
Comenius University, Bratislava
Faculty of Mathematics, Physics and

Informatics

A New Algorithm for Using

External Information in Gene Finding

Master’s Thesis

Bc. Marcel Kuchaŕık Bratislava, 2011

Department of Computer Science

Faculty of Mathematics, Physics and Informatics

Comenius University, Bratislava

A New Algorithm for Using
External Information in Gene Finding

(Master’s Thesis)

Bc. Marcel Kuchaŕık

(Code: 195679d5-94ce-43c1-a505-b79068bb4708)

Branch of study: 9.2.1 Computer Science

Study programme: Computer Science

Supervisor: Mgr. Bronislava Brejová, PhD Bratislava, 2011

Acknowledgments

I would like to thank my supervisor Broňa Brejová for her guidance and

her priceless advice and also my friends and family for their support.

iv

I hereby declare that I wrote this thesis by myself,

only with the help of the reference literature, under

the careful supervision of my thesis advisor.

Čestne prehlasujem, že som túto diplomovú prácu

vypracoval samostatne s použit́ım citovaných zdro-

jov.

. .

v

Abstrakt

Autor: Bc. Marcel Kuchaŕık

Názov práce: Nový algoritmus pre využitie externej informácie

pri ȟladańı génov

Škola: Univerzita Komenského v Bratislave

Fakulta: Fakulta matematiky, fyziky a informatiky

Katedra: Katedra informatiky

Vedúci práce: Mgr. Bronislava Brejová, PhD

Ciělom ȟladania génov je označǐt význačné miesta v DNA sekvencii –

gény. Programy určené na riešenie tohto problému použ́ıvajú informáciu

o DNA štruktúre z už oanotovaných sekvencíı a externú informáciu. V

práci analyzujeme existujúce programy na ȟladanie génov a popisujeme ich

obmedzenia vo využ́ıvańı externej informácie. Tieto zvyčajne dokážu využǐt

iba jednoduché ”hinty”, pozostávajúce z jedného intervalu sekvencie, keďže

tieto je relat́ıvne ľahké zakomponovať do štandardných algoritmov. Exis-

tujúce ȟladače génov si nevedia poradǐt s komplexneǰśımi hintami, ktoré

sa skladajú z viacerých intervalov. Pri deleńı informácie na menšie kúsky

dochádza k strate informácie a preto sme vyvinuli algoritmus schopný pra-

covať aj s komplexneǰsou externou informáciou. Tento algoritmus je založený

na skrytých Markovových modeloch (HMM), podobne ako predchádzajúce

ȟladače génov, ale využ́ıva iný pŕıstup k spracovávaniu externej informácie.

Náš algoritmus ȟladá postupnosť označeńı stavov HMM s najlepš́ım skóre,

pričom postupnosť dostáva odmenu za každý uposlúchnutý hint. Tieto hinty

sú modelované ako alternat́ıvne cesty v grafovej reprezentácíı problému.

Dokázali sme, že náš pŕıstup zvýšil presnosť predikcie génov, hlavne na

génovej úrovni. Časová zložitosť algoritmu je linárna v závislosti od d́lžky vs-

tupnej sekvencie a od d́lžky všetkých hintov dokopy, a kvadratická v závislosti

od počtu stavov HMM a počtu hintov. Táto časová zložitosť je porovnatělná

s časovou zložitosťou existujúcich ȟladačov génov.

Klúčové slová: ȟladanie génov, skryté Markovove modely (HMM), externá

informácia pri ȟladańı génov, orientovaný acyklický graf.

vi

Abstract

Author: Bc. Marcel Kuchaŕık

Caption: A New Algorithm for Using External Information

in Gene Finding

University: Comenius University in Bratislava

Faculty: Faculty of Mathematics, Physics and Informatics

Department: Department of Computer Science

Supervisor: Mgr. Bronislava Brejová, PhD

The goal of gene finding is to mark important places in DNA sequence –

genes. Programs solving this task are using information about DNA struc-

ture from already annotated sequences and external information. We study

existing gene finding programs and find their limitations in using external in-

formation. Typically they can process only simple hints consisting of a single

interval, because these are relatively easy to incorporate to standard algo-

rithms, but cannot cope with complex hint consisting of multiple intervals.

This is unwanted information loss, and therefore we developed an algorithm

able to process complex information. It is based on Hidden Markov models

and the Viterbi algorithm as previous gene-finders, but uses a different ap-

proach of adding external information into the model. Our algorithm finds

the sequence of state labels of the HMM with the best score, where a sequence

gets a bonus for each respected hint. Hints are modeled as alternative paths

in a graph representation of the problem.

We proved that this approach increases the accuracy of gene prediction,

especially at the gene level. Time complexity of the algorithm is linear in

sequence length and in the total length of all hints, while quadratic in the

number of hints and HMM states. This is comparable to time complexity of

existing gene finders.

Key words: gene finding, Hidden Markov models (HMM), external infor-

mation in gene finding, directed acyclic graphs.

vii

Contents

Introduction 1

1 Bioinformatics and gene finding 3

1.1 Bioinformatics . 3

1.2 Sequence annotation . 4

1.2.1 The problem of sequence annotation 5

1.2.2 Hidden Markov models (HMM) 6

1.2.3 Hidden Markov models for gene finding 7

1.2.4 The Viterbi algorithm 10

1.3 Gene finding with external information 11

1.3.1 External information and its sources 11

1.4 Combination of external information with HMMs 14

1.4.1 Pointwise hints . 14

1.4.2 Interval hints . 15

1.4.3 Other approaches . 16

2 Algorithm for using complex hints 17

2.1 Finding maximum consistent hint subset 17

2.1.1 Definitions . 17

2.1.2 Hint path problem . 20

2.1.3 Generalized label restrictions in hints 26

2.2 Algorithm for combining complex hints with an HMM 27

2.2.1 Joint graph description 27

2.2.2 Best score path . 32

2.3 Time complexity . 34

viii

2.3.1 Computing the extension relation 35

2.3.2 Subset bonuses . 35

2.3.3 Edge counting . 37

2.3.4 Improvement . 37

3 Implementation and results 39

3.1 Implementation . 39

3.1.1 Inputs and usage . 40

3.1.2 Hint set format description 40

3.1.3 Model training and data sets 41

3.2 Results . 42

3.2.1 Real data hint sets . 42

3.2.2 Artificial hint sets . 46

Conclusion 49

Resumé 51

ix

Introduction

Since the end of the Human Genome Project in 2003, a human DNA se-

quence has been determined to nearly 100%. Nowadays, we have also many

sequences from different organisms. These sequences are very long strings

over the alphabet {A,C, T,G} and to use them effectively in research, fur-

ther analysis is required to find parts of the sequence called genes which are

of major importance. Genes are protein coding parts of a sequence, but they

are not very easy to distinguish from surrounding noncoding sequence. Due

to a vast size of DNA sequences, there is a need for an automated solution

of this problem, since a manual gene finding would be very time consuming.

Many gene finding programs have arisen to cope with this task using only

genomic sequences; such an approach is called ab initio – from the begin-

ning. Soon, they were expanded with the use of external information, and

the gene prediction accuracy took a huge step forward. The external infor-

mation gained from a variety of sources is typically in a preprocessing stage

cut to simple intervals (or points), because gene-finders cannot process more

complex types of external information.

We propose an algorithm able to cope with a more general case of external

information. The algorithm is based on the same principle as existing gene-

finders, but it uses a different approach in the processing of the external

information. In particular, we first formulate and study a simpler problem

of finding the subset of input complex hints that can be used simultaneously

and have the highest possible total score. We then extend the algorithm

to also incorporate information from a hidden Markov model representing

statistical properties of genes and non-coding regions. The algorithm is fully

described in Chapter 2.

1

Additionally, we experimentally evaluate the contribution of complex

hints compared to simple interval hints and pointwise hints. We built a sim-

ple gene finder based on our algorithm, and created several hint sets based on

both real and artificial data. Chapter 3 is dedicated to the implementation

and evaluation of the contribution of complex hints.

2

Chapter 1

Bioinformatics and gene finding

1.1 Bioinformatics

Bioinformatics is a very young science discipline (first beginnings are dated

back to the year 1979 [Ouzounis and Valencia, 2003]). It began as an appli-

cation of computer science techniques to solve tasks of molecular biology. Its

main subfields are genomics and genetics – disciplines, whose main interest

is the processing of huge amounts of data, mainly DNA sequences. DNA se-

quences are simply sequences of molecules adenin(A), cytozin(C), tymin(T),

and guanin(G). These small molecules are called bases. Similarly, protein

sequences are composed of 20 different amino-acid molecules. One amino

acid is coded by three bases from DNA – this triple is called a codon.

Since its birth, bioinformatics became a very complex field of science with

a wide area of research. Today, its main activities include assembling and

analyzing DNA and protein sequences, finding sequence similarities between

species and creating phylogenetic trees, discovering 3D structures of proteins,

and many others. It helped to acquire a huge amount of information from

molecular biology in relatively short time. Many web-pages, (web-)databases,

and journals are now dedicated only to bioinformatics and they provide tools

and knowledge base for scientists from the field of bioinformatics and biology.

3

1.2 Sequence annotation

DNA sequence annotation is the process of marking genes and other biolog-

ically interesting parts of DNA sequences. A gene is a continuous part of

DNA sequence, which encodes a protein (molecule necessary for living).

Genomes can be divided into two basic types: genomes of prokaryotic

and eukaryotic cells.

Prokaryotic cells have very well defined and documented signals that con-

trol gene expression, the process of producing the proteins encoded by in-

dividual genes. Protein coding sequence in prokaryotic cells consists only

of one continuous part – ”open reading frame” (ORF). This ORF is often

from hundreds to thousands bases long and it is ended with a so called stop

codon. Statistical view on stop codon appearance in the sequence can give

a good insight into the sequence structure. There are 3 stop codons out of

64 different codons, and therefore we can expect a stop codon in a random

sequence once in approximately 21 codons, that is 63 bases. Beginnings and

ends of the coding sequence can be estimated quite precisely with a help of

the fact above and other periodicities in the coding sequence. Therefore, a

process of annotation in prokaryotic cells is relatively straight-forward.

Gene finding in eukaryotic sequences is much more difficult, especially

in higher, more complex organisms like for example human or other mam-

mals. Regulatory signals are more complicated and less discovered than in

prokaryotic cells and therefore it is much greater problem to find them in a

given sequence. Furthermore, coding sequence is divided into several parts

(exons) divided by non-coding sections (introns). A protein coding gene in

the human DNA is usually divided into a several exons, most of them are 20

- 200 bases long [Sakharkar et al., 2004]. These are divided by introns with

an average length of more than thousand bases. The goal of annotation in

these genomes is not only to distinguish genes from other parts of DNA, but

also delineate splice sites – sites, where exon ends and intron begins and vice

versa.

