

When the trivial algorithm processes a new local alignment, it translates this
alignment into a set of individual alignments between atoms and updates
the transitive closure by merging any newly aligned atomic classes. But the
same effect can be also achieved in a different way. We could first read
all the alignments without updating the transitive closure, and then start
constructing the closure step by step.

The modified algorithm then works like this. At the beginning, it reads
all the input alignments and creates atomic boundaries at the beginning
and at the end of each alignment. It does not keep track of atomic classes,
since the concept of an atomic class makes no sense without transitivity.
The algorithm then starts applying transitive steps, which consist of copying
atomic boundaries just like in the trivial algorithm but without splitting the
whole atomic class. When the transitive steps stop producing new atomic
boundaries, the transitive closure has been completed. We still need to find
out which atoms are in the same atomic class, but this can be easily done by
a depth first search.

3.2 Merging the atomic boundaries

We can now introduce the promised merging of atomic boundaries which
appear too close to each other. We do not want to start merging the bound-
aries after the transitive closure is complete, because at this point we already
have an average atom length of four base pairs, so the atomic boundaries are
practically everywhere. Instead, we will merge the boundaries after each
transitive step.

The process of merging atomic boundaries will be parametrized by an
integer value m, which is the smallest distance at which we no longer consider
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two boundaries to be “too close” to each other. The problem can be formally
stated as follows. For a given set of atomic boundaries B, we want to find
the set of atomic boundaries B′ such that:

• Every two atomic boundaries in B′ are at least m sites apart.

• The sum
∑
b∈B

dist(b) is minimal, where dist(b) is the distance of b to the

closest element of B′.

The second condition means that we want to move the elements of B as little
as possible.

This problem can be solved using dynamic programming. For each pos-
sible atomic boundary i, we will calculate the values vi and pi. The value
of vi is the minimal possible sum of dist(b) if the last element of B′ was at
position i. The value of pi is the position of second to last element in the set
B′ attaining this minimum. We can calculate the values of vi and pi using
the values of vj and pj for j < i.

The base case is simple. For i < m, the values pi are undefined, since no
two elements of B′ can be less than m positions apart. The values of vi can
be easily calculated, because we know that there is only a single element in
the set B′.

In the case of i ≥ m, we will consider all possible values of pi, which are
0, 1, . . . , i −m, or undefined, meaning that there is only one element in B′.
But in fact, we may assume that i−2m < pi ≤ i−m. If this were not so, we
could add another element to B′ at position i −m, and this element would
not worsen our solution. For each of these m potential values of pi, we will
calculate vi using the value of vpi

and choose the best one.
In the end, we will find i for which vi is the smallest. The elements of B′

will then be {i, pi, ppi
, . . .}. It is possible to find the values of vi and pi for

single i ≥ m in O(m) time complexity, therefore the time complexity of the
whole algorithm is O(mN) where N is the length of the sequence.

3.3 The final algorithm

When we put all of this together, the complete algorithm works as follows. At
the beginning, it finds local alignments of the input sequences using LASTZ.
Then, it creates the initial atomic boundaries at positions, where the local
alignments start and end. These boundaries are merged and the algorithm
starts alternating between transitive steps and merging of the boundaries. It
stops when, after merging the boundaries, we obtain a set B′ which we have
already seen before. For this to be possible, the algorithm keeps all previous

25



sets B′ stored in a hash table. Since there is only a finite number of different
possible sets B′, this part of the algorithm is guaranteed to stop. However,
the upper bound on its running time is O(mN2N) and the upper bound on
its space complexity is O(N2N).

After establishing the atomic boundaries, we still need to assign the atoms
to the atomic classes. To accomplish this, we will examine which pairs of
atoms are aligned by the original local alignments and construct a transitive
closure. But after merging of the atomic boundaries, many of the boundaries
are at different places than at the beginning, and it may not be entirely
obvious which pairs of atoms are aligned. For this reason, we also need
to keep for each atom the information about which alignments it originally
belonged to.

Even though the upper bounds on the time and space complexity of
the algorithm are exponential, it does not necessarily mean that it will not
perform well. In practice, it may turn out that the number of iterations
necessary to find the atomic boundaries will be much lower. We will see how
well the algorithm performs on real data in Chapter 5.
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Chapter 4

Simulating DNA sequences

One significant problem arises when testing the atomization algorithm. In
order to evaluate the quality of the produced atomizations, we must be able
to compare it to something, ideally to the correct atomization of the input
data set. Unfortunately, there are no real DNA sequences with known evolu-
tionary history or correct atomization. Luckily for us, the evolution of DNA
sequences, as described in Chapter 1, is a fairly well understood process.
This makes it possible to simulate evolution of DNA sequences and from the
resulting evolutionary history infer the correct atomization.