4

1.2.1 The problem of sequence annotation

The process of annotating a DNA sequence is not well defined, since some

control mechanisms in a cell are still unknown. Therefore, this problem is

formulated probabilistically. The most simple formulation can be stated as:

Input: a sequence of characters from the alphabet Σin = {A,C, T,G} of

length k

Output: the most probable marking of each character of the input sequence

with a label from the alphabet Σout = {X, I, E}, where X stands for an

intergenic part of sequence, I for introns and E for exons.

The alphabet Σout is called a label set. To completely define this problem,

we need to specify a probabilistic model assigning probabilities to different

possible sequences of labels. To do so, we need additional information to

help us distinguish exons and introns from intergenic regions.

How to get to know a gene?

Transcription of a gene is done by complex molecules, which bind to special

short sequences in the DNA – signals. Signals appear on the splice sites, at

the beginning and the end of genes, and at the other biologically significant

places. A good example of the signal is the stop codon mentioned above,

which is located in exons only at the end of the last exon.

The input character frequency in exons is also different from the other

parts of the sequence. Even all three positions in codon have different char-

acter frequencies. These frequencies are usually stored in frequency tables for

various parts of the sequence and we can construct these tables by analyzing

sequences with known annotation.

We can also use already annotated sequence to gather statistical informa-

tion about the structure of DNA sequences – the average number of exons

in a gene, average number of genes, an average length of exons, introns, and

genes.

We are now able to redefine the problem of sequence annotation by en-

hancing the input with the information about the signal structure, the DNA

5

structure, and the frequency tables.

Problem formulation II

Input: a sequence of characters from the alphabet Σin = {A,C, T,G} of

length k; a list of signals, their structure and positioning in a DNA sequence;

frequency tables for different sequence parts; statistical information about

an unknown sequence

Output: the most probable marking of each character in the input sequence

with a label from the alphabet Σout = {X, I, E}, where X stands for an

intergenic part of sequence, I for introns and E for exons.

Although we have described the types of available statistical signals, we

still need to define precise probability distribution over label sequences. This

problem can be practically solved by Hidden Markov models.

1.2.2 Hidden Markov models (HMM)

Hidden Markov models are finite-state generative probabilistic automata,

which generate a sequence of characters over some finite alphabet (in our

case {A, C, G, T}). Emission and transition probabilities are defined in each

state of the HMM (Figure 1.1). Emission probabilities capture frequency

differences, while transition probabilities and the number of states capture

signals and a structure of DNA. The HMM starts generating the sequence in

a state chosen according to the start probabilities. Afterwards, it proceeds in

the following way: one character is generated according to emission probabil-

ities for the current state and then we move to the next state (not necessary

different) according to transition probabilities. Each state has a label from

the label set, this label represents the searched annotation.

Emission and transition probabilities sum up to 1 for each state and start

probabilities sum up to 1 through all the states. The ”hidden” property

stands for the fact that after looking at the generated sequence, we do not

know which states generated these characters. We can estimate only the

most probable path through HMM that generates the sequence.

6

Formally, let Q = {q1, . . . , qn} be HMM state set, O = {o1, . . . , om} be a

generated alphabet. Next, let be defined [Paul E. Black, 2008]:

• emission probabilities - E

E = {ei,k = P (ok|qi)}, where ok ∈ O and qi ∈ Q.

such that: ∀qi ∈ Q :
∑

ok∈O ei,k = 1

• transition probabilities - T

T = {ti,j = P (qj at time t + 1|qi at time t)}, where t ≥ 1 is time

(generation step) and qi, qj ∈ Q

such that: ∀qi ∈ Q :
∑

qj∈Q ai,j = 1

• start probability - π

π = {pi = P (qi at time t = 1)}.

such that:
∑

qi∈Q pi = 1

A hidden Markov model is usually defined as a triple (T,E, π), since the sets

Q and O are known.

Alternative notation will be also used in the following text for clarity

reasons: p(qx) = px, e(qx, y) = ex,y and t(qx, qy) = tx,y.

Probability of generating a sequence

The probability that an HMM generates a sequence S = (os1 , os2 , . . . , osk)

by a sequence of states F = (qf1 , qf2 , . . . , qfk) in the first k steps is simply a

product of a start probability of a state qf1 and k emission probabilities and

k − 1 transition probabilities.

P (F, S) = P (qf1)e(qf1 , os1)
k∏

i=2

t(qfi−1, qfi)e(qfi , osi) (1.1)

1.2.3 Hidden Markov models for gene finding

In order to solve the gene finding problem from Section 1.2.1, we need to

create an HMM, which will characterize signals, DNA structure and it will

7

generate characters with proper emission frequencies. After creating the

HMM, we need to find the most probable path (a state sequence) through

this HMM, which generates the input sequence. A state sequence denotes

annotation, because state labels represent parts of DNA.

Formally, sequence annotation problem is defined on HMM as:

For a given sequence S over alphabet Σin of length k and an HMM, find the

most probable path F through states:

F = arg max
F∈Qk

P (F | S)

This problem can be solved by Viterbi algorithm described in Section

1.2.4.

The simplest HMM for gene finding would have three states: X, E and I,

for intergenic regions, exons and introns, respectively. However, in order to

add signals we extend the model with many new states. For example: a stop

codon signal can be implemented by a sequence of three states with transition

and emission probabilities allowing to generate only the desired stop codon

sequence (Figure 1.1). Other signals can be implemented similarly.

Character frequency tables can be included into emission probabilities of

the states X, E and I with the exception of E state, for which there exist

three different frequency tables corresponding to different positions within

a codon. This state is decomposed into three states E1, E2 and E3 con-

nected to a directed cycle of length three. Thus, the length of exons in each

output gene will be divisible by three, which agrees with our biological intu-

ition. Transition probabilities are set according to statistic information from

annotated sequences.

Note that in general by extending the HMM with more prior biological

knowledge about signals and gene structure we increase the number of states,

leading to increased time consumption for the Viterbi algorithm.

Existing ab initio gene finders include: HMMGene [Krogh, 1997],

GeneScan [Burge and Karlin, 1997], Augustus [Stanke et al., 2006], and

Conrad [DeCaprio et al., 2007]. While HMMGene is based on classical

HMMs, GeneScan and Augustus use generalized HMMs in which each

state can generate sequence of characters in each step. Each state can have

different emission probabilities and sequence length distribution. Conrad

8

E I

A : 0.25
C : 0.25
G : 0.25
T : 0.25

A : 0.30
C : 0.19
G : 0.22
T : 0.29

A : 0.26
C : 0.23
G : 0.24
T : 0.27

0.999 0.99 0.99

0.001

0.003

0.007

0.01

A
(sc)

G
(sc)

T
(sc)

A : 0.00
C : 0.00
G : 0.00
T : 1.00

A : 0.00
C : 0.00
G : 1.00
T : 0.00

A : 1.00
C : 0.00
G : 0.00
T : 0.00

1.00 1.00

X

1.00

Figure 1.1: Example of an HMM – emission probabilities are written below

states, transition probabilities are on the edges (states not connected by an

edge have zero transition probability), states are colored according to their

labels, states labeled with (sc) represent TGA stop codon signal

9

uses conditional random fields, which are further generalization of the hidden

Markov models.

1.2.4 The Viterbi algorithm

The goal of the Viterbi algorithm is to find the most probable state path F

that generated a given input sequence S:

F = arg max
F

P (F |S) (1.2)

This can be found by a simple dynamic programming algorithm named after

Andrew Viterbi [Forney, 1973]. This algorithm can be described by recursion:

∀q ∈ Q : v(1, q) = p(q)e(q, s1) (1.3)

∀i, 1 < i ≤ k,∀q ∈ Q : v(i, q) = max
q̄
{t(q̄, q)e(q, si)v(i− 1, q̄)} (1.4)

Equation v(i, j) = p means that the most probable path that generates a

sequence s1, . . . , si and ends in a state j has probability p. After computing

values v(k, q) for all states q ∈ Q, we get maximal probabilities of generating

input sequence S and ending in different states and we can choose state q

yielding the maximum value. This will be the last state of the resulting state

path. Computation of this function can be seen as filling a table from left

to right, where a cell in a row j and a column i has a value of v(i, j). To

compute entries of column i we need only entries from column i − 1, which

are already computed.

Now we have the probability and the end state, but for acquiring the

whole state path we have to store the information about previous cells. This

can be done without increasing the time complexity by computing values

f(i, j) :

∀q ∈ Q : f(1, q) = 0 (1.5)

∀i, 1 < i ≤ k,∀q ∈ Q : f(i, j) = arg max
q̄
{t(q̄, q)e(q, si)v(i− 1, q̄)}(1.6)

Value f(i, j) stores the row index of the cell from column i − 1 used in

computation of v(i, j). Tracing backwards in table f from the most probable

10

end state yields the most probable state path and therefore the annotation.

g(k) = arg max
q
v(k, q) (1.7)

∀i, 1 ≤ i < k : g(i) = f(i+ 1, g(i+ 1)) (1.8)

A function g represents the searched state path, F = (g(1), g(2), . . . g(k)).

The annotation will be (label(g(1)), label(g(2)), . . . , label(g(k))).

This algorithm has a time complexity of O(kn2), where k is the length

of the sequence and n is the number of states in HMM, because it has to

go through the whole table of size k × n and it performs n operations for

each cell. Viterbi algorithm implementations (and similar algorithms, which

compute with probability products) have an underflow problem in floating

point arithmetics. Therefore, probabilities are converted to logarithmic scale

and the resulting numbers are added up. This type of computation is called

”computation in log-space”.

A time complexity of the Viterbi algorithm is linear in the sequence

length, which enables its use for gene finding, because the sequence length k

is huge in real data. For example, human genomes have approximately 3.109

bases.

1.3 Gene finding with external information

Algorithms using signals, DNA sequence structure, and frequency tables are

looking for probable genes. This search is called ab initio search, the Latin

phrase ab initio means means from the beginning, at first. This search is

without further knowledge – external information. However, such external

information is often accessible and it can help to improve the accuracy of

gene prediction.

1.3.1 External information and its sources

Many kinds of biological data can be used as external information. For

example, we can search for homologs – similar genes, which appear in many

different species, because they have arisen from common ancestor. Besides,

11

we can experimentally detect gene expression using biotechnology and thus

acquire probable annotation of gene parts.

In this section we describe overall most commonly used sources of external

information for gene finding, which served as motivation for this work devoted

to generalization of frameworks for external information usage.

ESTs - ”expressed sequence tags”

ESTs are short DNA sequences (usually 200 – 500 bases long), which are ac-

quired by sequencing cDNA (complementary DNA to mRNA) [NCBI, 2011b].

In the process of gene expression, gene is first transcribed to RNA, introns

are cut out, and the resulting mRNA is then translated to protein. The

mRNA molecules contain only exons, since the introns have been cut out.

It is possible to extract mRNA molecules from cells and sequence parts of

them, obtaining EST sequences. Such sequences are then aligned to the

input DNA sequence and perfect or at least the best alignment (because se-

quencing errors can occur in both sequencing events) denotes exon positions

in the unknown sequence. EST database called dbEST is freely accessible

and contains over 69 millions of EST, among them over 8 millions for human

[NCBI, 2011a] [entry from April, 2011].

Proteins

Coding parts of genes are translated into proteins, which have specific func-

tions in a cell. These proteins can be sequenced or a database of known

proteins from closely related species can be used. A protein sequence can be

aligned to a DNA sequence (Figure 1.2), because we know all codon to amino-

acid transformations. Similarly to ESTs, this best alignment yields parts of

annotation. Many protein databases exists: PDB contains only proteins

with known 3D structure and has over 72 thousand proteins [NCBI, 2011c]

[entry from April, 2011]. UniProt is a database of all proteins split into

two separate databases (the more accurate sub-database Swiss-Prot contains

over half million proteins [SIB, 2011]) [entry from April, 2011].

12

A T

protein

 A C T C A G T C A G A C A G T A A C A T C A G T A

part 1 part 2 part 3

Figure 1.2: The protein alignment to target sequence – blue parts are exons,

green parts are introns, and black are intergenic regions

Exon conservation

Exon conservation method is based on comparing DNA sequences from differ-

ent, but relatively close, species – highly similar parts from this comparison

are likely to be coding, because coding parts are evolutionary more conserved

against mutations. Mutations in a coding part may turn the encoded protein

dysfunctional, potentially leading to death of the organism.

External information can improve the accuracy of gene finding. However,

external information has to be used with caution, because it is sometimes

inaccurate due to errors in experimental methods used to gather the data.

EST, protein or DNA sequences need to be first aligned to the input

sequence. Many programs exists for this purpose and gene finder developers

have only to use the outputs of these programs as an input to theirs. I

will mention at least some of these programs: BLASTZ and BLAT (ESTs,

protein and other alignments), ExoniPhy and PhastCons (conservation

of exons with use of phylogenetic trees), TransMap (mapping known genes

between species), and others.

13

1.4 Combination of external information with

HMMs

External information can be used in many ways in the gene finding program.

Here we will briefly mention some of the past approaches. Many of them

convert external information to hints in the form of intervals covered by

same label or even more extremely to a label indicated at each single position

independently of others. Therefore, they introduce information loss, because

external information is natively in a more complex form. For example, a hint

from an EST alignment may start at position X and have representation:

exon(20 bases)-intron(20 bases)-exon(10 bases). Such a hint is in a

preprocessing stage cut to 3 hints of interval type: exon(20 bases) starts

at X, intron(20 bases) starts at X + 20, and exon(10 bases) starts at

X + 40. State paths through the HMM that obey one of these intervals

then receive a bonus (their probability is increased compared to other state

paths). In our example, the state path that has exon states between X and

X + 50 gets two bonuses for the first and third hint. Yet such a state path

perhaps should not get any bonus, since it does not obey external information

in its whole extent. The goal of this thesis is to overcome this shortcoming

of existing methods. We will introduce our new algorithm in Chapter 2,

which is able to handle the external information in a form of the sequence of

intervals.

1.4.1 Pointwise hints

The easiest way to divide the external information is to cut it to single

position hints. This approach was used in program ExonHunter

[Brejová et al., 2005], where all external information is combined into one

”superadvisor” object. This object defines the probability P (A | ev), whereA

is annotation and ev is external information available for superadvisor. HMM

model defines probability P (A | S), where S is DNA sequence. The goal is

to get P (A | S, ev), which can computed by Bayes’ rule using assumption of

independence between external and internal information. The most probable

annotation in P (A | S, ev) is computed by adaptation of Viterbi algorithm,

14

where emission probabilities on position i, in state j are multiplied by fraction

x
(i)
label(j)/prior(l(j)), where label(j) is label of state j, x

(i)
j is superadvisor

prediction for ith character and label j, and prior(j) is prior probability of

label j.

The main advantages include:

• for each source of external information, ExonHunter allows to specify

the information about one position in the form of a partition of the set

Σout and probability distribution over all partition elements. There-

fore, this approach natively uses hints with multiple labels at the same

position.

• the ability to use every possible source of information – every type of

complex information can be cut to single position hints with multiple

labels.

• speed – this approach is only slightly more time consuming than ab

initio gene finding using Viterbi algorithm

• this approach keeps the probabilistic nature of the Viterbi algorithm

The biggest limitation of this approach is surely the loss of information

in the process of cutting the external information.

Pointwise hints were also used in other gene finders, such as GenomeS-

can [Yeh et al., 2001] and Conrad [DeCaprio et al., 2007].

1.4.2 Interval hints

External information can be cut to intervals, where each interval has one

label associated with it. This is big generalization of the single position ap-

proach, but it gives rise to many disadvantages as well. Such an approach has

been used in AUGUSTUS+ [Stanke et al., 2008], which is improvement of

the ab initio program AUGUSTUS [Stanke et al., 2006]. This gene finder

uses a generalized Hidden Markov models – GHMM. AUGUSTUS+ has

augmented emission alphabet with hints by means of Cartesian product and

these hints are generated by the GHMM similarly to DNA sequence. The

most probable path through the GHMM is computed by adaptation of the

15

Viterbi algorithm; this adaptation allows to use only one hint at each posi-

tion.

Advantages:

• usage of more general class of external information in the form of in-

terval

• probabilistic nature

Limitations:

• problem of assigning the emission probability to hints

• dependence – absence of external information about some label in a

part of the sequence decreases the probability of this label in this part

• speed – the running time is increased by an additive term proportional

to the total length of hints

1.4.3 Other approaches

Some approaches do not use the HMM directly, but use the results of existing

gene finders as evidence. One example is EVidenceModeler

[Haas et al., 2008]. This program uses evidence in the form of intervals with

state restriction and it finds consensus of the evidence. The advantage of this

approach is improved gene prediction compared to the gene finders, whose

annotation is the input of EVM. The major limitation is in speed – firstly

all evidence have to be gathered from many different programs and only

afterwards consensus can be computed.

16

Chapter 2

Algorithm for using complex

hints

In this chapter we propose a new algorithm for using external information

in gene finding. This algorithm handles a more general class of external

information in polynomial running time. The algorithm is fully described in

following sections. At the end of the chapter, we analyze the time complexity

of the algorithm, which is comparable to those used in existing gene finders.

2.1 Finding maximum consistent hint subset

We will first concentrate on a simpler version of the problem in which we

ignore the HMM and consider only information obtained from the hints. We

will now define several terms, which will be used in this chapter.

2.1.1 Definitions

A complex hint is a continuous sequence of intervals, each interval imposing

a label restriction to states, formally:

Definition 2.1.1 (Complex hint) A complex hint is a sequence of inter-

vals Hi =
(
h

(i)
1 , h

(i)
2 , . . . , h

(i)
mi

)
, where each interval h

(i)
j is defined as a triple

17

h
(i)
j =

(
b

(i)
j , e

(i)
j , l

(i)
j

)
. Values b

(i)
j ∈ N, e

(i)
j ∈ N, and l

(i)
j ∈ Σout are the

position of the beginning of an interval, position of the end of the interval,

and a state restriction label, respectively
(
b

(i)
j ≤ e

(i)
j

)
. Furthermore, intervals

in a complex hint must cover a continuous region without overlaps, that is

e
(i)
j + 1 = b

(i)
j+1 must hold for j = 1, 2, . . . ,mi−1. Position b(i) = b

(i)
1 is called

the beginning of hint i and position e(i) = e
(i)
mi is called the end of hint i.

For every hint Hi, we introduce function `i : N → Σout which returns

label restriction of the i-th hint at a particular position in the sequence. If

hint Hi does not cover this position, the function is not defined. Formally:

`i(x) =

{
l
(i)
j if ∃j : b

(i)
j ≤ x ≤ e

(i)
j

⊥ otherwise
(2.1)

A complex hint set is a set of all available complex hints and their bonuses:

Definition 2.1.2 (Complex hint set) A complex hint set H is a pair H =(
B, Ĥ

)
, where B : Ĥ → R+ is a bonus function and Ĥ = (H1, H2, . . . , Hc) is

a sequence of available complex hints. Hints are ordered so that b(i) ≤ b(i+1)

and if b(i) = b(i+ 1) furthermore e(i) ≤ e(i+ 1)∀i = 1, 2, . . . , c− 1.

For now on, we will use term ”hint” for a complex hint and (simple)

interval hint for hint with mi = 1. We say that a state path respects a hint

if it does not violate the hint label restrictions; formally:

Definition 2.1.3 (Respected hint) A complex hint

Hi =
(
h

(i)
1 , h

(i)
2 , . . . , h

(i)
mi

)
is respected by a state path F = (f1, f2, . . . , fk) if

for every position j ∈ {b(i), . . . , e(i)} we have label(fj) = l
(i)
i , where label(fj)

is the label of state fj.

Two hints Hi and Hj (i < j) are intersecting if b(j) ≤ e(i).

Two hints are compatible if and only if they can be used in the same state

path. This means that these two hints have the same label restrictions at

every position in their intersection.

18

Definition 2.1.4 (Compatible hints) Hints Hj and Hi are compatible if

for every p = b(i), . . . , e(i) : `i(p) = `j(p) ∨ `j(p) = ⊥.

Definition 2.1.5 (Subset hint) Hint Hj is subset of hint Hi if these two

hints are compatible, b(j) ≥ b(i), and e(j) ≤ e(i).

Two hints are equal if and only if they are subsets of each other. From

now on we will assume that no two hints Hi and Hj (i 6= j) are equal,

otherwise we can create a smaller hint set:

Hnew = (Bnew, Ĥ −Hj) (2.2)

Bnew(Hi) = B(Hi) +B(Hj) (2.3)

Bnew(Hx) = B(Hx) x 6= i (2.4)

Definition 2.1.6 (Hint extension) Hint Hj is an extension of hint Hi if

these two hints are compatible, b(i) ≤ b(j) ≤ e(i) + 1, and e(j) > e(i).