Simulating the evolution of various biological sequences is not a new idea.
There is a large number of existing tools used specifically for simulating
DNA sequences including Dawg (Cartwright, 2005), INDELible (Fletcher
and Yang, 2009) or indel-Seq-Gen (Strope et al., 2009). However, all of these
tools are lacking the ability to simulate duplication events. The only available
simulator that can simulate duplications is the one mentioned in Vinar et al.
(2009), but as we have found out in Chapter 2, sequences generated by
this simulator do not give a good estimate of the quality of the atomization
algorithms. Since all of the aforementioned tools are either too complex to be
easily modified, or have some other serious flaws, we have decided to create
a new DNA sequence simulator better suited for our needs.

This chapter describes our new simulation program SimSeq. Although
it is missing many useful features found in other DNA sequence simulators,
it has all the functionality neccessary for testing atomization algorithms.
SimSeq outputs a set of generated DNA sequences along with their complete
evolutionary history. This history can be then used to infer the correct
atomization as described at the end of this chapter.
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4.1 Mathematical model of sequence evolu-

tion

We have already discussed the basics of DNA sequence evolution in Chap-
ter 1. An evolving DNA sequence undergoes a series of evolutionary events
which can be of three types: speciations, single-base substitutions, and large-
scale events that include insertions, deletions and duplications. To be able
to simulate these events, we must first formally describe how each of these
events modifies the sequence and at what times these events occur.

When talking about time, we are referring to the concept of evolution-
ary time. Not all DNA sequences necessarily evolve at the same pace, and
individual sequences may even evolve more rapidly at some points in their
lifetime than at the others. For this reason, it is more practical to measure
evolutionary time using the expected number of evolutionary events. In par-
ticular, we will define a unit of evolutionary time to be a length of time during
which we expect one substitution per site in our sequence. As we will shortly
see in the subsection describing substitution models, this is a well-defined
length of time since we will only consider models, where substitutions occur
at the same rate at every site in a sequence.

The easiest of the three types of evolutionary events to model are the
speciations. During a speciation, the current sequence is replaced by two
identical copies which then both continue to evolve independently. In our
model, speciations do not occur randomly. Instead, the exact times and
order of speciations (or equivalently, the complete phylogenetic tree) must
be given as a parameter to the evolutionary model. The other two types of
events are more complicated and we will discussed them separately.

4.1.1 Substitution model

Description of the most commonly used models for DNA single-base sub-
stitutions can be found for example in Felsenstein (2004). In this section
we will summarize the common mathematical properties of these models and
describe the generalized time-reversible model (Tavaré, 1986) used in SimSeq.

We will assume that substitutions happen at every site of the sequence in-
dependetly and at the same rate. This means that for any given time interval,
the expected number of substitutions is the same at each site of the sequence.
Models that satisfy this condition are called homogeneous and, in fact, do
not model reality very accurately. This is because real DNA sequences con-
tain coding and non-coding regions which behave differently when it comes
to substitutions. Coding regions encode genetic functionality, for example
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they could describe how to create a particular protein. A substitution in
such region would most likely cause the region to lose its functionality and
put its bearer at evolutionary disadvantage, therefore we are less likely to
observe such substitution in evolutionary histories of species. On the other
hand, non-coding regions are regions which are not known to have any such
functionality, and substitutions can occur without any adverse effects. These
regions are said to evolve neutrally. Simple heterogeneous substitution mod-
els account for coding regions by scaling down their substitution rate in these
regions by certain factor. The more complex models use context-sensitive in-
formation and do not model substitutions independetly.

When we observe a single site in a DNA sequence during its evolution,
we see at every point of time one of the four bases. Let X(t) be the base
observed at time t. Value of X(t) changes only when a substitution occurs.
To simulate these substitutions, we will model X(t) as a stochastic process.
We need to be able to describe, for any two times 0 ≤ a < b, the value
of X(b) if we know the values of X(t) for all t ∈ [0, a]. Here, a is the
current simulation time, and b is the time to which we want to advance in
the simulation. Since this is a stochastic process, in fact we want to find the
probabilistic distribution of the random variable X(b). It can be intuitively
seen that the distribution of X(b) will only depend on the value of X(a)
and not on the previous values X(t) for t < a. This is beacuse a neutrally
evolving DNA sequence does not carry any information about previous bases
that appeared at this site. Such property is called memorylessness or the
Markov property and it can be expressed as:

Pr(X(b) = j|(∀t ∈ [0, a])X(t) = it) = Pr(X(b) = j|X(a) = ia)

Our process is therefore a continuous-time Markov process.
Because of how we have defined evolutionary time, it is also reasonable to

assume that the process X(t) is time-homogeneous. This means that the way
in which substitutions occur does not change with time. Formally written,
there exists a function Pij such that

Pr(X(b) = j|X(a) = i) = Pij(b− a)

The homogeneity is due to the fact that this conditional probability only
depends on the difference b − a and not on the actual times a and b. Pij(t)
are elements of the transition matrix P (t). It can be shown that P (x)·P (y) =
P (x+ y) for all positive x, y which in turn implies that P (t) must be of the
following form:

P (t) = eQt
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for some matrix Q. This matrix can always be chosen so that its rows sum
to zero and scaled so that the expected number of substitutions is indeed
equal to one per unit of time. Matrix Q is then called the instantaneous rate
matrix, because its elements qij describe the instantaneous transition rates:

∂

∂t
Pr(X(t) = j) =

∑
i

qijPr(X(t) = i) (4.1)

Once we have chosen a matrix Q which satisfies these conditions, we are
ready to simulate process XQ defined by Q. The last thing we need to know
is the initial distribution of X(0). If we denote πi = Pr(X(0) = i) then the
vector Π together with matrix Q completely describe our process.

Vector Π is the vector of base frequencies at time zero. As the sequence
evolves, probabilities Pr(X(t) = i) converge to some stationary base fre-
quencies of matrix Q. The generalized time-reversible model (GTR) puts
one more constraint on process X to simplify its simulation: if we look at
process X with time flowing in the opposite direction, the observed process
will be indistinguishable from process X. For a time-homogeneous Markov
process this is equivalent to

Pr(X(a) = i) = Pr(X(b) = i)

for every two times a, b or that Π is equal to the vector of stationary base
frequencies. It follows from (4.1) that ΠQ = 0.

If we take all these restrictions into account, we can write the rate matrix
Q for a generalized time-reversible model as

Q =


∗ x1 x2 x3

πAx1

πC
∗ x4 x5

πAx2

πG

πCx4

πG
∗ x6

πAx3

πT

πCx5

πT

πGx6

πT
∗


with elements on the diagonal chosen such that the rows sum to zero. Values
of x1, . . . , x6 and vector Π are parameters of this model. Elements of Π
should be non-negative and sum to one so that they express a probability
distribution. Parameters x1, . . . , x6 should be non-negative and satisfy

2(πAx1 + πAx2 + πAx3 + πCx4 + πCx5 + πGx6) = 1

to ensure that the expected number of substitutions is one per site per unit
of time.

Many earlier substitution models are just special cases of GTR. For ex-
ample, the Jukes-Cantor model (Jukes and Cantor, 1969) is a special case
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with πA = πC = πG = πT = 1
4

and x1 = x2 = x3 = x4 = x5 = x6 = 1
3
.

The commonly used HKY85 (Hasegawa et al., 1985) allows any vector of
stationary frequencies Π and its rate matrix is

Q =
1

r


∗ πC κπG πT
πA ∗ πG κπT
κπA πC ∗ πT
πA κπC πG ∗


where r = 2(πAπC+κπAπG+πAπT +πCπG+κπCπT +πGπT ) is the normalizing
constant and κ a parameter of the model describing the relative frequency of
transitions and transversions. There are many other models which are special
cases of GTR and they usually differ by the number of parameters that we
need to supply. They provide different tradeoffs between the accuracy of the
simulation and the number of parameters that must be estimated before we
can run the simulation.

4.1.2 Large-scale events

From Chapter 1 we already know how insertions, deletions and duplications
modify a DNA sequence. We will now discuss at what times these events
happen and with what parameters. The first assumption we will make to
simplify our model is that the sequence we are simulating is only a short
continuous subsequence of a much longer DNA sequence. In fact, we will as-
sume that this supersequence stretches to infinity in both directions. We will
usually only want to simulate regions which are a couple hundred thousand
bases long, but appear inside a chromosome about hundred million bases
long, so this assumption is not completely unrealistic.

A site boundary is a place between two adjacent sites in the DNA se-
quence. We will define for each evolutionary event its location as a unique
site boundary in the DNA sequence just before the event occurs. The loca-
tion of an insertion is simply the site boundary at which the new sequence
will be inserted. The location of a duplication is the site boundary at which
the duplicated sequence will be inserted. The location of a deletion is the site
boundary just before the first deleted base. Note that the large-scale events
may also occur outside of the modeled sequence. Insertions and duplications
located outside of our sequence will not affect the sequence. Deletions, how-
ever, can change the modeled sequence, even if they are located somewhere
before the start of the sequence but are long enough to overlap with it.