Note that two compatible and intersecting hints are in either subset or

extension relation, but not in both. Additionally, hint Hj can be an extension

to hint Hi only if j > i, this condition does not apply to subset hints.

If we augment the extension relation with non-intersecting hints, we get a

transitive relation ”weak extension”. This transitivity is very important for

polynomial-time running time of our algorithm.

Definition 2.1.7 (Weak hint extension) Hint Hj is a weak extension of

hint Hi if Hj is an extension of hint Hi or i < j and hints Hj and Hi do not

intersect.

Lemma 2.1.1 (Transitivity of weak extension relation) Consider three

hints Hi, Hj, Hk, i < j < k. If hint Hj is weak extension of Hi, and hint

Hk is weak extension of Hj then Hk is weak extension of Hk.

Proof: Case analysis (two possibilities):

• e(i) < b(k): then Hi and Hk do not intersect, and therefore Hk is

clearly a weak intersection of Hi

19

• e(i) ≥ b(k): since i < j < k, we have b(i) ≤ b(j) ≤ b(k). At the same

time Hj is not a subset of Hi and therefore e(j) ≥ e(i). This implies

that interval 〈b(k), e(i)〉, which is the intersection of hints Hi and Hk,

is contained in Hj. Therefore this interval is in intersection of Hi and

Hj and also in intersection of Hj and Hk. Thus hints Hi and Hk are

compatible. Since b(i) ≤ b(k) ≤ e(i) + 1, e(k) > e(j) > e(i) holds, hint

Hk is an extension of Hi and therefore it is also its weak extension. �

2.1.2 Hint path problem

These definitions give rise to the following natural question:

Problem 2.1.1 (Maximal bonus problem) Given a complex hint set H

find a set of hints that can be respected by the same path and that has maximal

total bonus value.

Problem 2.1.1 can be solved by an algorithm, which constructs a graph

G called a hint graph (Figure 2.1). Every single position within each hint

corresponds to one node in the hint graph. Thus, each node has assigned

its sequence position and state restriction label. Edges can be divided into

two groups: edges between hint positions inside a hint (hint edges) and edges

between hints (compatibility edges). A hint edge goes from a position j inside

hint Hi to the next position j + 1. Weight of the hint edge equals to added

bonuses of all subset hints of hint Hi ending at position j. If no such subset

hints exist, the weight is zero.

A compatibility edge goes from hint Hi to hint Hj that is its weak exten-

sion. Furthermore, if hints Hi and Hj intersect, then the edge is leading to

the node at position e(i) + 1, otherwise leads to beginning of hint Hj. This

compatibility edge has the weight equal to the bonus of the hint Hj plus sum

of bonuses of all subset hints of hint Hi, ending at position e(i).

Artificial sentinel hints H0 and Hc+1 are added to the hint set with zero

bonus. These hints represent the beginning and the end of the graph respec-

tively, so H0 = ((0, 0, ∅)), Hc+1 = ((k + 1, k + 1, ∅)). This allows us to count

the bonus of the first respected hint and the bonus of subset hints, that end

at position k.

20

hint no. 1

hint no. 0

hint no. 2

hint no. 3

hint no. 4

B(1)

B(2)

B(3)

B(4)

B(4)

B(4)

B(4)

B(2)

B(3)
hint no. 5

Figure 2.1: Hint graph – hint edges are dashed, compatibility edges are

solid, edges have their weights on them, nodes are colored according to label

restrictions. No edge leads from hint 1 to hint 3, because these hints are not

compatible

It is easy to see that this graph is acyclic. Each possible path in this graph

corresponds to a set of compatible hints (because of the forward transitive

property of weak extension) and the weight of this path is equal to the total

bonus of all these compatible hints. Therefore, the algorithm needs to find

the longest possible path in this graph. Nodes on this path give the resulting

respected hints, plus we must add every subset hint of these hints. Note that

the longest path always starts in the start node, since bonuses are positive.

Finding the longest path in a weighted directed acyclic graph can be done in

time linear in the number of edges [Cormen et al., 1989]. Formally, we can

describe this graph and algorithm as follows:

Hint graph description

Definition 2.1.8 (Hint graph) A hint graph for hint set H is graph G =

(V + v(0), A), where:

• V =
{
v

(i)
j | ∀i : Hi ∈ H̄, ∀j : b(i) ≤ j ≤ e(i)

}
, where:

◦ H̄ =
(
B̄, Ĥ

⋃
{H0 = ((0, 0, ∅)), Hc+1 = ((k + 1, k + 1, ∅))}

)

21

◦ B̄(Hi) =

{
B(i) if i = 1, 2, . . . , k

0 otherwise

• A = Ah ⊕ Ac (hint edges and compatibility edges)

Ah =
{
a

(i)
j =

(
v

(i)
j , v

(i)
j+1

)
| ∀i, j : v

(i)
j , v

(i)
j+1 ∈ V

}
(2.5)

Ac =
{
a

(i,j)
e(i) =

(
v

(i)
e(i),max(b(j), e(i) + 1)

)
| ∀i, j : weak(i, j)

}
(2.6)

where weak(i, j) is predicate, which is true if and only if hint Hi is

weak extension of Hj.

• all weights reside on edges:

|a(i,j)
e(i) | = B(j) +

∑
Hx is subset of Hi, e(x)=e(i)

B(x) (2.7)

|a(i)
j | =

∑
Hx is subset of Hi, e(x)=j

B(x) (2.8)

We intentionally put the bonuses on edge weights (and not on nodes,

which is more intuitive). We did not design it this way, because the hint

graph and Algorithm 1 will be used with modifications in the final algo-

rithm. Subscripts on the nodes and edges are their positions in the sequence,

superscripts corresponds to the hint number of hint or hints that give rise to

this node or edge.

Algorithm and proof

Algorithm 1 Find respected hints with maximal bonus value together in

complex hint set H

1. Let G = (V,A) be hint graph as defined in Definition 2.1.8.

2. Let P = (v
(0)
0 , v

(p1)
r1 , . . . , v

(pq)
rq , v

(c+1)
k+1) be nodes of the longest path in graph

G and B its length.

3. For every node v
(pi)
ri ∈ P −v

(0)
0 −v

(c+1)
k+1 , include hint Hpi and all its subsets

to the set of respected hints R.

4. Return R as the set of respected hints and B as their bonus value.

22

Proof: Firstly, we introduce few terms:

Compatible hint set : hint set H = (B, Ĥ) is compatible if every two hints

Hi, Hj ∈ Ĥ are compatible.

Hint respected by a path: hint Hi is respected by path P in G if every node

v
(h)
j (b(i) ≤ j ≤ e(i), 1 ≤ h ≤ c) on path P agrees with the state restriction

label of the hint, so `i(j) = label
(
v

(h)
j

)
must hold, where label(x) is the state

restriction label of node x.

Path describing a hint set : path P describes a hint set H if every hint Hi

from the hint set is respected by the path. Note that one path path can

describe in general multiple hint sets and one hint set can be described by

several paths.

Lemma 2.1.2 For every compatible hint set H = (B, Ĥ) (subset of the hint

set that creates the graph) exists a path P in the hint graph that describes

it such that length(P) ≥
∑
Hi∈Ĥ

B(Hi). Conversely, for every path P exists a

compatible hint set H that is described by the path P such that length(P) =∑
Hi∈Ĥ

B(Hi).

Proof(Lemma 2.1.2): We split the Ĥ to two hint sets Ĥ = R ⊕ S, where S

is set of subset hints and R set of ”path” hints:

S = {Hi | ∃Hj ∈ Ĥ : Hi is subset of Hj}

R = Ĥ − S

We will prove that there exists a path P going through the nodes correspond-

ing to hints from R, this path respects hints from Ĥ, and length(P) is at least

the sum of hint bonuses Hi ∈ Ĥ. We order the hints in R = (Hp1 , . . . , Hpr)

as in a hint set (b(i) ≤ b(i + 1) and if b(i) = b(i + 1) furthermore e(i) ≤
e(i+ 1)∀i = 1, 2, . . . , r − 1). We construct a path P going through nodes in

the hint graph in R as follows. The path starts in the first node, continues

through compatibility edge to node v
(p1)
b(p1), then continues through hint edges

through nodes v
(p1)
b(p1)+1, . . . , v

(p1)
e(p1), and then through a compatibility edge to

the next hint node v
(p2)
max(b(p2),e(p1)+1). In the same way the path continues

23

through all hints to the node v
(pr)
e(pr), then through compatibility edge to node

v
(c+1)
k+1 . This path clearly exists, since all described nodes and edges exist in

the definition of the hint graph. This path respects hints from R inductively:

• The first hint is respected by the path, because the path goes through

all hint nodes.

• If a compatibility edge enters a hint Hj at position b(j), the path goes

through the whole hint and therefore it respects the hint Hj.

• If a compatibility edge enters a hint Hj at position e(i) + 1, Hi is the

hint, where the edge starts, Hj is respected by the path P if Hi is

respected by this path, because b(i) ≤ b(j) and these hints are compat-

ible, thus they have the same state restrictions in their intersection.

Each hint Hs from set S is also respected, because it is a subset of some hint

Hi ∈ R and hint Hi is respected by the path therefore subset hint Hs is also

respected by path P . Now we prove that every hint Hi ∈ H contributes at

least B(Hi) to length(P):

• B(Hpi) is included in the weight of compatibility edge forHpi ∈ R, i ≥ 1

•
∑
Hi∈S

B(Hi) are included in hint and compatibility edges. Every hint

Hi ∈ S is a subset of at least one hint in R, let Hj be the superset

of Hi with smallest number. Bonus of hint Hi is then included in the

weight of the hint edge within the hint Hj or in the compatibility edge

that starts in hint Hj (if e(i) = e(j)).

The length of the path is then length(P) ≥
∑

Hi∈S⊕R

B(Hi), which concludes

the first half of the proof.

The second half is to prove that for every path P in graph G exists com-

patible hint set H, described by the path. We can proceed reversely: every

path describes some sets R and S, where R is a set of hints corresponding to

nodes on the path and S is a set of all hint subsets of R. Labels on path P

are compatible with the first hint H1 ∈ R, because this path comes through

all hint nodes. Other hints from R are compatible with the labels on the

24

path because every hint Hpi+1
∈ R is a weak extension of hint Hpi ∈ R,

due to compatibility edges. Therefore, using the transitive property of weak

extension, hint Hpi is compatible with every hint Hpi+j
, where j ≥ 1. There-

fore R is a set of compatible hints respected by path P . Hint Hs ∈ S has

superset hint Hi ∈ R (due to graph construction) and subset hint is always

compatible with its superset hint. Additionally, each hint compatible with

superset hint is compatible with its subset hint (we lessen the requirements

for compatibility). Therefore, hints Hi ∈ R and Hj ∈ S are compatible. The

last thing is to prove that hints Hi, Hj ∈ S are compatible:

• hints Hi, Hj do not intersect ⇒ compatibility

• hints Hi, Hj intersect⇒ clearly exist hints H̄i, H̄j ∈ R, H̄i is superset of

Hi, H̄j is superset of Hj, H̄i intersects with H̄j, and they are compatible

and there is a path going through both hints, so the path is going

through subsets and thus they are compatible.

Additionally, all bonuses from hint sets R and S are included in the path

exactly once. Bonuses from R are on compatibility edges and the number of

compatibility edges is equal to the size of the set R, because each hint Hi ∈ R
is represented by one compatibility edge, which starts it. This compatibility

edge has weight corresponding to the bonus of hint Hi. Subset hint bonuses

are on the edge weights in the path due to graph construction. No other

subset hint bonus exists on the path P , because otherwise it must be subset

of some hint from R. Therefore, length(P) =
∑
Hi∈S

B(Hi).

This concludes proof of the Lemma 2.1.2. �

We can now use the Lemma 2.1.2 to prove correctness of Algorithm 1. Let

B̂ be the bonus of the optimal solution and P path found by the algorithm.

We will prove that possibilities B(P) > B̂ and B(P) < B̂ cannot happen.

• B(P) > B̂ – from Lemma 2.1.2 for every path P exists a compatible

hint set respected by the path, but this cannot happen, because it will

be solution better than optimal

• B(P) < B̂ – let H be the optimal compatible hint set, again from

Lemma 2.1.2 exists a path P̂ in the hint graph that describes this hint

25

set, clearly this path has length of length(P̂) ≥ B̂ > B(P), so the path

P is not the longest path in the hint graph.

�

2.1.3 Generalized label restrictions in hints

In the complex hint definition, we allow only one state restriction label for

each interval. Hints of this form cannot be used to express some sources of

evidence. For example, some experimental methods allow us to determine

the whole extent of a gene, but not its splicing to exons [Ng et al., 2005]. To

represent such information we may want to specify an interval and a set of

allowed labels (in this case {E, I}).
Algorithm 1 will not work in this case, because multiple labels at one

position makes compatibility relation non-transitive. Consider, for example,

three hints (Figure 2.2): H1 = ((1, 4, {E})), H2 = ((2, 5, {E, I})), H3 =

((3, 6, {I})). Hint 1 is compatible with hint 2 (because a state path respecting

both bonuses exists – the path through states labeled E), hint 2 is compatible

with hint 3 (path through states labeled I), but hint 1 is not compatible with

3 – at positions 3 and 4 we have two incompatible state restrictions – I and

E.

hint no. 1

hint no. 0

hint no. 2

hint no. 3

B(1)

B(2)

B(3)

B(2)

B(3)

hint no. 4

Figure 2.2: Loss of transitiveness of weak extension relation – hints 1 and 3

are not compatible on area with red border, but the algorithm will find path

through all hints (marked red)

Since this problem is a simplified version of the problem of implementing

26

complex hints into the Viterbi algorithm, we will consider only single state

restriction label per interval in the main algorithm. However the complexity

of the problem with label sets remains open.

2.2 Algorithm for combining complex hints

with an HMM

After solving problem stated as Problem 2.1.1, we are ready to extend the

Viterbi algorithm with complex hints. Formally, the goal of our algorithm is

to find the most probable state path F that generated a given input sequence

S, while it takes into account the bonuses of hints from a complex hint set

H respected by the state path F :

Problem 2.2.1 (Sequence annotation problem) Given an input sequence

S, a complex hint set H, and an HMM model, find the state path F such as:

F = arg max
F

(
log(P (F | S)) +

∑
Hi∈H is respected by F

B(Hi)

)

= arg max
F

(
log(P (F, S)) +

∑
Hi∈H is respected by F

B(Hi)

)
(2.9)

Our solution is based on creating a special graph called a joint graph.

The first part of the joint graph represents the Viterbi algorithm, while the

second is derived from the hint graph. Hints are implemented as alternative

paths to the first graph part. These alternative paths carry a bonus, but

need to obey state restrictions. Similarly to Algorithm 1, we are trying to

find the longest path in this graph; this path gives the resulting annotation.

2.2.1 Joint graph description

If we view the Viterbi algorithm as filling the dynamic programming table,

then each cell in this table can represent one node in a graph and directed

edges represent possible ways of reaching a certain cell. Edge weights now

consist of emission and transition probabilities in log space and finding the

27

longest path from an artificial start node to an artificial end node yields the

same result as the Viterbi algorithm with backward pass. This algorithm has

the same time complexity as the Viterbi algorithm (O(kn2)), because we are

searching for the longest path, what is solvable in time linear in the number

of edges. Edges are between each two table columns – O(n2) edges per one

column, k columns, thus O(kn2) is the total time complexity. These nodes

and edges will be called base nodes and edges.

Nodes have their sequence position and label from the HMM. Edges are

always going from a node at position i to a node at position i+ 1. This edge

property is preserved in whole graph, ensuring consistency in computing

HMM probabilities, but it brought a need to modify the hint graph.

The second part of the joint graph consists of a modified hint graph,

nodes of this part are called hint nodes. For each position within each hint

we may have several nodes corresponding to HMM states consistent with the

hint label at that position. Weights of all edges within the graph will also

include transition and emission probabilities of the HMM. Edges starting the

hint (starting edges) will go now only from base nodes and edges leaving the

hint are divided into two parts: edges returning to base nodes (ending edges)

and edges between hints (compatibility edges). Compatibility edge from hint

Hi to hint Hj will go only if the hint Hj is an extension of the hint Hi.

Thus a compatibility edge will always go to position e(i) + 1 in the hint Hj.

Requirement of extension rather than weak extension is needed, because we

cannot skip a sequence of HMM probability edges.

Finally, artificial start node and final node, edges from the start node

to nodes at the position 1 (beginning edges), and edges from nodes at the

position k to the final node (final edges) have been added to the joint graph.

Formally we can describe the joint graph as follows:

Definition 2.2.1 (Joint graph) A joint graph for hint set H and sequence

S is graph G = (V,A), where:

• V = Vb ⊕ Vh ⊕ vs ⊕ vf

◦ Vb – base nodes

◦ Vh – hint nodes

28

exon intron

intron

intron

hint no.1

hint no.2

hint no.3

A A A A AT C CG

B(1) B(2)

B(3)

B(2)

B(3)

B(3)

Figure 2.3: Joint graph – all edges contain transition and emission probabil-

ities of underlying HMM. Nodes are colored according to their labels (start

and final nodes are white). Starting edges and few hint edges contain hint

bonuses (labeled with B(1), B(2), and B(3)). Dashed line divides the base

part and the hint part of the joint graph

29

◦ vs – start node

◦ vf – final node

• A = Ab ⊕ Ah ⊕ Ac ⊕ As ⊕ Ae ⊕ Abs ⊕ Ahs ⊕ Abf ⊕ Ahf

◦ Ab – base edges

◦ Ah – hint edges

◦ Ac – compatibility edges

◦ As – starting edges

◦ Ae – ending edges

◦ Abs – edges from start node to base nodes at the first position

(beginning base edges)

◦ Ahs – edges from start node to hint nodes (only to hints starting

at position 1) (beginning hint edges)

◦ Abf – edges from base nodes at position k to the final node (final

base edges)

◦ Ahf – edges from hint nodes at position k to the final node (final

hint edges)

Nodes:

Vb =
{
v

(0)
s,i | ∀s, i : 1 ≤ s ≤ k, 1 ≤ i ≤ n

}
(2.10)

Vh =
{
v

(h)
s,i | ∀s, i, h : 1 ≤ h ≤ c, b(h) ≤ s ≤ e(h), i ∈ Q`h(s)

}
(2.11)

Edges and their weights (we use alternative notation for base nodes:

30

v
(0)
s,i = vs,i), |a| is weight of hint a:

Ab = {as,i,j = (vs,i, vs+1,j) | ti,j > 0, vs,i, vs+1,j ∈ Vb} (2.12)

|as,i,j| = log(ti,jej,ss+1) (2.13)

Ah =
{
a

(h)
s,i,j =

(
v

(h)
s,i , v

(h)
s+1,j

)
| ti,j > 0, v

(h)
s,i , v

(h)
s+1,j ∈ Vh

}
(2.14)

|a(h)
s,i,j| = log(ti,jej,ss+1) + subsets(h, s) (2.15)

subsets(h, s) =
∑

hint Hu is subset of hint Hh

[e(u) = s]B(u)

Ac =
{
a

(h1,h2)
i,j =

(
v

(h1)
e(h1),i, v

(h2)
e(h1)+1,j

)
|

h2 is extension of h1, ti,j > 0, v
(h1)
e(h1),i, v

(h2)
e(h1)+1,j ∈ Vh

}
(2.16)

|a(h1,h2)
i,j | = log(ti,jej,ss+1) +B(h2) + subsets(h1, e(h1)) (2.17)

As =
{
a

(h)
i,j =

(
vb(h)−1,i, v

(h)
b(h),j

)
|

ti,j > 0, vb(h)−1,i ∈ Vb, v(h)
b(h),j ∈ Vh

}
(2.18)

|a(h)
i,j | = log(ti,jej,ss+1) +B(h) (2.19)

Ae =
{
ā

(h)
i,j =

(
v

(h)
e(h),i, ve(h)+1,j

)
|

ti,j > 0, v
(h)
e(h),i ∈ Vh, ve(h)+1,j ∈ Vb

}
(2.20)

|ā(h)
i,j | = log(ti,jej,ss+1) (2.21)

Abs = {aj = (vs, v1,j) | pi > 0, v1,j ∈ Vb} (2.22)

|aj| = log(pjej,s1) (2.23)

Ahs =
{
a

(h)
j =

(
vs, v

(h)
1,j

)
| pi > 0, v

(h)
1,j ∈ Vh

}
(2.24)

|a(h)
j | = log(pjej,s1) +B(h) (2.25)

Abf = {āi = (vk,i, vf) | vk,i ∈ Vb} (2.26)

|āi| = 0 (2.27)

Ahf =
{
ā

(h)
i =

(
v

(h)
k,i , vf

)
| v(h)

k,i ∈ Vh
}

(2.28)

|ā(h)
i | = subsets(h, k) (2.29)

Used indexing:

31

• s – position in the input sequence S = (s1, s2, . . . , sk)

• i – HMM state of the node, edge starts here

• j – HMM state of the node, edge ends here

• h, h1, h2 – hint numbers

• pi, ti,j, ej,sx – start, transition, and emission probabilities (defined in

1.2.2)

• Ql – set of all HMM states with label l

• `h(s) – label restriction of hint h at position s (defined in 2.1.1)

2.2.2 Best score path

Similarly to the hint path problem in 2.1.2, we are searching for a path with

the highest score from the start node to the final node. Note that unlike

the graph in the Section 2.1.2 here we can have negative edge weights (the

logarithm of probability). Nonetheless, the algorithm for directed acyclic

graphs works for negative edge weights as well. This path gives the state

path, because all nodes go precisely one position in the sequence forward and

thus labels belonging to nodes on the path with the highest score (except for

the start and final node) create the resulting annotation.