Just like in the previous section, we will now look at a single site boundary
and model all events located there. Once again, we will assume memoryless-
ness and time-homogeneity. This implies that evolutionary events will occur
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at this site boundary according to a homogeneous Poisson process. The times
between two consequent events are given by an exponential distribution. The
only parameter to this model is the rate at which events occur, and we will
assume that this rate is the same at each site boundary. If we want to have
different rates for different types of events, we can model them separately,
each with an independent Poisson process. These Poisson processes fully
describe the times at which events occur at each site boundary.

We also need to model the parameters of the events. All three types of
events have one common parameter, which is the length. We will assume that
the distribution of lengths is for every type of event independent of the time
and location of the event. This can be any discrete probability distribution
of positive values. Fletcher and Yang (2009) mention that a good estimate
is the Zipfian distribution defined by

Pr(Z = u) =
u−a

ζ(a)

where a > 1 is a parameter of the distribution and ζ(a) =
∑∞
k=1 k

−a is the
Riemann Zeta function.

Deletions are fully described by their length and location. For insertions,
we must also know the elements of the inserted sequence. In our model
these will be random bases generated at the stationary base frequencies of
the substitution model. Finally, duplications require two more parameters:
the source region and a boolean value describing, whether it is a same-strand
or cross-strand duplication. The source region can be described by its dis-
tance to the location of the duplication and the direction in which it lies.
We will assume that both directions are always equally likely and that the
distance is independent of all other parameters of the duplication. This can
be any discrete probability distribution of non-negative values. The proba-
bility of cross-strand duplication is also assumed to be independent of other
duplication parameters and is modeled by a Bernoulli trial.

4.2 Implementation of SimSeq

SimSeq is a simple tool developed for a single purpose. Most of the used
algorithms are very straightforward and not necessarily optimized for mem-
ory or speed. But since the running time and memory usage of the program
are relatively low, there was no need to look for a better solution. In this
section, we will look at the basic algorithm and explore the details of some
of the interesting parts of the program.
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SimSeq expects on the input the description of the phylogenetic tree,
the initial length of the simulated region, and all the previously discussed
parameters of the evolutionary model. The simulation starts by generating
the ancestral DNA sequence of given length with bases generated randomly
according to the stationary base frequencies of the substitution model. The
sequence is stored in a simple byte array. This representation is not very
efficient, because we will need to simulate insertions and deletions in the
sequence, and therefore shift big parts of the array every time any of these
events occurs. This choice of data structure probably accounts for a large
part of the running time of SimSeq.

The algorithm then starts traversing the branches of the phylogenetic tree
using a depth first search beginning at the root. In every internal node of
the tree occurs a speciation which is implemented by simply making a copy
of the current sequence. When traversing a branch of the tree the current
sequence is evolved for an amount of evolutionary time equal to the length of
the branch. The large-scale evolutionary events are simulated by inserting or
deleting a part of the array and shifting the rest of the elements appropriately.
Substitutions are implemented by simply overwriting the corresponding array
element by the new base.

Time and space complexity of this algorithm depends on how much the
sequence grows during the simulation. Upper bounds can be given in terms of
the greatest length the sequence ever reaches during the program execution.
Time complexity is then O(N(E+T )) and space complexity is O(ND) where
N is the maximum length of the sequence, E is the number of simulated
evolutionary events, T is the number of nodes in the tree and D is the depth
of the phylogenetic tree.

4.2.1 Generating large-scale events

The input of SimSeq can describe any number of large-scale event sources. An
event source describes a single type of evolutionary events (either insertions,
deletions or duplications), their rate of occurence at each site boundary, and
the parameters specific to this event type. This way, we can simulate, for
example, multiple classes of deletions, each occuring at different rate and
with different length distribution.

The most obvious way to implement the simulation of large-scale events
would be simulating one Poisson process per event source at each site bound-
ary. This, however, is very inefficient, due to the usually large number of site
boundaries. Since the rate of the process for single event source is the same
at each site boundary, we can use the memoryless property to simulate all
site boundaries at the same time.
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Let {Pi(t) : t ≥ 0} be the Poisson process at site boundary i, where
Pi(t) is a random variable describing the number of events that have occured
until time t. According to our evolutionary model Pi(t) ∼ Pois(λt). We
are interested in finding the process {P (t) : t ≥ 0}, which describes the
total number of event occurences throughout the simulated sequence. If we
don’t take into account the fact that the number of site boundaries changes
during the simulation then P (t) =

∑N
i=1 Pi(t). It follows form the properties

of Poisson distribution that P (t) ∼ Pois(Nλt), where N is the number of
site boundaries in our sequence. Therefore P is a Poisson process with rate
Nλ.

Simulating a Poisson process is easy, thanks to the memoryless property.
It tells us that times between two consecutive events in a Poisson process
of rate λ follow exponential distribution with parameter λ and are mutually
independent. Therefore, finding the next event occurence is straightforward:
we only need to sample the exponential distribution Exp(Nλ). The location
of the next event can be then sampled from a uniform distribution over all
site boundaries in our sequence.

We have so far ignored the fact that some site boundaries may get deleted,
or new ones inserted into our sequence after each simulated event. Because
of this, we will at every time r when the length of the sequence changes
replace the process P with a new process P ′. These two processes are not
independent, and we don’t know anything about P ′(t) for t ≤ r. But we are
only interested in the distributions of P ′(r+ t)−P ′(r) for t > 0 and these are
(due to the memoryless property) independent of P ′(t) for t ≤ r. Therefore,
it is sufficient to simply change the parameter of our exponential distribution
to correctly sample the time of occurence of the next evolutionary event.

Second problem is that we may have multiple event sources with different
rates of occurence, and we always need to find the one which happens first in
order to simulate the sequence correctly. We have multiple options here. The
one implemented in SimSeq is to keep track of the next time of occurence for
each event source and simulate the one which is the earliest. For this event
source we will then generate a new time of occurence. For the rest of the
events we will decrement their times by the amount of time that has passed,
and divide the remaining time by the factor by which the number of site
boundaries has changed. Such transformation is valid due to the memoryless
property of exponential distribution and the linearity of its quantile function
in 1

λ
.

Lastly, we need to take special care when simulating deletions. Unlike
insetions and duplications, we need to simulate not only the ones located
inside of the simulated region, but also the ones starting before the simulated
region and overlapping it. Fortunately, the length of deletions is independent
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of the time and location at which they occur. We can generate the length of
the next deletion and keep track of it until the deletion occurs. This way we
will able to correctly set the parameter N when sampling the next time of
occurence.

We have not yet discussed, how to generate the parameters of individual
event occurences. This is, in fact, very simple because all the parameters
are mutually independent, and also independent of the time and location
of the event. We only need to sample the distributions specified in the
program input. The probability distributions implemented in SimSeq are
the uniform distribution, geometric distribution, exponential distribution,
negative binomial distribution and the Zipfian distribution. The uniform
distribution is implemented using the standard C library random number
generator. Most of the other distributions are just simple transformations of
the uniform distribution. The Zipfian distribution is implemented using the
rejection method described in Devroye (1986).

4.2.2 Simulating the substitution model

The occurence of single-base substitutions is a Poisson process, but as we
already know, we don’t have to simulate each substitution individually. In-
stead, we can tell, how will a given base change after a specified time interval
from the rate matrix Q. To simulate single-base substitutions in a branch
of the phylogenetic tree of length t, we can simply calculate the transition
matrix P (t) = eQt, and modify each base of the sequence at the end of the
simulation according to the transition probabilities.

However, we must keep in mind that large-scale evolutionary events are
occuring during the simulation of the branch. To simulate these large-scale
events correctly, we should first simulate all previous single-base substitu-
tions. But not all large-scale events really depend on these substitutions.
Deletions only delete sections of the DNA sequence. The exact bases which
were deleted do not affect the outcome of the simulation so we do not need
to simulate any substitutions at the time of deletion. Insertions add to the
sequence new sites which do not depend on the bases in the rest of the se-
quence. So we do not need to simulate substitutions at the time of insertion
either. The only time we really have to simulate substitutions is when a
duplication occurs. This is because the duplication makes a copy of a section
of the DNA sequence and any substitutions occuring in this section prior to
the duplication will affect both copies.

The algorithm for simulating substitutions therefore updates all sites of
the sequence before every duplication and speciation. It keeps track how
much time t has passed since the last update. Before a duplication or speci-
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ation is about to occur, it calculates the matrix P (t) and modifies all bases
in the current sequence. It should be noted that the sequence could contain
sites younger than t which were inserted after the last update. These too will
be modified according to the transition probabilities in matrix P (t) which is
not the correct behavior. But these sites contain random bases and did not
yet have a chance to affect any other sites in the simulated sequence. After
applying the matrix P (t) they will still contain random bases with the same
frequencies equal to the stationary base frequencies as expected.

Last technical detail is how to calculate P (t) = eQt. SimSeq uses the
PAML library (Yang, 2007) to exponentiate the rate matrix by finding its
eigenvectors and eigenvalues. This method is only appropriate for a rate
matrix of a time-reversible Markov process.

4.3 Inferring the correct atomization

To find the correct atomization for a given evolutionary history, we can simply
follow the definition from Chapter 1. SimSeq offers a possibility to mark
events generated by a given event source as either short or long. We will use
this information in the modified definition of correct atomization.