Formally: Let P =
(
vs, v

(h1)
1,r1

, v
(h2)
2,r2

, . . . , v
(hk)
k,rk

, vf

)
be nodes on the longest

path from vs to vf . Number of nodes in P is k+1, because all edges are going

one position forward. States F = (r1, r2, . . . , rk) form the resulting state path

and Fl = (label(r1), label(r2), . . . , label(rk)) is the sequence annotation. We

say that path P describes the annotation Fl and the state path F . A set

of primarily respected hints is defined as Rh =
{
Hhi
| ∃j : v

(hi)
j,rj
∈ P, hi 6= 0

}
.

Let Rs be set of all subsets of hints in Fh. The goal of the algorithm is to

find the annotation Fl and respected hints Fh

⋃
Fs. We can summarize this

as Algorithm 2.

32

Algorithm 2 Given sequence S and hint set H, find a sequence annotation

with the best score
1. Let G = (V,A) be joint graph as defined in Definition 2.2.1.

2. Let P =
(
vs, v

(h1)
1,r1

, v
(h2)
2,r2

, . . . , v
(hk)
k,rk

, vf

)
be nodes of the longest path from

vS to vt in graph G

3. For every node v
(hi)
i,ri
∈ P , include hint Hhi

and all its subsets to the set

of respected hints R.

4. Return R as the set of respected hints and Fl =

(label(r1), label(r2), . . . , label(rk)) as the sequence annotation.

Proof: We will use the following Lemma to prove the correctness of our

algorithm:

Lemma 2.2.1 (Existence of a path in the joint graph) For every state

path F = (r1, r2, . . . , rk) of length k that has non-zero probability to generate

sequence S there exist path P from vS to vt in the joint graph such that P de-

scribes the state path and length(P) = log(P (F, S))+
∑

Hi∈H is respected by F

B(Hi).

Proof: We will construct path P =
(
vs, v

(h1)
1,r1

, v
(h2)
2,r2

, . . . , v
(hk)
k,rk

, vf

)
as follows:

the path will go through nodes corresponding to hints respected by the state

path F and through states from F . This path is unambiguous due to the

joint graph construction. All bonuses of hints respected by state path F

are in weights of the path, here we can use the same arguments as in the

simplified version of this problem in Section 2.1.2. HMM probabilities in

log space are on every edge weight along the path. Every edge a that is

not beginning nor final edge (a ∈ A − Abs − Ahs − Abs − Ahs) contains

log(ti,jej,ss+1), where i, j ∈ Q are HMM states of the node where edge starts

and ends, respectively. Beginning edge a (a ∈ Abs⊕Ahs) contains log(pjej,s1).

The sum of these partial edge weights is log(pr1er1,s1)
∑k

i=2 log(tri−1,rieri,si) =

log
(
pr1er1,s1

∏k
i=2 tri−1,rieri,si

)
= log(P (F | S)). Adding up hint bonuses and

the sum of partial edge weights gives the searched length. �

33

Lemma 2.2.2 (Length of vs-vf path) Let P =
(
vs, v

(h1)
1,r1

, v
(h2)
2,r2

, . . . , v
(hk)
k,rk

, vf

)
be a path in the joint graph. Let F is a state path described by the path P .

Then length(P) ≤ log(P (F | S)) +
∑

Hi∈H is respected by F

B(Hi).

Proof: As in Lemma 2.2.1 we can easily prove that length(P) contains all

HMM probabilities (log(P (F, S))), we also need to prove that it does not

contain bonus of any hint that is not respected by the state path F . Bonus

of a hint Hj is either on a edge leading to hint Hj or this hint is a subset

of hint Hi. Thus the path goes through hint Hj or through its superset

Hi. In both cases, this path describes state path F that respects hint Hj.

Also it is easy to see that bonus of no hint is counted twice in the length

of P . Since bonuses are positive, these two claims lead to desired inequality

length(P) ≤ log(P (F | S)) +
∑

Hi∈H is respected by F

B(Hi). �

Now we can use the Lemma 2.2.1 and 2.2.2 to prove the correctness of

our algorithm. For the optimal state path F̂ exists path P̂ through the

joint graph that describe it since the optimal state path does not have

zero probability of generating S (Lemma 2.2.1). Let this path be P̂ =(
vs, v

(h1)
1,r1

, v
(h2)
2,r2

, . . . , v
(hk)
k,rk

, vf

)
. We have length(P̂) = log(P (F̂ , S))+

∑
Hi∈H is respected by F̂

B(Hi).

Thus the optimal state path is among paths considered by the algorithm.

Now we have to prove only that no vs-vf path P such as length(P) >

length(P̂) exists in the joint graph. If such a path would exists, from Lemma

2.2.2, it describes some state path F and log(P (F, S))+
∑

Hi∈H is respected by F

B(Hi) ≥

length(P) > length(P̂), which violates the optimality of F̂ . �

2.3 Time complexity

We will discuss the time complexity of whole algorithm in this section, which

can be divided into two main parts: constructing the joint graph and com-

puting the longest path in the graph. The construction of the graph is

straight-forward with two exceptions: finding all extensions to the hint and

counting subset bonuses. Computing the longest path is well known problem

34

and its best solution in directed acyclic graphs is in time linear in the number

of edges. Therefore, this problem collapses into edge counting.

2.3.1 Computing the extension relation

Problem can be formulated as:

Problem 2.3.1 Given hint Hi, find all hints that are its extensions.

Testing if hint Hj is an extension of hint Hi can be done by the algorithm

3. Time complexity of this algorithm is O(u), where u is the maximum

number of intervals in a hint. We have to find all extensions for all hints

therefore total time complexity is raised to O(uc2).

2.3.2 Subset bonuses

Finding subsets to a hint is very similar to finding hint’s extensions. The

only difference is that the extension is (by definition) not a subset and subsets

have to intersect. Thus, intersecting and compatible hint Hj with the higher

number than hint Hi is either an extension or a subset of the hint Hi. In fact,

Algorithm 3 becomes the subset checking algorithm only by the change of

the comparison mark at line 6 to ”>” (line 3 is then unnecessary). However,

after computing subsets to hints, bonuses of these hints have to be added

to the right edge weights in the graph. This can be easily done by iterating

through the subset hints Uh of a hint Hh and adding their bonus to edges: for

every i, j add
∑
u∈Uh

B(u) to weight of edge a
(h)
e(u),i,j. Time complexity: finding

subsets – O(ic2), assign bonuses to edges – O(c2n2). In fact we can assign

bonuses in time O(c2 + cn2 + h), because we first gather for every bonus

all its subset bonuses, sort them to bins according to their endpoint e(j)

and compute a sum of bonuses in each bin. Then the precomputed bonus is

simply added to each appropriate edge, which takes O(cn2) time overall.

35

Algorithm 3 Find if hint Hi is extension of hint Hj

Require: Hi, Hj are complex hints

1: if b(j) < b(i) then // wrong order of hints

2: return false

3: end if

4: if b(j) > e(i) + 1 then // not intersecting and b(j) 6= e(i) + 1

5: return false

6: end if

7: if e(j) ≤ e(i) then // Hj is subset of Hi

8: return false

9: end if

10: pi← 1, pj ← 1

11: while e
(i)
pi < b

(j)
pj do // find first label combination

12: pi← pi+ 1

13: end while

14: while pi < mi ∧ pj < mj do

15: if l
(i)
pi 6= l

(j)
pj then // labels are not compatible

16: return false

17: end if

18: if e
(i)
pi = e

(j)
pj then // move to the next label combination

19: pi← pi+ 1, pj ← pj + 1

20: else if e
(i)
pi > e

(j)
pj then

21: pj ← pj + 1

22: else

23: pi← pi+ 1

24: end if

25: end while

26: return true

36

2.3.3 Edge counting

The most time consuming part of the algorithm is finding the longest path

and its time complexity is linear in the number of edges.

Edge type Number

Ab – base edges O(kn2)

Ah – hint edges O(hn2)

Ac – compatibility edges O(c2n2)

As – start edges O(cn2)

Ae – end edges O(cn2)

Abs – from start node to bases O(n)

Ahs – from start node to hints O(cn)

Abf – from bases to final node O(n)

Ahf – from hints to final node O(cn)

Table 2.1: Edge types and their numbers (c – number of hints, h – total added

length of hints, n – number of HMM states, k – length of input sequence)

After summing up all the edges we get O((k+h+c2)n2), which is the time

complexity of finding the longest path as described above. Under assumption

i < n2 (in the real data we have i ≈ 10 and n ≈ 260) we can take this

complexity as the total complexity of the algorithm.

2.3.4 Improvement

Total complexity can be improved to O((k+h)n2 + c2n), which is only slight

improvement, because the main part of the complexity is the underlying

Viterbi algorithm (O(kn2) part) and alternative paths through hints (O(hn2)

part) and these cannot be easily reduced. Nevertheless, improvement is based

on reducing the Ac, As, and Ae sets to depend only linearly on the number of

HMM states. This can be achieved by changing the starting (or end) point

of these edges, so they will stay at the same sequence position. Their weight

consist now only from the hint bonus (in compatibility and start edges) or

it is zero (in end edges). This modification makes the joint graph cyclic in

the case of the hint with the length of 1. Problem can be easily fixed by

37

including bonuses of hints of length 1 directly to base or compatibility edges

intersecting them.

38

Chapter 3

Implementation and results

We have implemented the algorithm described in chapter 2 and tested it.

In this chapter we describe details of the implementation, data set prepara-

tion and experimental results. The goal was to compare the contribution of

different classes of the external information to accuracy of the gene finding.