The basic algorithm is similar to that of SimSeq. It keeps a list of gener-
ated sequences and remembers how they are split into atoms. It also remem-
bers for each atom to which atomic class it belongs. The algorithm starts
with the ancestral sequence consisting of a single atom. It then traverses the
phylogenetic tree and processes all events of the evolutionary history. This
is how are the different event types processed:

• Speciations: a new copy of the sequence with the same atomization is
created.

• Short insertions and duplications: inserted sites are added to the atom
in which the insertion ocured. If the insertion occurs at an atomic
boundary, the algorithm chooses any of the two atoms.

• Short deletions: deleted sites are removed from the atoms that con-
tained them. Atoms which were located entirely inside of the deleted
region are removed.

• Long insertions: inserted sites will form a new atom of a new atomic
class. If the insertion did not occur at an atomic boundary but rather
in the middle of an existing atom, the atom is split into two atoms of
two new atomic classes.
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• Long deletion: if either end of the deleted region is not already an
atomic boundary, the corresponding atoms that contain these ends are
split. All atoms in the deleted region are then removed.

• Long duplication: if either end of the source region or the location
of the insertion is not already an atomic boundary, the correspond-
ing atoms are split. The inserted sites then form atoms according to
Definition 1.2.

The definition of correct atomization requires that long large-scale events
only occur at atomic boundaries. For this reason, the algorithm must cre-
ate new boundaries by splitting existing atoms. But splitting atoms could
cause other problems. The definition requires at several places that two se-
quences have the same atomization. This is when sequence was not affected
by an evolutionary event, when sequence gets copied in a speciation, and
when sequence is duplicated in a duplication. For this reason, every time
the algorithm splits an atom, it also splits all other atoms of the same or
complementary atomic class in the same way, assigning them to the same (or
complementary) atomic classes.

However, yet another problem arises. Atoms of the same class do not
necessarily have to be of the same length because of the short insertions and
deletions. Splitting all atoms of one atomic class in “the same way” is then
not trivial. For this reason, the algorithm not only remembers to which atom
and atomic class a given site belongs, but also its offset withing this atomic
class. When a new atom of new atomic class is created, its elements are
assigned the offsets 1, 2, 3, . . . , n. A short deletion simply deletes some of the
sites and the remaining sites keep their offsets. (This results in a hole in the
sequence of offsets.) A short insertion or duplication creates new sites which
must be assigned new offsets. If the insertion occurs just after a site with
offset k, the new offsets will start at k + 1, and all already existing sites of
the same or complementary atomic class with offsets greater than k will have
their offsets increased by the length of the inserted sequence. When we then
need to split an atom at a site boundary between sites with offsets k and
k+1, we will know that all other atoms of the same class should also be split
between offsets k and k + 1. If the two sites surrounding the breakpoint do
not have consecutive offsets, we will choose any offset between these two.

After processing all of the evolutionary events, the algorithm will output
a correct atomization corresponding to the given evolutionary history. It
should be easy to see that most of the conditions of the modified definition
are indeed satisfied. The one that is harder to prove is the condition of
minimality. We will not show a proof that it holds because the proof would be
too technical and the condition is not used to draw any further conclusions.
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Chapter 5

Results

We have tested the proposed algorithm using two methods. First one was
by running the algorithm on simulated data and comparing the resulting
atomizations to the correct atomizations. Second method was testing the
algorithm on real DNA sequences and comparing the atomizations to the
alignments produced by LASTZ.

5.1 Simulated data

We have used the simulator described in Chapter 4 to generate random se-
quences and their correct atomizations. The simulator was configured to use
the HKY substitution model and the phylogenetic tree of human, chimp,
and macaque. The parameters of the substitution model, branch lengths of
the phylogenetic tree, and rate and length distributions of short insertions
and deletions were estimated from UCSC syntenic alignments (Rhead et al.,
2010) of human, chimp, and macaque on human chromosome 22. We did not
simulate short duplications because these are essentially the same as short
insertions. Of the long large-scale events, we only simulated deletions and
duplications. The rates of occurence of the deletions and the duplications
were 0.0001 and 0.0019 occurences per site per unit of time, respectively.
Since the length of the ancestral sequence was always 105 base pairs, these
rates approximately correspond to 200 large-scale events in the whole se-
quence per unit of time, which is the same rate as was used by Vinar et al.
(2009) for the slowly evolving simulated sequences.

We compared the atoms of the output atomization to the atoms of the
correct atomization. For a given tolerance t, an atom of the correct atomiza-
tion is considered correctly identified, if there exists an atom in the output
atomization which begins and ends within t sites of the beginning and the
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end of the correct atom. Furthemore, every atom of the output atomization
is allowed to match at most one atom of the correct atomization. Therefore,
we are looking for a maximum matching in a bipartite graph.