3.1 Implementation

The algorithm was implemented in C++ as a standalone console application

called grapHMM. In order to process long DNA sequence in a reasonable time

and memory, we have used the improvement described in 2.3.4 as well as

other small adjustments. For example, the graph is generated ”on the run”

and unnecessary information is immediately deleted to clean up the memory.

The program has several inputs described below and one output – a sequence

of state labels. However, these state labels are not corresponding 1-to-1 to

searched annotation, because we used a more detailed labeling of the states

for compatibility with gene finder ExonHunter. In this chapter we will use

notation ”state label” for this labeling and ”hint label” for hint labels and

the annotation. In general, for every hint label we have several state labels.

39

3.1.1 Inputs and usage

The program is used classically by running grapHMM <arguments> in the

console. Possible arguments include:

• -i "filename" – input sequence in fasta format

• -m "filename" – HMM parameters in a text file format

• -o "filename" – the output file name (default: ”out graphmm.txt”)

• -h "filename" – hint set (described below)

• -l "filename" – file with state labels for hint label conversion

• -r "filename" – filename for listing the set of respected hints (default:

console)

• -b "filename" – bonuses of hints (if not found, bonuses have to be

supplied in the hint set file)

• -int – switch, which changes the bonus for each hint by multiplying it

by number of intervals in the hint

• -sqrt – switch; which multiplies the bonus for each hint by square root

of the number of its intervals

Program writes its status messages to the console window.

3.1.2 Hint set format description

Since complex hints have not been used yet, we had to come up with a good

file format for their representation. We have chosen a simple text file, where

each line represents one hint. Hints from different chromosomes are divided

by line with ’>’ sign followed by the name of chromosome, similarly as in the

fasta format for storing DNA sequences. Hint are written in the following

form:

<number> <bonus> <count> -

[<begin of interval> <hint label>](count)

40

<one position after end of last interval>

where number is the hint number used for testing and evaluation, bonus can

be a string defined in the bonus file or a real number. After hyphen sign,

intervals (the number of them is determined by count) are described with

beginnings and labels. The end of the last interval is determined by the po-

sition of the following nucleotide, because we wanted to keep the description

of each interval consistent: a label is surrounded by the beginning and the

position one after the end of the interval. The example of the hint file can

look as follows:

>dm3.chr2L

1 10.5 3 - 10 e 25 i 28 e 31

2 bonus 1 - 15 x 51

Both hints are from the chromosome dm3.chr2L. Hint number 1 has bonus of

10.5 and contains 3 intervals: exon from position 10 to 24, then intron from

25 to 27, and lastly, exon from 28 to 30. Hint number 2 has bonus defined

under string bonus in the bonus file and it contains only one interval: inter-

genic from position 15 to 50 (example of an interval hint). If string bonus is

not defined in the bonus file, program writes error message and quits.

This format enables to assign the same bonuses to a group of hints, what

can be useful for training of the bonus values.

3.1.3 Model training and data sets

The program was tested on genomic data from Drosophila melanogaster (fruit

fly). This species is an important model organism in genetics and its genome

is relatively well sequenced and annotated. We used the same sequences and

annotations as work of [Kováč, 2010]. Briefly, Drosophila genomic sequences

and reference annotations produced by the Berkeley Drosophila Genome

Project were downloaded from the UCSC genome browser [UCSC, 2006].

These sequences have 44 MB and contain 5164 genes. They were split to 2

MB parts and divided to training (≈ 28 MB, 3368 genes) and testing (≈ 16

MB, 1796 genes) sequences.

41

The underlying HMM has been taken from the work [Šrámek et al., 2007]

and retrained on the training sequence from the Drosophila melanogaster

genome by standard procedures [Durbin et al., 1998]. This model is de-

scribed in a text file in a simple format – listing emission and transition

matrices and states. We used modified HMM allowing states of higher order.

In a state of order k the emission probability depends not only on the current

state, but also on k last emitted symbols. Implementing higher order states

into the Viterbi algorithm is straight-forward, but they require training of

more parameters.

3.2 Results

We used two different approaches in creating hint sets: hints from real

data and artificial hint sets.

3.2.1 Real data hint sets

The real data hint sets are from protein sequences from insect species Drosophila

Melanogaster, D. Simulans, D. Pseudoobscura, Anopheles Gambiae, and

Bombyx Mori – together 67893 protein sequences. These protein sequences

were downloaded from the NCBI Protein database [NCBI, 2011c] and aligned

to the target sequence using the BLAT program

[Kent, 2002]. Alignments were postprocessed by scripts from ExonHunter

distribution [Brejová et al., 2005, Kováč, 2010]. Namely, introns were in-

serted between exons and untrustworthy alignments (big number of gaps,

start of an exon not on a splice site, . . .) were thrown out. If the whole

protein was aligned with high accuracy, a single intergenic position is put

to the beginning and to the end of the complete gene hint. The resulting

file is converted to our hint format by our program Hinter. Coverage of the

hint set is displayed in Table 3.1. The filtering reduces the sum of length of

alignments more than 20 times and reduces the amount of sequence covered

by hints by a factor of about 7.6. Approximately 11% of the training and

test sequence is covered by hints. Genes create almost 45% of the correct

annotation in the test sequence, so the hints were filtered quite strictly. On

42

the other hand, the strict filtering raised the specificity of the search.

Type Training Testing

Exon – sum 6,400,436 2,710,857

Exon – union 1,814,016 1,007,198

Intron - sum 2,345,827 1,370,425

Intron – union 744,514 393,163

Intergenic – sum 14,244 3,747

Intergenic – union 3,768 1,851

All – sum 8,739,255 4,085,029

All – union 2,516,800 1,389,895

All before filtering – sum 225,181,378 87,598,103

All before filtering – union 19,276,754 10,506,537

Sequence 28,307,322 15,789,189

Table 3.1: Hint set coverage – sum represents total length of hints of some

type, union represents amount of the sequence covered by these hints

We made four different hint sets. All hint sets are created from the same

information set, only in some sets each hint is divided to several pieces,

corresponding to the forms of external information used in existing gene

finders:

• complex hint set – complex hints (15,057 training hints, 5,545 testing

hints)

• interval hint set – each complex hint was divided to individual interval

hints (39,900 training hints, 14,358 testing hints)

• pointwise hint set – interval hints with length of 1 (this file was huge due

to redundant text representation, 8,651,653 training hints, 4,042,685

testing hints)

• combined hint set – complex hints plus their interval subparts (50,618

training hints, 17,920 testing hints)

Distribution of the number of intervals in complex hints is displayed in

the Table 3.2. Two hints with 21 and 31 intervals in the training test set

43

are not displayed due to table size. Odd numbers of intervals are dominant,

because complete gene hints have to have odd number of intervals (x exons,

x − 1 introns, and two intergenic intervals). Even numbers (and a portion

of the odd numbers) represent imperfect alignments, where only part of this

alignment has been used.

Intervals 1 2 3 4 5 6 7 8 9 10 11 13

Training 4,339 1,752 7,148 205 979 57 405 8 99 1 52 10

Test 1,983 687 2,008 85 501 25 177 2 60 1 11 5

Table 3.2: Distribution of the number of intervals in complex hints

Bonuses of hints have great influence on the gene prediction accuracy: if

they are too low, the hints will not help at all; if they are too high, wrong

hints will decrease the gene prediction accuracy. Therefore, hint bonuses have

to be trained to the optimal value. We wanted to keep the model as simple

as possible, because training of a high number of parameters would require

huge amount of time. Therefore, all hints in a set have the same bonus and

only one parameter is trained. It is obvious that this bonus has to be trained

separately for each hint set, because the bonus of, for example, pointwise hint

cannot be compared to the bonus for a whole interval, or a whole complex

hint. Nevertheless, we tried different modes of bonus assignment for complex

hints depending on the number of their intervals:

• (no mode) – bonus is used for the whole hint

• -int mode – bonus is multiplied by the number of intervals

• -sqrt mode – bonus is multiplied by a square root of the number of

intervals

The combined hint set was used only with -int mode, because we wanted

to assign greater bonus to the longer intervals. Therefore, we performed 6

different hint bonus trainings on the training data set with exploring a range

of values and choosing the value achieving the highest prediction accuracy

on the training sequences. Prediction accuracy has been evaluated using the

evaluation software from [Keibler and Brent, 2003]. There are different levels

of evaluation:

44

• nucleotide (base) level – we count how many exon bases have been

correctly as inside exon

• exon level – how many exons have been correctly found with both

boundaries

• gene level – how many whole genes have been correctly found with all

splicing sites

We evaluate sensitivity and specificity of the search at each level. Sensitivity

is the ratio of the correctly predicted features (bases, exons, or genes) and the

features in the reference annotation. Specificity is the ratio of the correctly

predicted features and all predicted features. Average of gene specificity and

gene sensitivity was chosen as the training criterion.

Evaluation on the test sequence of these different approaches is shown

in Table 3.3. Difference between pointwise bonuses and interval bonuses

is about 1% on the gene level and little less difference is between interval

and complex hints with -int mode. Therefore, complex hints can help gene

prediction, especially on the gene level. However, this difference is only slight

compared to the jump from ab initio prediction to the gene prediction with

external information.

Hint set no hints point int comb compl compl compl

Mode – – – -int – -sqrt -int

Bonus – 3 8 7 12 6 6

Gene Sn. 48.83% 60.08% 61.08% 61.19% 60.97% 61.14% 61.86%

Gene Sp. 40.40% 45.76% 46.39% 46.14% 46.50% 46.95% 46.62%

Exon Sn. 71.18% 75.76% 76.17% 76.08% 75.99% 75.98% 76.14%

Exon Sp. 69.01% 71.72% 72.32% 72.06% 72.30% 72.47% 72.30%

Base Sn. 92.81% 94.35% 94.15% 94.20% 94.03% 93.93% 94.14%

Base Sp. 91.86% 91.98% 92.09% 92.13% 92.03% 92.07% 92.08%

Table 3.3: Comparison of different approaches on real data

45

3.2.2 Artificial hint sets

The second test was using artificial hint sets created from the reference an-

notation. We have created only two hint sets: complex and interval, because

the previous test proved that other hint sets yield inferior results. Hints are

chosen randomly with a fixed length over the sequence to achieve a fixed an

estimated total coverage. All hints are correct in the sense that they respect

the known reference annotation; therefore, we expect the accuracy to grow

with the bonus. Parameter length was set to 1000, because hints with this

length seem to have the same distribution of the number of intervals as our

real hint set (except for a high portion of single interval, intergenic hints).