The results for certain particular values of m are shown in Figure 5. As we
can see, the value of m plays little role in the number of correctly identified
atoms. For small tolerance t, there are values of m which work better than
the others. In Figure 5, this is the value of m = 60. The best values of
m seem to be generally between 50 and 200. Values which are too small or
too large produce slightly worse results, but they always seem to catch up at
higher tolerances t. This should not surprise us. High tolerance t allows us
to match every atom of the correct atomization by almost any other atom.

5.2 Real DNA sequences

We have used the following gene cluster sequences to test our algorithm
on real data: IFN (human-macaque phylogeny) and CYP2ABF (human-
macaque phylogeny). Since we did not know the correct atomization of these
sequences, we compared the results only to the local alignments found by
LASTZ.

To compare an atomization to a set of local alignments, we have used
the following method. For every pair of sites in the input sequences, we
determine whether they are locally aligned by the LASTZ alignments or not.
Then we construct another set of alignments from the output atomization by
aligning all the atoms of the same atomic class. We again determine for every
pair of sites whether they are aligned by our atomization or not, and then
we compare the results. We are interested in two values: input adherence,
which is the fraction of pairs aligned by LASTZ that are also aligned by our
atomization; and output consistency, which is the fraction of pairs aligned by
our atomization that are also aligned by LASTZ.

The results are summarised in Figure 6 and Figure 7. As we can see,
the values of input adherence are very similar for both data sets and mostly
independent of the parameter m. For large values of m the input adherence
slowly drops. This is because the larger the value of m is, the further the
boundaries move from their original locations, and the more sites there are
which were originally aligned by the input alignments, but then they shifted
out of the corresponding atoms. It is not clear why the input adherence only
reaches about 65% for the lower values of m. When tested on the simulated
sequences, input adherence was very close to 100% for most input files and
most parameters of m. This anomaly should be better investigated in future
works.
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On the other hand, the values of output consistency grow higher for higher
values of m. For m = 1, we simply have the trivial algorithm. As we can
see, the output consistency is in this case close to zero. This is because the
errors in local alignments cause many atomic classes to be merged when they
should not be. This results in a huge number of incorrect alignments between
pairs of atoms which, in reality, do not belong to the same atomic classes. As
the value of m grows higher, we obtain lower number of incorrect alignments.
However, with growing value of m we also lose precision, because the atomic
boundaries can move further away from their correct positions. To obtain
the best results, we should try to choose values of m which balance these two
effects.

We do not have any good explanation for the seemingly random behavior
of our algorithm on the IFN data set. This too should be given more attention
in future works.
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Figure 5: The number of correctly identified atoms. Displayed results are
for m = 5 (black), m = 60 (gray), and m = 531 (white). The horizontal
axis represents the tolerance and the vertical axis the percentage of correctly
identified atoms.
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Figure 6: Input adherence on the IFN data set (white) and the CYP2ABF
data set (black). The horizontal axis represents different values of the pa-
rameter m and the vertical axis the percentage of input adherence.
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Figure 7: Output consistency on the IFN data set (white) and the CYP2ABF
data set (black). The horizontal axis represents different values of the pa-
rameter m and the vertical axis the percentage of output consistency.
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Chapter 6

Conclusion

In this thesis we explored the problem of atomization and possible new ap-
proaches to solving this problem. We described and implemented a new
algorithm which combines the trivial algorithm and dynamic programming
to iteratively arrive at the solution. We also implemented a DNA sequence
simulator which offers the possibility to simulate duplication events. This
simulator could be also useful in other applications that deal with sequences
which have undergone repeated duplications.

We tested our atomization algorithm on both simulated and real-world
DNA sequences. Some interesting results were obtained which could be fur-
ther investigated in the future. There is still a lot of room for improvement.
We could try modifying the algorithm to use clustering instead of calculat-
ing the transitive closure, or we could further explore the possibilities of the
integer programming approach.

Whichever approach we choose, there seem to be many new possibilities
open by the work we have done in this thesis.
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Appendix A

GNU Free Documentation
License

Version 1.3, 3 November 2008
Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

0. Preamble

The purpose of this License is to make a manual, textbook, or other functional
and useful document “free” in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.
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1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide, royalty-
free license, unlimited in duration, to use that work under the conditions
stated herein. The “Document”, below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as “you”. You
accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a Sec-
ondary Section may not explain any mathematics.) The relationship could
be a matter of historical connection with the subject or with related matters,
or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that says
that the Document is released under this License. If a section does not fit
the above definition of Secondary then it is not allowed to be designated
as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be at
most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable
for input to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image
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format is not Transparent if used for any substantial amount of text. A copy
that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of trans-
parent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not have
any title page as such, “Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the
text.

The “publisher” means any person or entity that distributes copies of
the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses follow-
ing text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Ti-
tle” of such a section when you modify the Document means that it remains
a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these War-
ranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices,
and the license notice saying this License applies to the Document are re-
produced in all copies, and that you add no other conditions whatsoever to
those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute.

47



However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on
the front cover, and Back-Cover Texts on the back cover. Both covers must
also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying
in other respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document number-
ing more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the
latter option, you must take reasonably prudent steps, when you begin dis-
tribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents
or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give them
a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
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Version under precisely this License, with the Modified Version filling the
role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must
do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release
you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of
this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to
it an item stating at least the title, year, new authors, and publisher of
the Modified Version as given on the Title Page. If there is no section
Entitled “History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous
sentence.
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J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Pre-
serve the Title of the section, and preserve in the section all the sub-
stance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their
text and in their titles. Section numbers or the equivalent are not
considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not
be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or
to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections
as invariant. To do this, add their titles to the list of Invariant Sections in
the Modified Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—for
example, statements of peer review or that the text has been approved by
an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and
one of Back-Cover Text may be added by (or through arrangements made
by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same
entity you are acting on behalf of, you may not add another; but you may
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replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and mul-
tiple identical Invariant Sections may be replaced with a single copy. If there
are multiple Invariant Sections with the same name but different contents,
make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled “History”;
likewise combine any sections Entitled “Acknowledgements”, and any sec-
tions Entitled “Dedications”. You must delete all sections Entitled “En-
dorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this License
into the extracted document, and follow this License in all other respects
regarding verbatim copying of that document.
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7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distri-
bution medium, is called an “aggregate” if the copyright resulting from the
compilation is not used to limit the legal rights of the compilation’s users be-
yond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant
Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include
a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original En-
glish version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the origi-
nal version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedica-
tions”, or “History”, the requirement (section 4) to Preserve its Title (sec-
tion 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense, or distribute it is void, and will automatically terminate
your rights under this License.

However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and until
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the copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by
some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of violation
of this License (for any work) from that copyright holder, and you cure the
violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under this
License. If your rights have been terminated and not permanently reinstated,
receipt of a copy of some or all of the same material does not give you any
rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License “or
any later version” applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that
has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose
any version ever published (not as a draft) by the Free Software Foundation.
If the Document specifies that a proxy can decide which future versions of
this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World
Wide Web server that publishes copyrightable works and also provides promi-
nent facilities for anybody to edit those works. A public wiki that anybody
can edit is an example of such a server. A “Massive Multiauthor Collab-
oration” (or “MMC”) contained in the site means any set of copyrightable
works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit corpo-
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ration with a principal place of business in San Francisco, California, as well
as future copyleft versions of that license published by that same organiza-
tion.

“Incorporate” means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License,
and if all works that were first published under this License somewhere other
than this MMC, and subsequently incorporated in whole or in part into
the MMC, (1) had no cover texts or invariant sections, and (2) were thus
incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the
site under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your docu-
ments

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to
copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no In-
variant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU Free
Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts
being LIST.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.
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If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.
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Abstrakt

Sekvencie DNA, v ktorých sa vyskytli viacnásobné duplikácie, sú závažným
problémom pri analýze DNA. Predpokladá sa, že tieto sekvencie sú význam-
ným zdrojom inovácií počas evolúcie živočíšnych druhov. Mohli by byť zod-
povedné aj za relatívne vysoké tempo vývoja ľudského druhu a preto sa tešia
v oblasti molekulárnej biológie mimoriadnemu záujmu. Analýza týchto sek-
vencií je zložitá kvôli veľkému počtu opakujúcich sa úsekov, ktoré bránia
použitiu tradičných metód.
Niektoré nové spôsoby analýzy takýchto sekvencií sú založené na ato-

mizácii sekvencií DNA príbuzných živočíšnych druhov. V súčasnosti nie sú
známe žiadne algoritmy, ktoré by dokázali nájsť dostatočne presnú a spoľah-
livú atomizáciu. Táto práca navrhuje nový algoritmus na hľadanie atomizá-
cií a pokúša sa odhadnúť kvalitu takto nájdených atomizácií. Algoritmus je
testovaný na simulovaných aj skutočných dátach a výsledky sú porovnané
s existujúcim atomizačným algoritmom.

Kľúčové slová: bioinformatika, analýza DNA sekvencií, evolúcia, ances-
trálna rekonštrukcia, simulácia.
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