We tried different coverage values: 0.25, 0.5, and 2.0. Coverage of 0.25 cor-

responds to the real data set coverage, where only 11% of genes were covered

(whole genome coverage of 0.25 in a genome with 45% gene content gives

aproximately 11% gene coverage).

The aim of this test is to find out the relation between bonus value and the

accuracy of gene prediction. Mode -int has to be used for complex intervals

to achieve equivalence between sums of bonuses in both hint sets. We tried

bonus in range 0 to 25 with step of 1. Gene sensitivity and specificity are

plotted in the graphs on Figures 3.1-3.3.

We can see, that gene prediction accuracy increases with increasing cov-

erage and the difference between complex hints and interval hints becomes

more apparent. While for 0.25 coverage, the difference is at most only about

one percent (which agrees with the real data test), in greater coverage the

difference raises to 2%-3% for realistic bonus value.

Finally, we assigned huge bonus to the hints and observe the maximal

accuracy allowed by our model. This accuracy was not 100%, because the

HMM does not allow some genomic structures (for example, exons and in-

trons with very small length). This accuracy is in Table 3.4.

46

0 5 10 15 20 25
35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

Complex Gene Sn.
Interval Gene Sn.
Complex Gene Sp.
Interval Gene Sp.

Figure 3.1: Artificial hint sets (coverage = 0.25) – bonus is on X axis,

prediction accuracy is on Y axis

0 5 10 15 20 25
35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

Complex Gene Sn.
Interval Gene Sn.
Complex Gene Sp.
Interval Gene Sp.

Figure 3.2: Artificial hint sets (coverage = 0.5) – bonus is on X axis, predic-

tion accuracy is on Y axis

47

0 5 10 15 20 25
35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

Complex Gene Sn.
Interval Gene Sn.
Complex Gene Sp.
Interval Gene Sp.

Figure 3.3: Artificial hint sets (coverage = 2.0) – bonus is on X axis, predic-

tion accuracy is on Y axis

Hint set complex interval

Gene Sn. 89.70% 89.81%

Gene Sp. 94.28% 93.95%

Exon Sn. 87.24% 87.80%

Exon Sp. 98.28% 97.87%

Base Sn. 94.66% 94.79%

Base Sp. 99.93% 99.88%

Table 3.4: Maximal accuracy of our model achieved for very large bonus

48

Conclusion

We proposed a new algorithm for using external information in gene finding,

which allows the use of more complex hints. The algorithm is based on

finding the longest path in a special directed acyclic graph called the joint

graph. We implemented a gene finder based on our algorithm and tested

it. Several hint sets were created to evaluate the contribution of different

forms of external information to the accuracy of gene finding. Although our

implementation cannot be compared to the accuracy of existing gene finders,

both artificial and real sets of hints lead to a slight increase in the accuracy

for complex hints compared to simpler hint types used before. Therefore, we

strongly believe that a full scale implementation of proposed algorithm with

all biology motivated enhancements will result in a global gene prediction

improvement.

Time complexity of this algorithm is within reasonable limits, which has

been proved by both time complexity analysis and experiments on realistic

data sets.

There is still space to further generalize the class of allowed external

information, but some of these generalizations leads to NP-hard problems

[Kováč et al., 2009]. There are open questions for future work including the

following:

• Is gene finding using complex hints with multiple state restriction labels

NP-hard problem? (we showed that our algorithm does not solve this

case)

• If it is NP-hard, can we solve efficiently some special cases with further

restrictions on hints? For example pointwise hints with multiple state

49

restrictions are clearly in P (such hints were used in a slightly different

way in ExonHunter [Brejová et al., 2005]).

• Is gene finding with negative bonuses NP-hard problem?

50

Resumé

V práci popisujeme nový algoritmus na ȟladanie génov, využ́ıvajúci externú

informáciu. Tento algoritmus umožňuje spracovanie komplexneǰsej informácie,

aká bola doteraz využ́ıvaná. Popisujeme tu prinćıpy a presnú tvorbu špe-

ciálneho acyklického grafu, kde časti externej informácie tvoria alternat́ıvne

zvýhodnené cesty s obmedzeniami. Tento algoritmus sme aj implementovali

a otestovali. Za účelom možnosti porovnania presnosti predikcie génov sme

vytvorili niekǒlko množ́ın ”hintov”, ktoré zodpovedajú rôznym triedam ex-

ternej informácie. Naša jednoduchá implementácia sa nemôže rovnať komer-

čným programom na ȟladanie génov, avšak porovnanie rôznych množ́ın hin-

tov ukázalo, že komplexné hinty čiastočne zvyšujú presnosť predikcie hlavne

na génovej úrovni. Tento výsledok bol dosiahnutý či už s reálnou alebo s

umelo vytvorenou externou informáciou, preto veŕıme, že plnohodnotná im-

plementácia programu na ȟladanie génov založená na našom algoritme zvýši

presnosť génovej predikcie globálne.

Navrhovaný algoritmus má časovú zložitosť porovnatělnú s dnes použ́ı-

vanými programami, čo bolo dokázané analýzou časovej zložitosti aj experi-

mentmi na reálnych dátach.

51

Bibliography

[Brejová et al., 2005] Brejová, B., Brown, D. G., Li, M., and Vinař, T.

(2005). Exonhunter: a comprehensive approach to gene finding. In ISMB

(Supplement of Bioinformatics), pages 57–65.

[Burge and Karlin, 1997] Burge, C. and Karlin, S. (1997). Prediction of com-

plete gene structures in human genomic DNA. J. Mol. Biol., 268:78–94.

[Cormen et al., 1989] Cormen, T. H., Leiserson, C. E., and Rivest, R. L.

(1989). Introduction to Algorithms. The MIT Press and McGraw-Hill

Book Company.

[DeCaprio et al., 2007] DeCaprio, D., Vinson, J. P., Pearson, M. D., Mont-

gomery, P., Doherty, M., and Galagan (2007). Conrad: gene prediction

using conditional random fields. Genome research, 17(9):1389–1398.

[Durbin et al., 1998] Durbin, R., Eddy, R., Krogh, A., and Mitchison, G.

(1998). Biological Sequence Analysis. Cambridge Univ Pr.

[Forney, 1973] Forney, G.D., J. (1973). The viterbi algorithm. Proceedings

of the IEEE, 61:268 – 278.

[Haas et al., 2008] Haas, B. J., Salzberg, S. L., Zhu, W., Pertea, M., Allen,

J. E., Orvis, J., White, O., Buell, C. R., and Wortman, J. R. (2008).

Automated eukaryotic gene structure annotation using EVidenceModeler

and the Program to Assemble Spliced Alignments. Genome Biol., 9(1).

[Keibler and Brent, 2003] Keibler, E. and Brent, M. R. (2003). Eval: A

software package for analysis of genome annotations. BMC Bioinformatics,

4:50.

52

[Kent, 2002] Kent, W. J. (2002). BLAT–the BLAST-like alignment tool.

Genome Res., 12(4):656–664.

[Kováč et al., 2009] Kováč, J., Vinař, T., and Brejová, B. (2009). Predicting

gene structures from multiple rt-pcr tests. Algorithms in Bioinformatics,

5724:181–193.

[Kováč, 2010] Kováč, P. (2010). Implementácia externých zdrojov dát v

ȟladańı génov.

[Krogh, 1997] Krogh, A. (1997). Two methods for improving performance

of a hmm and their application for gene finding. In ISMB, pages 179–186.

[NCBI, 2011a] NCBI (2011a). National Center for Biotechnology Informa-

tion:

database of Expressed Sequence Tags.

http://www.ncbi.nlm.nih.gov/dbEST/dbEST summary.html .

[NCBI, 2011b] NCBI (2011b). National Center for Biotechnology Informa-

tion: ESTs Factsheet.

http://www.ncbi.nlm.nih.gov/About/primer/est.html .

[NCBI, 2011c] NCBI (2011c). National Center for Biotechnology Informa-

tion: Protein Data Bank (Known proteins database).

http://www.pdb.org .

[Ng et al., 2005] Ng, P., Wei, C.-L., Sung, W.-K., Chiu, K. P., Lipovich, L.,

Ang, C. C., Gupta, S., Shahab, A., Ridwan, A., Wong, C. H., Liu, E. T.,

and Ruan, Y. (2005). Gene identification signature (GIS) analysis for

transcriptome characterization and genome annotation. Nature Methods

2, pages 105–111.

[Ouzounis and Valencia, 2003] Ouzounis, C. A. and Valencia, A. (2003).

Early bioinformatics: the birth of a discipline - a personal view. Bioinfor-

matics, 19(17):2176–2190.

[Paul E. Black, 2008] Paul E. Black (2008). hidden Markov Model.

http://www.nist.gov/dads/HTML/hiddenMarkovModel.html.

53

[Šrámek et al., 2007] Šrámek, R., Brejova, B., and Vinař, T. (2007). On-line

Viterbi Algorithm for Analysis of Long Biological Sequences. In Giancarlo,

R. and Hannenhalli, S., editors, Algorithms in Bioinformatics: 7th Inter-

national Workshop (WABI), volume 4645 of Lecture Notes in Computer

Science, pages 240–251, Philadelphia, PA, USA. Springer.

[Sakharkar et al., 2004] Sakharkar, M. K., Chow, V. T., and Kangueane, P.

(2004). Distributions of exons and introns in the human genome. In Silico

Biology 4.

[SIB, 2011] SIB (2011). Swiss Institute of Bioinformatics: UniProt Knowl-

edgebase – protein sequence database.

http://expasy.org/sprot/ .

[Stanke et al., 2008] Stanke, M., Diekhans, M., Baertsch, R., and Haussler,

D. (2008). Using native and syntenically mapped cdna alignments to im-

prove de novo gene finding. Bioinformatics, 24(5):637–644.

[Stanke et al., 2006] Stanke, M., Schoffmann, O., Morgenstern, B., and

Waack, S. (2006). Gene prediction in eukaryotes with a generalized hidden

markov model that uses hints from external sources. BMC bioinformatics

2006, 7:62.

[UCSC, 2006] UCSC (2006). Drosophila melanogaster draft assembly

(BDGP Release 5), provided by the Berkeley Drosophila Genome

Project(BDGP). Online.

http://genome.ucsc.edu/cgi-bin/hgGateway?clade=insect&org=0&db=0.

[Yeh et al., 2001] Yeh, R.-F., Lim, L. P., and Burge, C. B. (2001). Compu-

tational inference of homologous gene structures in the human genome.

Genome Res., 11:803–816.

